Next Article in Journal
Real Time Anti-Toxoplasma gondii Activity of an Active Fraction of Eurycoma longifolia Root Studied by in Situ Scanning and Transmission Electron Microscopy
Previous Article in Journal
Synthesis and Antibacterial Activities of Amphiphilic Neomycin B-based Bilipid Conjugates and Fluorinated Neomycin B-based Lipids
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Bioactivities of the Genus Combretum (Combretaceae): A Review

by
Gedson Rodrigues De Morais Lima
,
Igor Rafael Praxedes De Sales
,
Marcelo Ricardo Dutra Caldas Filho
,
Neyres Zínia Taveira De Jesus
,
Heloina De Sousa Falcão
,
José Maria Barbosa-Filho
,
Analúcia Guedes Silveira Cabral
,
Augusto Lopes Souto
,
Josean Fechine Tavares
and
Leônia Maria Batista
*
Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-970, PB, Brazil
*
Author to whom correspondence should be addressed.
Molecules 2012, 17(8), 9142-9206; https://doi.org/10.3390/molecules17089142
Submission received: 18 May 2012 / Revised: 23 July 2012 / Accepted: 25 July 2012 / Published: 2 August 2012

Abstract

:
The Combretaceae is a large family of herbs, shrubs and trees, comprising about 20 genera and 600 species with tropical distribution around the globe and centers of diversity in Africa and Asia. Some Combretum species are extensively used in traditional medicine against inflammation, infections, diabetes, malaria, bleeding, diarrhea and digestive disorders and others as a diuretic. The present work is a literature survey of Combretum species that have been evaluated for their ability to exert biological activities. A total number of 36 Combretum species are discussed with regard to plant parts used, component tested and bioassay models. This review is of fundamental importance to promoting studies on Combretum species, thereby contributing to the development of new therapeutic alternatives that may improve the health of people suffering from various health problems.

1. Introduction

Medicinal plants have been used since ancient times in virtually all cultures as a source of medicines [1], and are of great importance to the health of individuals and communities [2]. Traditional medicine is used in all parts of the World and has a rapidly growing economic importance, mainly through the use of medicinal plants, especially in developing countries [3]. The medicinal use of plants of the family Combretaceae is widely described in the scientific literature [4,5,6]. This family is distributed in appoximately 20 genera with 600 species. The largest genera are Combretum and Terminalia, with about 370 and 200 species, respectively [7]. Members of the Combretaceae occur mainly in tropical and subtropical areas, for example, in Africa and Brazil.

Phytochemical Components Isolated from the Active Combretum Species

Phytochemical studies carried out in the genus Combretum have demonstrated the occurrence of many classes of constituents, including triterpenes, flavonoids, lignans and non-protein amino acids, among others [7]. Since the 1970s, several unusual compounds have also been isolated from Combretum species, for example, 9,10-dihydrophenanthrenes and a substituted bibenzyl from C. molle [8]. Bisoli et al. isolated 11 triterpenes and their glycosides from C. laxum, among them, oleanane-, ursane- and lupane-type such as arjunolic acid, arjunglucoside II, bellericoside, chebuloside II, quadranoside IV, asiatic acid and betulinic acid [9]. Cycloartane dienone lactone was isolated from C. quadrangulare [10], and alkaloids (combretine and betonicine) from the leaves of C. micranthum [11]. Some flavonoids, rhamnoctrin (Figure 1A), quercetin-5,3'-dimetylether (Figure 1B), ramnazin (Figure 1C) and kaempferol were isolated from C. erythrophyllum [12], as well as quercetrin, kaempferol and pinocembrin (flavanone) from C. apiculatum [13]. Cardamonin (chalcone) was also isolated from C. apiculatum [13] and ellagic acid derivatives from C. kraussii [14]. Combretastatins, a group of stilbenes, have been isolated from several species of Combretum [15].
As referenced above, there are several studies describing the phytochemistry of the species of this family, and the medicinal value of plants lies in the chemical substances that produce a physiological change in the human body [2]. Therefore, in continuation of our research on bioactive molecules from the various species of different plant families [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47], the aim of this study was to review the literature on the bioactivity of the genus Combretum.
Figure 1. The molecular structures of compounds isolated from Combretum species.
Figure 1. The molecular structures of compounds isolated from Combretum species.
Molecules 17 09142 g001

2. Results and Discussion

In this review, it was possible to list thirty-six species of the genus Combretum. The effectiveness of the plant extracts depended on the type of drug studied and the bioassay models. Thus, it was possible to classify the extracts as active or inactive. In this study, we chose more species referenced in data collected in the NAPRALERT natural products database and the scientific literature databases ScienceDirect and PubMed.
Combretum micranthum is a bushy shrub or creeper found all over Africa. C. micranthum is used in traditional medicine for the treatment of wounds and sores [48,49,50] and of fever (especially malaria fever), cough and bronchitis [49,51]. In studies evaluating its antibacterial activity, the extracts used were obtained with different solvents (ethanol, chloroform, methanol or water). Activity was observed against the following bacterial species: Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella species, Streptococcus species, Proteus vulgaris, Klebsiella species, Sarcina lutea, Micrococcus luteus and Bacillus subtilis [52,53,54,55,56,57]. In addition, antifungal activity against Candida albicans was noted [56]. Antiviral activity of a methanolic extract was reported against Herpes simplex 1 and Herpes simplex 2 [58]. Toxicity studies have reported the activity of an ethanolic extract in the brine shrimp lethality test [56]. Benoit et al. [59] and Karou et al. [60] reported anti-Malarial activity against Plasmodium falciparum. However, a methanolic extract did not display cytotoxic activity aganist THP1 cells [61] (Table 1).
Di Carlo et al. [62] demonstrated immuno-stimulating activity with a suspension of powdered leaf. Chika and Bello [63] demonstrated an antidiabetic effect for the aqueous leaf extract of C. micranthum. A dose of 100 mg/kg of the extract was the most effective, among the doses tested. It produced a significant hypoglycemic and antidiabetic activity comparable to the effect of a standard drug (0.6 mg/kg glibenclamide) (Table 1). This study demonstrated the potential antidiabetic properties of aqueous leaf extract of C. micranthum for both type 1 and type 2 diabetes, justifying its traditional use in the treatment of this disease in Northwestern Nigeria. All of the above results contribute to justifying the use of the plant in traditional medicine for treating various conditions, particularly infections and diabetes.
C. molle (soft-leaved Combretum, velvet bush willow) is a tree with a larger, straighter trunk compared to most species of Combretum, further distinguished by its rough bark and dense crown. It occurs throughout tropical Africa and in the Arabian Peninsula in areas where woodlands and wooded grasslands predominate, often forming pure stands on hillsides [64].
C. molle has been widely used as a medicinal plant to treat various diseases such as parasitic, protozoan and other infectious diseases in East [65,66,67] and West Africa [68]. Antibacterial studies have demonstrated its activity against Staphylococcus aureus and Helicobacter pylori at different extract concentrations [69,70,71]. Antifungal activity was reported in models that used Epidermophyton floccosum, Microsporum gypseum, Trichophyton mentagrophytes, T. rubrum, Candida albicans, C. neoformans, Aspergillus fumigatus, Sporothrix schenckii and Microsporum canis [72,73]. C. molle was also able to inhibit the growth of Mycobacterium tuberculosis [74]. Antitrypansomal and anthelmintic activities of different extracts have also been reported [4,75,76,77] (Table 1).
Toxicity studies have reported the activity of aqueous and acetone extracts against Artemia salina [9]. Furthermore, Asres et al. [78] and Gansané et al. [6] reported antimalarial activity of the methanolic extract against Plasmodium falciparum at different concentrations tested. Molluscicidal effect of aqueous extract against Biomphalaria pfeifferi was also observed [75]. Meanwhile, embryotoxic effects have not been reported [79] (Table 1).
Methanolic extracts of the roots and leaves (25 μg/mL) of C. molle showed strong cytotoxic effects against T-24 bladder cancer cells [15]. In addition, the aqueous and methanol extracts of C. molle were screened for inhibitory effects against HIV-1 reverse transcriptase. These extracts produced relatively strong inhibition of RNA-dependent-DNA polymerase (RDDP) activity. The compounds responsible for these activities in this plant were not sought [80] (Table 1).
In the case of compounds obtained from C. molle, the analgesic and antiinflammatory properties of mollic acid glucoside (MAG) (Figure 1H), a 1α-hydroxycycloartenoid extracted from Combretum molle leaves, have been investigated in mice and rats [81]. The results of this laboratory animal study indicate that MAG possesses analgesic and antiinflammatory effects in the mammalian models used. The author suggested that MAG possesses both centrally- and peripherally-mediated analgesic effects.
Ojewole also reported on the cardiovascular effects of MAG. The results of this study showed that this compound was capable of causing bradycardia, vasorelaxation and hypotension in the animals evaluated [82]. In addition, hypoglycemic and antidiabetic activity have also been demonstrated [83].
In vitro anti-HIV activity of two isolated tannins from an acetone fraction, punicalgin (Figure 1F) and CM-A (whose structure has not yet been fully elucidated), was assessed against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2). The results displayed selective inhibition of HIV-1 replication with selective indices (ratio of 50% cytotoxic concentration to 50% effective antiviral concentration) of 16 and 25, respectively and afforded complete cell protection against the virus-induced cytopathic effect when compared to control samples. Neither of the tannins was able to inhibit HIV-2 replication [84].
These results contribute to the validation of the popular use of this plant species in the treatment of bacterial, fungal, protozoan and viral infections and cardiovascular problems, among others.
The plant C. erythrophyllum (Burch.) Sond., commonly known as river Combretum, is a medium-sized, spreading, densely foliaged tree up to 12 m in height, which has been used by traditional healers for a variety of disorders [85,86]. C. erythrophyllum is widely used in traditional medical practice in southern Africa. It has been used for treating abdominal pains and venereal diseases, which suggests the presence of antibacterial compounds in the leaves [87].
As part of the treatment for venereal diseases, powdered roots of C. erythrophyllum are inserted into the vagina, which has resulted in several fatalities. The same procedure is followed to reduce the size of the vaginal orifice. In addition, the plant has been used to treat sexually transmitted diseases [85].
Extracts of C. erythrophyllum obtained with different solvents (acetone, hexane, chloroform, carbon tetrachloride and butanol) have shown antibacterial activity at different doses against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis [88,89] (Table 1). Some antibacterial flavonoids were subsequently isolated by bioassay-guided fractionation, namely genkwanin (Figure 1D), 5-hydroxy-7,4-dimethoxyflavone (Figure 1E), rhamnocitrin (Figure 1A), quercetin-5,3-dimethylether (Figure 1B), and rhamnazin (Figure 1C). These compounds showed good activity against Micrococcus luteus, Shigella sonei, Vibrio cholerae, Enterococcus faecalis and Pseudomonas aeruginosa. The results provide a clear rationale for the ethnomedicinal use of C. erythrophyllum leaves in treating bacterial infections [12]. Furthermore, these compounds have demonstrated antiinflammatory activity in experimental models in vitro [12].
Moreover, in studies evaluating antifungal activity, extracts obtained with different solvents (acetone, hexane, dichloromethane and methanol) were active against the following species: C. albicans, C. neoformans, A. fumigatus, S. schenckii and M. canis [73] (Table 1).
Toxicity studies have shown that the aqueous extract of C. erythrophyllum has mutagenic activity against Salmonella typhimurium [90]. The aqueous extract causes mutations in the meiotic stage of Drosophila melanogaster [86]. The methanol, dichloromethane and acetate extracts of C. erythrophyllum showed bioactivity in a yeast-based microtiter assay for DNA-damaging agents [91] (Table 1).
C. erythrophyllum extract has spasmolytic activity in the pre-contracted uterus, and this activity seems to involve the inhibition of cyclooxygenase, blocking the biosynthesis of prostaglandins, substances that are involved in uterine muscle contraction [92].
The alcoholic extract of Combretum dolichopetalum is used in folklore medicine to relieve stomach ache, blood in the stools, diarrhea, cramps and related gastrointestinal disorders [93]. The ethanolic extract of C. dolichopetalum has shown a gastroprotective effect in stress-induced and non-steroidal antiinflammatory (indomethacin)-induced ulcer models. The crude extract inhibited secretions induced in rats by pyloric ligation together with histamine [93,94] (Table 1). In addition, the pharmacological actions were evaluated in the guinea-pig isolated ileum and in intact rats. The crude extract inhibited the contractions induced by acetylcholine and histamine in the guinea-pig ileum in a concentration-dependent manner. The extract also delayed gastric emptying in rats in a dose-dependent manner. These results therefore suggest that C. dolichopetalum has gastric antisecretory activity, increasing gastric emptying time, and acts as a smooth muscle relaxant and spasmolytic agent [93,94] (Table 1).
The hepatoprotective effects of the ethanolic extract of C. dolichopetalum root bark were evaluated on paracetamol-induced liver intoxication in rats. Oral pre-treatment with C. dolichopetalum ethanolic extract significantly attenuated the elevation of serum glutamate-oxaloacetate transaminase (GOT) and glutamate- pyruvate transaminase (GPT) induced by paracetamol intoxication in rats [95] (Table 1).
Asuzu et al. [94] demonstrated that the methanol and chloroform extracts obtained with dried roots of C. dolichopetalum have antiinflammatory activity in models of carrageenan-induced paw edema and croton oil-induced edema in mice [96]. Udem et al. conducted toxicity studies in rats and found activity in both sexes (LD50 246.0 mg/kg) [97] (Table 1).
Combretum quadrangulare is a shrub or tree, indigenous to southeast Asia, especially Burma to Laos. The plant is commonly known as “tram bâu” (Vietnam), “kê khao” (Laos) or “sang kaê” (Cambodia), and the seeds are used in Vietnamese traditional medicine as a remedy against round and tapeworm infections in humans [98]. Studies conducted by Somanabandhu et al. [99] revealed the ether and ethanolic extracts of dried root bark or dried seed are effective against earthworms when tested in vitro [99]. Antimicrobial activity was also reported in extracts of dried leaves, which were active against Helicobacter pylori [100] (Table 1).
The hepatoprotective effect of MeOH, MeOH/H2O (1:1) and aqueous extracts of C. quadrangulare seeds were examined on D-galactosamine (D-GalN)/tumor necrosis factor-α (TNF-α)-induced cell death in primary cultured mouse hepatocytes. The MeOH extract showed the strongest inhibitory effect on D-GalN/TNF-α-induced cell death (IC50 56.4 μg/mL). Moreover, the MeOH extract also significantly lowered the serum GPT level in mice with D-GalN/lipopolysaccharide (LPS)-induced liver injury [101] (Table 1). Acetone, MeOH, and aqueous extracts of C. quadrangulare were tested for their trypanocidal activity against epimastigotes of Trypanosoma cruzi, the causative agent of Chagas disease. Strong trypanocidal activity was found in the acetone extract of C. quadrangulare [102] (Table 1).
The aqueous and EtOH extracts of C. quadrangulare were screened for their inhibitory activity against HIV-1 integrase (IN), an enzyme essential for viral replication. The aqueous and EtOH extracts showed significant inhibitory activity against HIV-1 with an IC50 value of 2.5 and 2.9 µg/mL, respectively [103] (Table 1). The compound O-galloyl-6-O-(4-hydroxy-3,5-dimethoxy)benzoyl-β-D-glucose (Figure 1G), a new gallic acid derivative isolated from C. quadrangulare, demonstrated potent hepatoprotective activity against D-GalN/TNF-alpha-induced cell death in primary cultured mouse hepatocytes [104]. The triterpenes of the lupane type, 2α,6β-dihydroxybetulinic acid (Figure 1I) and 6β-hydroxyhovenic acid (Figure 1J), isolated from the MeOH extract of C. quadrangulare seeds, also exhibited strong hepatoprotective activity [105].

3. Material and Methods

The biological activity of the Combretum species was searched through the NAPRALERT (acronym for Natural Products ALERT) databank of the University of Illinois at Chicago. The data were updated in April 2011, using biological activity of the Combretum species as search term. The plant extracts were selected for this work and the references found in the search were later consulted for details on the models or mechanisms. Furthermore, this data survey was supplemented with searches in the PubMed and ScienceDirect sites. The specific names of the species were used as keywords.
Table 1. Bioactivities of drugs obtained of the genus botanical Combretum.
Table 1. Bioactivities of drugs obtained of the genus botanical Combretum.
Biological ActivityBotanical NamePart TestedBioassay ModelsResult
Enzymatic activity
Inhibition of acetylcholinesterase
C. hartmannianum Schweinf.MeCl2 or AcOEt ext. of dried leafIn vitro-TLC and Microplate assay by Ellman’s methodInactive [106]
EtOH ext. of dried leafIn vitro-TLC and Microplate assay by Ellman’s method-IC50 for drug: 0.25 mg/mL Active [106]
MeCl2 and EtOH ext. of dried stem barkIn vitro-TLC and Microplate assay by Ellman’s method-IC50 for drugs: 1.0 or 0.37 mg/mL, respectivelyActive [106]
AcOEt ext. of dried stem barkIn vitro-TLC and Microplate assay Inactive [106]
EtOH ext. of dried rootIn vitro-TLC and Micro-plate assay by Ellman’s method-IC50 for drug: 0.37 mg/mLActive [106]
MeCl2 and AcOEt ext. of dried rootIn vitro-TLC and Microplate assay by Ellman’s methodInactive [106]
Inhibition of ACE
C. fruticosum (Loefl.) StuntzMeOH/MeCl2 (50:50) ext. of dried stem or dried leafIn vitro-ACE isolated from rabbit lung catalyze the cleavage of the chromophore-fluorophore-labeled substract dansyltriglycine into dansylglycine—Concentration for drugs: 0.33 mg/mLActive [107]
EtOH ext. of leavesIn vitro-ACE isolated from rabbit lung catalyze the cleavage of hippuryl-glycyl-glycine and react with trinitrobenzenesulfonic acid to form 2,4,6-trinitrophenyl glycyl glycine—Concentration for drug: 0.33 mg/mLActive [108,109]
Inhibition of topoisomerase
C. apiculatum Sond. subsp apiculatumEtOAc ext. of dried rootbark, or dried stemwood, or dried rootwoodIn vitro-Topoisomerase I or topoisomerase II inhibition assay after Polyvinylpyrrolidine (1:1) or Collagen (1:100) methods, respectivelyActive [110]
C. erythrophyllum (Burch.) Sond.EtOAc ext. of dried leafIn vitro-Topoisomerase I or topoisomerase II inhibition assay after Polyvinylpyrrolidine (1:1) or Collagen (1:100) methods, respectivelyActive [110]
Antiparasitic activity
Antiascariasis
C. quadrangulare Kurz.Ether and EtOH (95%) ext. of dried root bark or dried seedIn vitro-Earthworms—Concentration not cited Active [99]
Antifilariasis
C. mucronatum Schumach.Hot H2O ext. of root88 human adult infected with guinea worms—Dose for drug: 0.03 mg/kg (p.o.)Active [111]
Anthelmintic
C. apiculatum Sond. subsp. apiculatumH2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of Caenorhabditis elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLActive [112]
C. bracteosum (Hochst.) Brandis ex Engl.H2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
C. celastroides Welw ex Laws subsp. celastroidesH2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
C. collinum Fresen. subsp. suluense (Engl. & Diels) OkaforH2O and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Acetone ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLActive [112]
C. edwardsii ExellH2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 mg/mLInactive [112]
Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 1 mg/mLActive [112]
C. erythrophyllum (Burch.) Sond.H2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 mg/mLInactive [112]
Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 1 mg/mLActive [112]
C. hereroense SchinzH2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 mg/mLInactive [112]
Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 1 mg/mLActive [112]
C. imberbe WawraH2O and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Acetone ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 1 mg/mLActive [112]
C. kraussii Hochst.H2O and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Acetone ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLActive [112]
C. microphyllum KlotzschH2O and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Acetone ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLActive [112]
C. mkuzense Carr & RetiefH2O and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Acetone ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLActive [112]
C. moggii ExellH2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
C. molle R. Br. ex G. DonH2O and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Acetone ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLActive [112]
Acetone ext., n-butanol, hexane, CHCl3 or H2O/MeOH fractions of leaf In vitro-Nematocidal activity by means of an egg hatch and larval development of Haemonchus contortus-Lethal Concentration 50% (LC50) for drugs: 0.866, 0.333, 0.833, 0.747 or 0.065 mg/mL, respectivelyActive [77]
In vitro-Nematocidal activity by means of an egg hatch and larval development of Haemonchus contortus-Lethal Concentration 50% (LC50) for drugs: 0.604, 0.362, 1.077, 0.131 or 0.318 mg/mL, respectivelyActive [77]
H2O/MeOH ext.Lambs infected with larvae of H. contortus—Dose for drug: 500, 1,000 or 2,000 mg/kg (p.o.)Active [113]
C. mossambicense (Klotzsch) Engl.H2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 mg/mLInactive [112]
Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration of drugs: 1 mg/mLActive [112]
C. mucronatum Schumach.Hot H2O extHuman adult infected with guinea worms—Dose not cited: (p.o.) Active [114]
C. nelsonii DümmerH2O and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Acetone ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLActive [112]
C. nigricans Lepr.MeCl2/MeOH ext. or H2O ext. of fruitMotility warms of Caenorhabditis elegans Bristol—Concentration for drugs: 1 mg/mLActive [115]
C. padoides Engl. & DielsH2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
C. paniculatum Vent.H2O and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Acetone ext. of dried leafIn vitro-Worms of C. elegans var. BristolConcentration for drugs: 0.5 and 1 mg/mLActive [112]
C. petrophilum RetiefH2O and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Acetone ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLActive [112]
C. woodii DümmerH2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
C. zeyheri Sond.H2O, Acetone and AcOEt ext. of dried leafIn vitro-Worms of C. elegans var. Bristol—Concentration for drugs: 0.5 and 1 mg/mLInactive [112]
Antileishmaniasis
C. comosum G. Don.MeOH, MeOH/H2O (50:50) or MeCl2 ext. of dried leavesIn vitro-Promastigotes of Leishmania infantum—Concentration for all drugs: >100.0 μg/mL Inactive [116]
C. cuspidatum Planch. ex Benth.MeOH, MeOH/H2O (50:50) or MeCl2 ext. of dried leavesIn vitro-Promastigotes of L. infantum—Concentration for drugs: 34.5, >100.0 or 43.5 μg/mL, respectivelyInactive [116]
MeOH, MeOH/H2O (50:50) or MeCl2 ext. of stem barks In vitro-Promastigotes of L. infantum—Concentration for drugs: >100.0, >100.0 or 28.6 μg/mL, respectively Inactive [116]
C. molle R. Br. ex G. DonAcetone fraction of stembarkIn vitro—Murine peritoneal macrophages infected with amastigotes of L. donovani—Concentration for drug: 30.0 μg/mLInactive [76]
Antimalarial
C. micranthum G. Don.EtOH (95%) ext. of dried leafIn vitro-Cell culture (erythrocytes) with parasite maturation of Plasmodium falciparum—IC50 for drug: 33.05 μg/mL Active [60]
MeOH ext. of dried leafIn vitro-Cell culture (P. falciparum W2)—Concentration for drug: >25 μg/mL Inactive [61]
Decoction or infusion of dried leaf and stemIn vitro-Cell culture (P. falciparum FcB1-Colombia chloroquine resistant)—IC50 for drug: 1.18 μg/mL Active [59]
Infusion of dried leaf and stemIn vitro-Cell culture (P. falciparum F32-Tanzania chloroquine-sensitive)—IC50 for drug: 1.7 μg/mL Active [59]
Decoction of dried leaf and stemIn vitro-Cell culture (P. falciparum F32-Tanzania chloroquine-sensitive)—IC50 for drug: 0.88 μg/mL Active [59]
C. molle R. Br. ex G. DonAcetone fraction of stem barkIn vitro-Cell culture (Trophozoites of P. falciparum)—IC50 for drug: 8.17 μg/mL Active [76]
MeOH ext. of dried stemIn vitro-Cell culture with P. falciparum—IC50 for drug: 1.25 μg/mLActive [78]
EtOH (90%) ext. of leaves, rootbark or stembarkIn vitro-Cell culture with P. falciparum K1—IC50 for drugs: 4.0 μg/mLActive [4]
MeOH or MeOH/H2O ext. of leavesIn vitro-Cell culture (K562S human monocyte infected with P. falciparum W2)-IC50 for drugs: 5.7 or 7.9 μg/mL, respectivelyActive [6]
C. aff. psidioides Welw. subsp.psilophyllum WickensEtOH (95%), Pet ether, EtOAc or H2O ext. of dried root barkIn vitro—Microdiluition assay (P. falciparum)—IC50 for drugs: 31.0, 39.0, 6.5or 30.0 μg/mL, respectivelyActive [117]
C. racemosum P. BeauvEtOH (90%) ext. of leaves or root barkIn vitro-Cell culture with P. falciparum K1—IC50 for drug: 4.0 μg/mL Active [4]
C. zeyheri Sond.MeCl2/MeOH (1:1) or H2O ext. of twigsIn vitro—Microdiluition assay (P. falciparum D10)—Concentration for drug: 15 or >100 μg/mL, respectivelyInactive [118]
Antischistosomal
C. aculeatum Vent.H2O ext. of dried leafIn vitro—Miracidicidal and cercaricidal activity on Schistosoma mansoni—Concentration for drug: 1,000 ppmActive [119]
C. apiculatum Sond. subsp. apiculatumH2O ext. of dried leafIn vitro-Worms of Schistosoma haematobium—Concentration not citedInactive [112]
C. bracteosum (Hochst.) Brandis ex Engl.H2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
C. celastroides Welw ex Laws subsp. celastroidesH2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
In vitro—Miracidicidal and cercaricidal activity on S. mansoni—Concentration for drug: 1,000 ppmActive [119]
C. edwardsii ExellH2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
C. erythrophyllum (Burch.) Sond.H2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
C. glutinosum Perrot. ex DCH2O ext. of dried leafIn vitro-Miracidicidal and cercaricidal activity on S. mansoni-Concentration for drug: 1,000 ppmActive [119]
C. hartmannianum Schweinf.H2O ext. of dried leafIn vitro-Miracidicidal and cercaricidal activity on S. mansoni-Concentration for drug: 1,000 ppmActive [119]
C. hereroense SchinzH2O ext. of dried leafIn vitro-Worms of S. haematobium-Concentration not cited Inactive [112]
C. imberbe WawraH2O ext. of dried root or dried leafIn vitro-Worms of S. haematobium—MIC for drugs: 25.0 or 12.5 mg/mL, respectivelyActive [112,120]
C. kraussii Hochst.H2O ext. of dried leafIn vitro-Worms of S. haematobium—MIC for drug: 12.5 mg/mLActive [112]
C. microphyllum KlotzschH2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
C. mkuzense Carr & RetiefH2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
C. moggii ExellH2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
C. molle R. Br. ex G. DonH2O ext. of dried leafIn vitro-Worms of S. haematobium—MIC for drug: 25 mg/mLActive [112]
C. mossambicense (Klotzsch) Engl.H2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
C. nelsonii DümmerH2O ext. of dried leafIn vitro-Worms of S. haematobium—MIC for drug: 12.5 mg/mLActive [112]
C. padoides Engl. & DielsH2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
C. paniculatum Vent.H2O ext. of dried leafIn vitro-Worms of S. haematobium—MIC for drug: 25 mg/mLActive [112]
C. petrophilum RetiefH2O ext. of dried leafIn vitro-Worms of S. haematobium—MIC for drug: 25 mg/mLActive [112]
C. woodii DümmerH2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
C. zeyheri Sond.H2O ext. of dried leafIn vitro-Worms of S. haematobium—Concentration not citedInactive [112]
Antitrypanosomal
C. dolichopetalum Gils ex Engl.EtOH (70%) ext. of dried root barkInfection induced in rats (Trypanosoma brucei or Trypanosoma congolense )—Dose for drug: 80.0 mg/kg (i.p.)Active [97]
C. molle R. Br. ex G. DonAcetone fraction of stem barkIn vitro—Murine peritoneal macrophages infected with Trypanosoma cruzi—Concentration for drug: >12.0 μg/mL Inactive [76]
In vitro-Blood stream form trypomastigotes of T. brucei rhodesiense—IC50 for drug: 2.19 μg/mLActive [76]
EtOH (90%) ext. of leaves, root bark or stem barkIn vitro—Blood stream form trypomastigotes of T. brucei rhodesiense—Concentration for drugs: >25 μg/mL Inactive [4]
H2O ext. of leavesIn vitro-Blood stream form trypomastigotes of T. brucei rhodesiense—IC50 for drug: 10 μg/mLActive [121]
C. quadrangulare Kurz.Acetone ext. of dried leafIn vitro-Epimastigotes of T. cruzi-IC50 for drug: 6.25 μg/mL Active [102]
MeOH or H2O ext. of dried leafIn vitro-Epimastigotes of T. cruzi—Concentration for drugs: 100.0 μg/mL Inactive [102]
C. racemosum P. BeauvEtOH (90%) ext. of leaves or of root barkIn vitro-Blood stream form trypomastigotes of T. brucei rhodesiense—Concentration for drugs: >25 μg/mLInactive [4]
Larvicidal-Dengue fever
C. aculeatum Vent.MeCl2, MeOH and H2O ext. of dried leaf or dried root barkIn vitro-Larvae of Aedes aegypti—Concentration for drugs: 500.0 μg/mL or 500.0 ppm Inactive [122]
MeOH and H2O ext. of dried stemIn vitro-Larvae of A. aegypti—Concentration for drugs: 500.0 ppmInactive [122]
C. collinum Fresen. Ether ext. of shoot barkIn vitro-Larvae of A. aegypti—Concentration for drug: 0.0125–0.200 mg/mLActive [123]
Antimicrobial activity
Antibacterial
C. apiculatum Sond. ssp. apiculatumHexane ext. of dried leafMicrodilution assay (Bacillus subtilis, Escherichia coli, Staphylococcus aureus or Klebisiella pneumoniae)—Maximum concentration for drug: 12.5 mg/mLInactive [65]
EtOH ext. of dried leafMicrodilution assay (B. subtilis or S. aureus with MIC for drug: 0.049 mg/mL)Active [65]
Microdilution assay (K. pneumonia or E. coli)—Maximum concentration for drug: 12.5 mg/mLInactive [65]
H2O ext. of dried leafMicrodilution assay (B. subtilis or S. aureus with MIC for drug: 0.39 mg/mL )Active [65]
Microdilution assay (K. pneumonia or E. coli)—Maximum concentration for drug: 12.5 mg/mL Inactive [65]
C. bracteatum (Laws.) Engl. et DielsEtOH (40%) or H2O ext. of dried stem Agar diffusion method (E. coli, Nisseria gonorrheae, S. aureus, Streptococcus sp, Salmonella typhimurium, B. subtilis, Bacteroides melaninogenicus, Clostridium tetani, Proteus vulgaris, Pseudomonas pyocyanea, Shgella dysenteriae or Yersinia enterocolita)—Concentration for drugs: 0.33 g/mLInactive [124]
Agar diffusion method (K. pneumoniae or Bacteroides fragilis)—Concentration for drugs: 0.33 g/mL with 5–9 mm diameter zone of inhibitionActive [124]
EtOH (40%) ext. of dried stem Agar diffusion method (Corynebacterium diphtheriae)—Concentration for drug: 0.33 g/mL Inactive [124]
H2O ext. of dried stemAgar diffusion method (C. diphtheriae)—Concentration for drug: 0.33 g/mL with 5–9 mm diameter zone of inhibitionActive [124]
C. collinum Fresen.MeOH, EtOH or MeOH-H2O ext. of dried air partsAgar diffusion method with diameters inhibition zones (Pseudomonas aeruginosa)—Concentraton for drugs: 1 and 5 mg/mL with inhibition of 9 mmActive [57]
Agar diffusion method with diameters inhibition zones (E. coli, K. pneumoniae, Citrobacter freundii, S. aureus, Streptococcus pyogenes, Listeria monocytogenes or B. subtilis)—Concentraton for drugs: 1 and 5 mg/mL Inactive [57]
C. comosum G. Don.Hot H2O ext. of dried root barkAgar diffusion method with diameters inhibition zones (Mycobacterium phlei, Sarcina lutea or S. aureus)—Concentration not cited.Active [52]
C. erythrophyllum (Burch.) Sond.Acetone ext. of dried leafMicrodilution assay—(S. aureus, P. aeruginosa, Enteroccus faecalis or E. coli)—IC50 for drug: 1.50, 1.50,1.50 or 0.8 mg/mL, respectivelyActive [89]
Acetone, EtOH (100%), CHCl3/MeOH/H2O (12:5:3), H2O, MeCl2 or MeOH ext. of dried leafDiluition and bioautographic TLC system assay (S. aureus)—Concentration for drugs: 0.1 g/mLActive [125]
CHCl3 or CCl4 ext. of freeze-dried leafMicrodilution assays [(S. aureus, MIC for drugs: 0.1or 1.6 mg/mL, respectively), (E. faecalis, MIC for drugs: 0.2 or 1.6 mg/mL, respectively), (E. coli, MIC for drugs: 3.1 or 12.5 mg/mL, respectively) and (P. aeruginosa, MIC for drugs: 3.1 or 25.0 mg/mL, respectively)]Active [88]
H2O or MeOH/H2O (2:1) ext. of freeze-dried leafMicrodilution assays [(S. aureus, MIC for drugs: 0.2 or 0.05 mg/mL, respectively), (E. faecalis, MIC for drugs: 0.4 mg/mL), (E. coli, MIC for drugs: 1.6 or 6.3 mg/mL, respectively), (P. aeruginosa, MIC for drugs: 6.3 or 12.5 mg/mL, respectively)]Active [88]
Butanol or Hexane ext. of freeze-dried leafMicrodilution assays [(S. aureus, MIC for drugs: 0.4 or 50 mg/mL, respectively), (E. faecalis, MIC for drugs: 0.2 or 1.6 mg/mL, respectively), (E. coli, MIC for drugs: 25 or 0.8 mg/mL, respectively), (P. aeruginosa (MIC for drugs: 12.5 or 1.6 mg/mL, respectively)]Active [88]
CHCl3 fraction of leaves Serial dilution microplate assay (Micrococcus luteus, Shigella sonnei, Vibrio cholera or E. faecalis—MIC for drug: 50, 25, 50 or 50 μg/mL, respectively)Active [12]
C. glutinosum Perrot. ex DC.MeOH ext. of dried leafAgar diffusion method ( S. lutea and E. coli —Concentration for drug:15.0 and 10.0 mg/mL, respectively)Active [53]
C. hartmannianum Schweinf.MeCl2, EtOAc or EtOH ext. of dried leafMicrodilution assay (B. subtilis)—MIC for drugs: <0.1, 0.39 or 0.2 mg/mL, respectivelyActive [106]
Microdilution assay (K. pneumonia)—MIC for drugs: 0.2, 0.78 or 0.39 mg/mL, respectivelyActive [106]
Microdilution assay (S. aureus)—MIC for drugs: 1.56, 1.56 or 0.2 mg/mL, respectively Active [106]
Microdilution assay (E. coli)—MIC for drugs: 1.56, 1.56 or 0.39 mg/mL, respectivelyActive [106]
MeCl2, EtOAc or EtOH ext. of dried barkMicrodilution assay (K. pneumonia)—MIC for drugs: 0.39, 0.78 or 0.78 mg/mL, respectivelyActive [106]
Microdilution assay (Staphylococcus aureus)—MIC for all drugs: 3.13 mg/mLActive [106]
Microdilution assay (E. coli)—MIC for drugs: 3.13, 3.13 or 1.56 mg/mL, respectivelyActive [106]
Microdilution assay (B. subtilis)—MIC for drugs: 3.13, 0.39 or 1.56 mg/mL, respectivelyActive [106]
Microdilution assay (K. pneumonia)—MIC for drugs: 0.78, 0.78 or 0.2 mg/mL, respectivelyActive [106]
Microdilution assay (B. subtilis)—MIC for drugs: 0.1, 0.39 or 0.39 mg/mL, respectivelyActive [106]
Microdilution assay (S. aureus)—MIC for all drugs: 3.13, 3.13 or 0.2 mg/mL, respectivelyActive [106]
Microdilution assay (E. coli)—MIC for drugs: 3.13, 3.13 or 0.2 mg/mL, respectivelyActive [106]
Broth microdilution method (Mycobacterium aurum A+)—MIC for drugs: 0.78, 3.12 or 0.19 mg/mL, respectivelyActive [126]
Broth microdilution method (M. aurum A+)—MIC for drugs: 12.5, 25 or 1.56 mg/mL, respectivelyActive [126]
MeCl2 or EtOH ext. of dried rootBroth microdilution method (M. aurum A+)—MIC for drugs: 3.12 or 12.5 mg/mL, respectivelyActive [126]
EtOAc ext. of dried rootBroth microdilution method (M. aurum A+)—Concentration for drug: 25 mg/mLInactive [126]
C. imberbe WawraMeCl2 ext. of dried leavesMicroplate serial dilution method (S. aureus)—Concentration for drug: 39 μg/mLActive [127]
C. micranthum G. DonHot H2O ext. of dried rootAgar diffusion method (Mycobacterium phlei)—Concentration not cited.Inactive [52]
MeOH, EtOH or MeOH-H2O ext. of dried air partsAgar diffusion method with diameters inhibition zones (P. aeruginosa)—Concentration for drugs: 1 and 5 mg/mL with inhibition zone of 9 or 8 mmActive [57]
Agar diffusion method with diameters inhibition zones (S. pyogenes, L. monocytogenes)—Concentration for drugs: 1 mg/mL Inactive [57]
Agar diffusion method with diameters inhibition zones (E. coli, K. pneumoniae, C. freundii or B. subtilis)—Concentration for drugs: 1 and 5 mg/mLInactive [57]
Agar diffusion method with diameters inhibition zones or microdilution assay (S. aureus)—Concentration for drugs: 1 and 5 mg/mL with inhibition zone of 10 mm, or MIC for drugs: 0.5 µg/mLActive [57]
EtOH (95%) ext. of dried twigsAgar diffusion method with diameters inhibition zones (B. subtilis or S. aureus)—Concentration for drug: 50 mg/mL with inhibition zone > 15 mm or 5 mg/mL with inhibition zone > 15 mmActive [49]
EtOH (100%) ext. of dried leafMicroplate serial dilution method [Salmonella sp, Streptococcus sp, P. vulgaris, S. aureus, E. coli, P. aeruginosa or Klebsiella sp—MIC for drug: 1.0 mg/mL]Active [56]
CHCl3 ext. of dried leafMicroplate serial dilution method [Salmonella sp, E. coli, P. aeruginosa, Klebsiella sp—Concentration for drug: 1.0 mg/mL]Inactive [56]
Microplate serial dilution method [Streptococcus sp, P. vulgaris or S. aureus—MIC for drug: 1.0 mg/mL]Active [56]
H2O ext. of dried leafMicroplate serial dilution method [Salmonella sp, P. aeruginosa or S. aureus—MIC for drug:1.0 mg/mL]Active [56]
Microplate serial dilution method [E. coli, Klebsiella sp, Streptococcus sp. or P. vulgaris—Concentration for drug: 1.0 mg/mL]Inactive [56]
MeOH ext. of dried leafMicroplate serial dilution method (S. lutea or E. coli)—MIC for drug: 10.0 mg/mLActive [53]
Hot H2O ext. of dried rootMicroplate serial dilution method [S. lutea or S. aureus]—Concentration not cited.Active [52]
Microplate serial dilution method (C. diphtheria)—MIC for drug: 5.0 mg/mLActive [55]
H2O ext. of dried rootMicroplate serial dilution method (Serratia marcescens or Salmonella typhosa )-MIC for drug: 5.0 or 3.0 mg/mL, respectivelyActive [55]
Decoction of dried rootMicroplate serial dilution method (L. monocytogenes, E. faecalis, S. marcescens, S. typhosa or C. diphtheria)—MIC for drug: 7.0, 7.0, 5.0, 3.0 or 3.0 mg/mL, respectivelyActive [55]
Decoction or H2O ext. of dried rootMicroplate serial dilution method [K. pneumonia (MIC 5.0 mg/mL or 7.0 mg/mL, respectively); S. aureus ( MIC 1.0 mg/mL or 2.0 mg/mL, respectively)]Active [55]
H2O ext. of dried rootMicroplate serial dilution method [L. monocytogenes ( MIC > 10.0 mg/mL), E. faecalis ( MIC > 10.0 mg/mL)Inactive [55]
Decoction or H2O ext. of dried rootMicroplate serial dilution method [M. luteus, P. aeruginosa, E. coli or B. subtilis)—MIC for drug: 1.0, 5.0, 5.0, 5.0 or 5.0 mg/mL, respectivelyActive [55]
EtOH (100%) ext. of dried stembarkMicroplate serial dilution method (Salmonella sp, E. coli, P. vulgaris or Klebsiella sp)—Concentration for drug: >1.0 mg/mLInactive [56]
Microplate serial dilution method (P. aeruginosa, S. aureus or Streptococcus sp)—MIC for drug:1.0 mg/mLActive [56]
EtOH (95%) ext. of sun dried twigMicroplate serial dilution method (B. subtilis or S. aureus)—MIC for drug: 50.0 or 5.0 mg/mL, respectively)Active [54]
C. molle R.Br. ex G. Don.Acetone and H2O ext. of dried barkIn vitro-Radiometric method (M. tuberculosis)—MIC for drugs: 1.0 mg/mL Active [74]
Acetone fraction of dried stem barkMicrodilution method (M. tuberculosis typus humanus)—Concentration for drug: 1.0–2 mg/mLInactive [128]
MeOH ext. of dried barkMicrodilution method (Streptococcus mutans or Actinomyces viscosus)-MIC for drug:5.0 mg/mLActive [129]
Acetone ext. of dried leafMicrodilution method (S. aureus)—MIC for drug: 0.07 mg/mLActive [69]
Acetone ext. of dried stembarkAgar diffusion method (S. aureus)—Concentration for drug: 1.0 mg/mLActive [128]
MeOH ext. of dried woodAgar diffusion method (S. mutans)—Concentration for drug: 5.0 mg/discInactive [129]
Agar diffusion method (A. viscosus)—Concentration for drug: 5.0 mg/discActive [129]
Acetone ext. of stem barkAgar diffusion and micro broth dilution methods (Helicobacter pylori)—Concentration for drug: 100 mg/mL with inhibition zone of 10–38 mm, and MIC for drug: 0.08–2.50 mg/mLActive [71]
EtOH or MeOH ext. of stem barkAgar diffusion method and micro broth dilution methods (H. pylori)—Concentration for drug: 100 mg/mL with inhibition zone of 7–35 or 7–32 mmActive [71]
AcOEt or H2O ext. of stem barkAgar diffusion and micro broth dilution methods (H. pylori)—Concentration for drug: 100 mg/mL with inhibition zone of 0–21 or 0–20 mmActive [71]
EtOH ext. of stem barkAgar dilution method (Bacillus cereus or S. aureus)—MIC for drug: 250 μg/mLActive [70]
MeOH ext. of dried rootPlate-hole diffusion and broth microdilution (S. aureus)—MIC for drug: 1 mg/mLActive [130]
Plate-hole diffusion and broth microdilution (S. epidermidis)—Concentration for drug: 1 mg/mLInactive [130]
H2O ext. of dried rootPlate-hole diffusion and broth microdilution (S. epidermidis or S. aureus)—Concentration for drug: 1 mg/mL Inactive [130]
EtOH ext. of dried seed or stem Agar plate with diameters inhibition zones—S. aureus—Concentration for drugs: 100 or 50 mg/mL with inhibition zone of 5 mmActive [131]
EtOH ext. of dried bark or leafAgar plate with diameters inhibition zones—S. aureus—Concentration for drugs: 3–100 mg/mL with inhibition zone of 20 mmActive [131]
EtOH ext. of dried leafAgar plate with diameters inhibition zones—S. agalactiae—Concentration for drug: 50 mg/mL with inhibition zone of 20 mmActive [131]
C. paniculatum Vent.EtOH (80%) ext. of dried leafMicrodilution method (M. tuberculosis)—Concentration for drug: 2 mg/mLInactive [128]
Acid-EtOH ext. of dried leafAgar plate well-diffusion method (S. aureus, Salmonella gallinarum, E. coli, P. vulgaris, P. aeruginosa, K. pneumonia)—Concentration for drug: 0.20 mL/disc (1,000 µg/mL)Active [132]
H2O ext. of dried leafAgar plate well-diffusion method (S. aureus, E. coli, P. vulgaris or K. pneumonia)—Concentration for drug: 0.20 mL/disc (1,000 µg/mL) Active [132]
Agar plate well-diffusion method (S. gallinarum or P. aeruginosa)—Concentration for drug: 0.20 mL/disc (1,000 µg/mL)Inactive [132]
MeOH ext. of dried rootPlate-hole diffusion and broth microdilution—S. epidermidis (MIC for drug: 2.77 mg/mL) or S. aureus (MIC for drug: 1.85 mg/mL)Active [130]
H2O ext. of dried rootPlate-hole diffusion and broth microdilution—S. epidermidis or S. aureus (MIC for drug: 14.44 mg/mL)Active [130]
C. quadrangulare Kurz.MeOH or H2O ext. of dried leafAgar plate well-diffusion method (H. pylori)—Concentration not cited Active [100]
EtOH (95%) ext. of dried seed or dried rootAgar plate well-diffusion method (several gram + organisms)—Concentration not citedActive [99]
C. racemosum P. Beauv.EtOH (40%) or H2O ext. of dried petiole and leavesAgar plate diffusion method (E. coli, N. gonorrheae, Streptococcus sp, B. subtilis, P. vulgaris, P. pyocyanea, K. pneumoniae, B. fragilis, Y. enterocolita or S. typhimurium)—Concentration for drugs: 0.33 g/mLInactive [124]
EtOH (40%) ext. of dried petiole and leavesAgar plate diffusion method (S. aureus)—Concentration for drugs: 0.33 g/mL with ≥ 20 mm diameter zone of inhibitionActive [124]
EtOH (40%) ext. of dried leaf and stemAgar plate diffusion method (C. diphtheria, B. melaninogenicus or S. dysenteriae)—Concentration for drugs: 0.33 g/mL with ≥ 20 mm diameter zone of inhibitionActive [124]
Agar plate diffusion method (C. tetani)—Concentration for drugs: 0.33 g/mL with 10–19 mm diameter zone of inhibitionActive [124]
H2O ext. of dried petiole and leavesAgar plate diffusion method (C. tetani)—Concentration for drugs: 0.33 g/mL Inactive [124]
C. raimbaultii HeckelEtOH/H2O (1:1) ext.Agar plate diffusion method (E. coli or S. aureus)—Concentration not cited Active [133]
Agar plate diffusion method (B. anthracis)—Concentration not cited Inactive [133]
C. zeyheri Sond.H2O ext. of fresh entire plantAgar plate diffusion method (N. gonorrhea)—Concentration for drugs: 1.0 mg/mLInactive [134]
Antifungal
C. aculeatum Vent.CHCl3, MeOH or H2O ext. of dried leaf or dried stemAgar plate diffusion method (Candida albicans)—Concentration not citedActive [135]
MeOH, H2O or CHCl3 ext. of dried leaf or dried stemAgar plate diffusion method (Aspergillus niger)—Concentration for drugs: 1 mg/mL Active [135]
MeCl2, MeOH or H2O ext. of dried leaf, dried root bark or dried stem Agar plate diffusion method (Cladosporium cucumerinum)—Concentration for drugs: 100.0 μg/plateInactive [122]
C. acutifolium ExellAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay [C. albicans—MIC for drugs: 0.16, 2.5, 2.5 or 0.04 mg/mL, respectively; Criptococcus neoformans—MIC for drugs: 0.04, 0.16, 0.16 or 0.08 mg/mL, respectively]Active [73]
Microdilution assay [Aspergillus fumigates—MIC for drugs: 0.08, 2.5, 0.16 or 0.16 mg/mL, respectively; Sporothrix schenckii—MIC for drugs: 0.04, 0.32, 0.32 or 0.08 mg/mL, respectively; Microsporum canis—MIC for all drugs: 0.02 mg/mL]Active [73]
C. apiculatum Sond. ssp. apiculatumAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay [A. fumigates—MIC for all drugs: 2.5 mg/mL; M. canis—MIC for all drugs: 0.02 mg/mL]Active [73]
Microdilution assay [S. schenckii—MIC for drugs: 0.02, 0.04, 0.02 or 0.02 mg/mL, respectively; C. neoformans—MIC for drugs: 0.08, 2.5, 0.08 or 0.08 mg/mL, respectively]Active [73]
Microdilution assay (C. albicans)—MIC for drugs: 0.32, 1.25, 0.32 or 0.32 mg/mL, respectivelyActive [73]
C. albopuctatumAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.64, 2.5, 0.32or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.08, 0.08, 0.16 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 0.08, 0.64, 0.16 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for all drugs: 0.02 mg/mLActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.02, 0.02, 0.02 or 0.04 mg/mL, respectivelyActive [73]
C. bracteosum (Hochst.) Brandis ex Engl.Acetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 1.25, 2.5, 2.5 or 1.25 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.16, 0.16, 0.32 or 0.32mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for all drugs: 2.5 mg/mLActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.16, 0.08, 0.16 or 0.16 mg/mL, respectively; M. canis—MIC for all drugs: 0.02 mg/mLActive [73]
C. caffrumAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: >2.5, 0.16, 0.64 or >2.5 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.32, 0.32, 0.16 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: >2.5, 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.64, 0.64, 0.64 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.08, 0.32, 0.32 or 0.16 mg/mL, respectivelyActive [73]
C. celastroides Welw ex Laws subsp. celastroidesAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.16, 0.64, 0.32, 0.64 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.16, 0.16, 0.08 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 0.64, >2.5, 1.25 or 0.64 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.32, 0.32, 0.16 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.32, 0.64, 0.64 or 0.08 mg/mL, respectivelyActive [73]
C. celastroides Welw ex Laws subsp. orientaleAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.16, 0.32, 0.16 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.08, 0.32, 0.08 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 0.32, 2.5, 2.5 or 2.5 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.08, 0.16, 0.16 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.04, 0.32, 0.32 or 0.08 mg/mL, respectivelyActive [73]
C. collinum Fresen. subsp. suluense OkaforMeOH ext. of dried rootAgar plate diffusion method-(C. albicans or A. niger)—Concentraton for drug: 1.0 mg/mLActive [57]
MeOH, EtOH or MeOH-H2O ext. of dried air partsAgar plate with diameters inhibition zones (C. albicans or A. niger)—Concentraton for drugs: 5 mg/mL with inhibition zone of 10 or 14 mm, respectivelyActive [57]
Agar plate with diameters inhibition zones (C. albicans or A. niger)—Concentraton for drugs: 1 mg/mL Inactive [57]
Acetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.08, 2.5, 0.08 or 0.16 mg/mL, respectively Active [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.16, 2.5, 0.08 or 0.08 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for all drugs: 2.5 mg/mL Active [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.16, 2.5, 0.16 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.64, 1.25, 0.64 or 0.32 mg/mL, respectivelyActive [73]
C. collinum Fresen. ssp taborenseAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for all drugs: 0.64 mg/mLActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.08, 0.16, 0.32 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 0.64, 2.5, 2.5 or 2.5 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.64, 0.32, 0.32 or 0.64 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.32, 1.25, 0.64 or 0.16 mg/mL, respectivelyActive [73]
C. comosum G. Don.Hot H2O ext. of dried rootAgar plate diffusion method (Saccharomyces cerevisiae or A. niger)—Concentration not citedInactive [52]
C. edwardsii ExellAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.32, 1.25, 1.25 or 0.64 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.04, 0.32, 0.32 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)- MIC for drugs: 2.5, 2.5, 2.5 or 2.5 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.04, 0.08, 0.08 or 0.04 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.04, 0.02, 0.04 or 0.04 mg/mL, respectivelyActive [73]
C. erythrophyllum (Burch.) Sond.Acetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: >2.5, 0.64, 0.64 or 2.5 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 2.5, 0.64, 0.32 or 0.64 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 2.5, >2.5, >2.5 or 2.5 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: >2.5, 0.32, 0.32 or 1.25 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.02, 1.25, 0.32 or 0.16 mg/mL, respectivelyActive [73]
C. glutinosum Perrot. ex DCEtOH/H2O (1:1) ext. of dried leafMicrodilution assay (C. albicans, Epidermophyton. floccosum, M. gypseum, Tricophyton mentagrophytes or Tricophyton rubrum)—MIC for drug: >4.0, 4.0, 1.0, 1.0 or 1.0 mg/mL, respectivelyActive [72]
C. hereroense SchinzAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.32, 0.32, 2.5 or 0.04, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.16, 0.08, 0.32 or 0.08 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 2.5, 2.5, 2.5 or 1.25 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.16, 0.16, 0.32 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.04, 0.02, 0.02 or 0.04 mg/mL, respectivelyActive [73]
C. hispidum Laws.EtOH-H2O (1:1) ext. of dried leafMicrodilution assay (C. albicans, E. floccosum, M. gypseum, T. mentagrophytes or T. rubrum)—MIC for drug: >4.0, >4.0, >4.0, 4.0 or 4.0 mg/mL, respectivelyActive [72]
C. imberbe WawraAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 2.5, 0.16, 0.16 or >2.5 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.16, 0.16, 0.32 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 2.5 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 2.5, >2.5, 0.32 or >2.5 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.32, 0.64, 0.16 or 0.32 mg/mL, respectivelyActive [73]
C. kraussii Hochst.Acetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 2.5, 0.08, 0.32 or 1.25 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.64, 0.32, 0.16 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 0.64, 2.5, 2.5 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.64, 0.32, 0.32 or 0.64 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.32, 0.16, 0.64 or 0.04 mg/mL, respectivelyActive [73]
C. micranthum G. DonMeOH, EtOH or MeOH-H2O ext. of dried air partsAgar plate with diameters inhibition zones (C. albicans)—Concentraton for drugs: 5 mg/mL with inhibition zone of 11 mmActive [57]
Agar plate with diameters inhibition zones (C. albicans)—Concentraton for drugs: 1 mg/mL Inactive [57]
Agar plate with diameters inhibition zones (A. niger)—Concentraton for drugs: 1 or 5 mg/mLInactive [57]
EtOH (95%) ext. of dried twigsAgar plate with diameters inhibition zones (A. niger)—Concentration for drug: 50 or 5 mg/mLInactive [49]
Hot H2O ext. of dried rootAgar plate diffusion method (A. niger)—Concentration not cited Inactive [52]
EtOH (95%) ext. of sun dried twigAgar plate diffusion method (A. niger)—Concentration for drug: 50.0 mg/mLInactive [54]
EtOH (100%) ext. of dried leafAgar plate diffusion method (A. niger)—Concentration for drug: 1.0 mg/mLInactive [57]
C. microphyllum KlotzschAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for all drugs: 2.5 mg/mLActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.16, 0.64, 0.08 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay ( A. fumigates)—MIC for all drugs: 2.5 mg/mLActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.64, 0.64, 0.32 or 0.32 mg/mL, respectivelyActive [73]
C. moggi ExellAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.64, 1.25, 1.25 or 0.02 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.08, 0.32, 0.32 or 0.04 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for all drugs: 2.5 mg/mLActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.02, 0.16, 0.08 or 0.02 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.04, 0.08, 0.04 or 0.02 mg/mL, respectivelyActive [73]
C. molle R.Br. ex G. Don.MeOH ext. of dried barkMicrodilution assay (C. albicans)—MIC for drug: 5.0 mg/mLActive [129]
MeOH ext. of dried woodAgar plate diffusom method (C. albicans)—Concentration for drug: 5.0 mg/discInactive [129]
EtOH/H2O (1:1) ext. of dried leafMicrodilution assay (C. albicans, E. floccosum, M. gypseum, T. mentagrophytes or T. rubrum)—MIC for drug: > 4.0, 0.5, 0.25, 0.25 or 0.5 mg/mL, respectively Active [72]
MeOH ext. of dried rootMacro-broth tube dilution method (C. albicans)—MIC for drug: 1 mg/mLActive [136]
H2O ext. of dried rootMacro-broth tube dilution method (C. albicans)—MIC for drug: 6.50 mg/mLActive [136]
Acetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.04, 1.25, 0.32 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.04, 1.25, 0.16 or 0.08 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 1.25, 2.5, 2.5 or 2.5 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.08, 0.32, 0.32 or 0.08 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.02, 0.02, 0.04 or 0.02 mg/mL, respectivelyActive [73]
C. mossambicense (Klotzsch) Engl.Acetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 1.25, 2.5, 2.5 or 1.25 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 1.25, 1.25, 0.64 or 0.64 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for all drugs: 2.5 mg/mLActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.64, 0.16, 0.16 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.08, 0.04, 0.02 or 0.32 mg/mL, respectivelyActive [73]
C. nelsonii DümmerAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.04, 0.16, 0.32 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.16, 0.32, 0.32 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 0.64, 2.5, 0.64 or 0.64 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii )—MIC for drugs: 0.08, 0.32, 0.16 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for all drugs: 0.02 mg/mLActive [73]
C. nigricans Lepr.EtOH/H2O (1:1) ext. of dried leaf Microdilution assay (C. albicans, E. floccosum, M. gypseum, T. mentagrophytes or T. rubrum)—MIC for drug: >4.0, 1.0, 1.0, 1.0 or 1.0 mg/mL, respectively Active [72]
EtOH/H2O (1:1) ext. of dried entire rootMicrodilution assay (C. albicans, E. floccosum, M. gypseum, T. mentagrophytes or T. rubrum)—MIC for drug: >4.0, 0.25, 0.5, 0.25 or 0.5 mg/mL, respectivelyActive [72]
C. padoides Engl. & DielsAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.16, 0.32, 0.32 or >2.5 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.32, 0.64, 0.32 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 0.32, 2.5, 2.5 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.32, >2.5, >2.5 or 0.64 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.08, 0.64, 0.16 or 0.08 mg/mL, respectivelyActive [73]
C. paniculatum Vent.Acid-EtOH or H2O ext. of dried leafAgar plate diffusion method (C. albicans)—Concentration for drug: 0.20 mL/disc (1,000 µg/mL) Active [132]
MeOH or H2O ext. of dried rootMacro-broth tube dilution method (C. albicans)—MIC for drugs: 5.55 or 14.44 mg/mL, respectivelyActive [136]
Acetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for all drugs: 2.5 mg/mLActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.32, 1.25, 0.16 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for all drugs: 2.5 mg/mLActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.32, 0.32, 0.04 or 0.04 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.02, 0.02, 0.02 or 0.08 mg/mL, respectivelyActive [73]
C. petrophilum RetiefAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.04, 2.5, 2.5 or 0.04 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.02, 0.32, 2.5 or 0.02 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for all drugs: 2.5 mg/mLActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.08, 0.32, 0.32 or 0.04 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for all drugs: 0.02, 0.04, 0.04 or 0.02 mg/mL, respectivelyActive [73]
C. woodii DümmerAcetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.16, 0.08, 0.16 or 0.32 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for drugs: 0.32, 0.16, 0.16 or 2.5 mg/mL, respectivelyActive [73]
Microdilution assay (A. fumigates)—MIC for drugs: 1.25, 2.5, 1.25 or 2.5 mg/mL, respectivelyActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.32, 0.32, 0.32 or 1.25 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for all drugs: 0.32 mg/mLActive [73]
C. zeyheri Sond.MeOH ext. of dried entire plantAgar plate diffusion method (C. albicans or T. mentagrophytes)—Concentration for drug: 0.03 mg/mLActive [137]
Acetone, Hexane, MeCl2 or MeOH ext. of dried leafMicrodilution assay (C. albicans)—MIC for drugs: 0.16, 2.5, 1.25 or 0.16 mg/mL, respectivelyActive [73]
Microdilution assay (C. neoformans)—MIC for all drugs: 0.32 mg/mLActive [73]
Microdilution assay (A. fumigates)—MIC for all drugs: 2.5 mg/mLActive [73]
Microdilution assay (S. schenckii)—MIC for drugs: 0.02, 0.08, 0.04 or 0.08 mg/mL, respectivelyActive [73]
Microdilution assay (M. canis)—MIC for drugs: 0.02, 0.02, 0.02 or 0.04 mg/mL, respectivelyActive [73]
Hypoglycemic activity
C. decandrum Roxb. (DC)EtOH (70%) ext. of dried leafStreptozotocin-induced diabetic in rat—Dose for drug: 0.75 g/kg (p.o.)Active [138]
C. micranthum G. DonH2O ext. of leavesInduction of Diabetes mellitus Type 1 and 2 by alloxan in rats—Doses for drug: 100, 200 or 400 mg/kg (p.o.)Active [63]
Antiinflammatory activity
C. collinum Fresen.H2O ext. of dried stem bark12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation in mice—Dose for drug: 0.5 mg/ear Active [139]
Carrageenan-induced pedal edema in mice—Dose for drug: 100.0 mg/kg (p.o.)Active [139]
C. dolichopetalum Gils ex Engl.MeOH ext. of dried rootCarrageenan-induced paw edema in mice—Doses for drug: 200, 400 or 600.0 mg/kg (p.o.)Active [96]
CHCl3 ext. of dried rootCroton oil-induced ear edema in mice—Doses for drug: 0.25, 0.5 or 1.0 mg/ear Active [96]
C. apiculatum Sond. subsp. apiculatumH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. bracteosum (Hochst.) Brandis ex Engl.H2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. celastroides Welw ex Laws subsp. celastroidesH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. collinum Fresen. subsp. suluense (Engl. & Diels) OkaforH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. duarteanum Cambess. EtOH ext. of dried leafCarrageenan or arachidonic acid-induced hind paw edema in mice—Doses for drug: 200 or 400 mg/kg (i.p.)Active [140]
C. edwardsii ExellH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. erythrophyllum (Burch.) Sond.H2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. hartmannianum Schweinf.MeCl2 or EtOH ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration for all drugs: 250 μg/mLActive [126]
AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration for drug: 250 μg/mLInactive [126]
MeCl2 or AcOEt ext. of dried barkIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration for all drugs: 250 μg/mLInactive [126]
EtOH ext. of dried barkIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration for drug: 250 μg/mL Active [126]
MeCl2, AcOEt or EtOH ext. of dried rootIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration for all drugs: 250 μg/mLInactive [126]
C. hereroense SchinzH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not cited Active [112]
C. imberbe WawraH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not cited Active [112]
C. kraussii Hochst.H2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not cited Active [112]
C. microphyllum KlotzschH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. mkuzense Carr & RetiefH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. moggii ExellH2O ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedInactive [112]
Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. molle R. Br. Ex G. DonH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not cited Active [112]
C. mossambicense (Klotzsch) Engl.H2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not cited Active [112]
C. nelsonii DümmerH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. padoides Engl. & DielsH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not cited Active [112]
C. paniculatum Vent.H2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. petrophilum RetiefH2O, Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not cited Active [112]
C. woodii DümmerH2O ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedInactive [112]
Acetone or AcOEt ext. of dried leafIn vitro-Cyclooxygenase-1 (COX-1) inhibition by radioactivity bioassay—Concentration not citedActive [112]
C. hartmannianum Schweinf.MeCl2, EtOAc or EtOH ext. of dried leafIn vitro-Cyclooxygenase-2 (COX-2) inhibition by radioactivity bioassay—Concentration for all drugs: 250 μg/mLActive [126]
EtOAc or EtOH ext. of dried barkIn vitro-Cyclooxygenase-2 (COX-2) inhibition by radioactivity bioassay—Concentration for all drugs: 250 μg/mLInactive [126]
MeCl2, EtOAc or EtOH ext. of dried rootIn vitro-Cyclooxygenase-2 (COX-2) inhibition by radioactivity bioassay—Concentration for all drugs: 250 μg/mLInactive [126]
C. micranthum G. Don.Hot H2O of dried aerial partsRadioactivity assays of PGs isolated of stomach in rat—Concentration for drug: 100.0 µL/mLInactive [141]
H2O ext. of dried leafCarrageenan-induced paw oedema or Cotton pellet granuloma formation in rats—Doses for drug: 50 or 100 mg/kg (p.o.)Active [142]
Acetic acid-induced vascular permeability in mice—Doses for drug: 50 or 100 mg/kg (p.o.)Active [142]
Antinociceptive activity
C. duarteanum Cambess.EtOH ext. of dried leaf Acid-induced writhing, formalin, and hot-plate nociception tests in mice—Doses for drug: 100, 200, or 400 mg/kg (i.p.)Active [140]
C. leprosum Mart.EtOH ext. of dried flowers Formalin induced nociception in mice—Doses for drug: 100 and 300 mg/kg (p.o) Active [7]
Abdominal contortion by acetic acid in mice—Doses for drug: 30, 100, 300, 1.000 mg/kg (p.o.)Active [7]
Capsaicin-induced nociception in mice—Doses for drug: 30, 100, 300, 1.000 mg/kg (p.o.)Active [7]
Glutamate induced nociception in mice—Doses for drug: 10, 30, 100, 300 mg/kg (p.o.)Active [7]
Hot plate test in mice—Doses for drug: 10, 30, 100, 300 mg/kg (p.o.)Active [7]
EtOH (70%) ext. of dried stem barkTail immersion test and Formalin-induced pain in mice—Doses for drug: 25.0 mg/kg (i.p.) or 500.0 mg/kg (p.o.)Active [143]
Antioxidant activity
C. decandrum Roxb. (DC) EtOH (70%) ext. of dried leaf Thiobarbituric acid-reactive substance or ferrous ion oxidation xylenol orange in rats—Dose for drug: 0.75 g/kg (p.o.)Active [138]
C. duarteanum Cambess.EtOH ext. of dried leaf Thiobarbituric acid-reactive substance, hydroxyl radical-scavenging, or scavenging activity of nitric oxide assays.Active [140]
Anti-tumour activity
C. caffrum (Eckl. and Zeyh.) KuntzeCHCl3, CCl4 or CH2Cl2 fractions of dried fruit, leaf, stem or twigIn vitro-Cell culture (immature astrocytoma 224c glioma cell)—Concentration for drugs: 1.0–100 μg/mLActive [144]
CCl4 or CH2Cl2 fraction of dried fruit, leaf, stem or twigIn vitro-P388 lymphocytic leukemia cell growth inhibition (ED50 for drugs: 1.5 or 0.23 µg/mL, respectively)Active [144]
Murine P-388 lymphocytic leukemia cell growth inhibition—Doses for drugs (i.p.): 100 or 50 mg/kg, respectivelyActive [144]
MeCl2 ext. of dried root barkMurine P-388 lymphocytic leukemia cell growth inhibition—Dose not cited (i.p.).Active [145]
C. collinum Fresen.MeOH, EtOH or MeOH-H2O ext. of dried air parts In vitro-Cell culture (Squamous carcinoma KB, Melanoma SK—MEL28, lung carcinoma A549, or mamma carcinoma MDA—MB231)-IC50 for all drugs: 20.0 μg/mL Active [57]
Antitussive activity
C. glutinosum Perrot. ex DCH2O ext. of dried leafGuinea pig—Dose for drug: 1.0 mg/kg (p.o.)Active [146]
Antiviral activity
C. glutinosum Perrot. ex DCDecoction of leafIn vitro-Cell culture (hepatitis B virus antigen HBsAg-IC50 for drug:100.0–500 ng/mLActive [147]
C. grandiflorum G. DonEtOH (80%) extIn vitro-Cell culture (plaque-inhibition in cells infected with virus-Adenovirus)—Concentration not cited Inactive [148]
EtOH (80%) extIn vitro-Cell culture (plaque-inhibition in cells infected with virus Herpes type 1)—Concentration for drug:Inactive [148]
In vitro-Cell culture (plaque-inhibition in cells infected with virus measles)—Concentration not cited Inactive [148]
In vitro-Cell culture (plaque-inhibition in cells infected with virus Poliovirus I)—Concentration not cited Inactive [148]
EtOH (80%) extIn vitro-Cell culture (plaque-inhibition in cells infected with virus Coxsackie B2)—Concentration for drug:Inactive [148]
In vitro-Cell culture (plaque-inhibition in cells infected with virus Semlicki forest)—Concentration not cited Inactive [148]
C. micranthum G. Don.MeOH ext. of dried leafIn vitro-Cell culture: African green monkey cells infected with virus Herpes simplex 1 or H. simplex 2—Concentration for drug: 7.5 μg/mLActive [58]
C. paniculatum Vent.MeOH ext. of dried leafIn vitro-Cell culture: MT-4 cells infected with virus human immunodeficiency type 1 (HIV 1)—IC50 for drug: 5.2 μg/mL Active [149]
In vitro-Cell culture: MT-4 cells infected with virus HIV 2 (rod)—Concentration for drug: >24.6 μg/mL Inactive [149]
EtOH (80%) ext. of dried leafIn vitro-Cell culture: MT-4 cells infected with virus HIV 1 or HIV 2 (ROD)—Concentration for drug: >23.5 μg/mL Inactive [149]
Pet ether ext. of dried leafIn vitro-Cell culture: MT-4 cells infected with virus HIV 1 or HIV 2 (ROD)—Concentration for drug: >118 μg/mLInactive [149]
MeCl2 ext. of dried leafIn vitro-Cell culture: MT-4 cells infected with virus HIV 1 or HIV 2 (ROD)—Concentration for drug: >44.7 μg/mL Inactive [149]
Acetone ext. of dried leafIn vitro-Cell culture: MT-4 cells infected with virus HIV 1 or HIV 2 (ROD)-IC50 for drug: 15.0 or 3.0 μg/mL, respectivelyActive [149]
C. quadrangulare Kurz.EtOH (95%) or H2O ext. of dried leafIn vitro-HIV 1 integrase inhibition by cell culture with virus HIV 1)-IC50 for drugs: 2.5 or 2.9 μg/mL, respectivelyActive [103]
C. molle R. Br. Ex G. DonH2O or MeOH ext. of rootsIn vitro-RNA-dependent-DNA polymerase (RDDP) activity of HIV1 reverse transcriptase-IC50 for drugs: 37or 9.7 μg/mL, respectivelyActive [80]
Immunostimulant activity
C. micranthum G. DonSuspension of powder leafRate of clearance of colloidal carbon by mice—Dose for drug: 100.0 mg/kg (i.v.)Active [62]
Cardiovascular activity
C. hypopilinum DielsMeOH ext. of seedDepressant cardiac in rabbit - Dose not citedActive [150]
C. nigricans Lepr.MeOH ext. of seedRabbit-heart- Dose not citedActive [150]
C. sokodense Engl.MeOH ext. of seedRabbit-heart- Dose not citedActive [150]
C. verticillatum Engl. & DielsMeOH ext. of seedRabbit-heart- Dose not citedActive [150]
C. racemosum P. BeauvHot H2O ext. of dried leafBlood pressure blocked by DHE in cat—Dose for drug: 0.5 mL/kg (i.v.) Inactive [151]
C. hypopilium DielsMeOH extHypotensive in cat—Dose for drug: 250.0 mg/kg (i.v.)Active [150]
C. nigricans Lepr.MeOH ext. of seedHypotensive in cat—Dose for drug: 250.0 mg/kg (i.v.)Active [150]
C. ovalifolium var.cooperiEtOH/H2O (1:1) ext. of aerial partsCat—Dose for drug: 50.0 mg/kg (i.v.)Active [152]
C. sokodense Engl.MeOH ext. of seedHypotensive in cat—Dose for drug: 250.0 mg/kg (i.v.)Active [150]
C. verticillatum Engl. & DielsMeOH ext. of seedHypotensive in cat—Dose for drug: 250.0 mg/kg (i.v.)Active [150]
CNS activity
C. hypopilium DielsMeOH ext. of seedDepressant CSN im mice—Dose for drug:0.5 mg/kg (i.p.)Active [150]
C. nigricans Lepr.MeOH ext. of seedDepressant CSN im mice—Dose for drug: 0.5 mg/kg (i.p.)Active [150]
C. paniculatum Vent.MeOH ext. of seedStimulate CSN im mice—Dose for drug: 0.5 mg/kg (i.p.)Active [150]
C. sokodense Engl.MeOH ext. of seedDepressant CSN im mice—Dose for drug: 0.5 mg/kg (i.p.)Active [150]
C. verticillatum Engl. & DielsMeOH ext. of seedDepressant CSN im mice—Dose for drug: 0.5 mg/kg (i.p.)Active [150]
Toxicity studies
Mutagenicity
C. erythrophyllum (Burch.) Sond.H2O ext. of dried rootIn vitro-Agar plate with S. typhimurium TA97a and TA98-Concent. for drug: 100.0–20.0 μg/discInactive [90]
In vitro-Agar plate with S. typhimurium TA100 and TA102—Concentration for drug: 40.0, 70.0, 80.0, 90.0, 100.0 μg/discActive [90]
In vitro-Spermatocytes drosophila sex-linked recessive lethal concentration 50% (LD50)—Dose for drug: 1.0 mg/mLActive [86]
Cytotoxicity
C. apiculatum Sond. subsp apiculatumMeOH ext. of dried leafIn vitro-Cell culture (T24 bladder or MCF7 breast cancer)—Concentration of drug: 25 µg/mLActive [15]
MeOH ext. of dried rootIn vitro-Cell culture (T24 bladder, HeLa cervical or MCF7 breast cancer)—Concentration of drug: 25 µg/mLActive [15]
C. aculeatum Vent.MeCl2, MeOH, H2O ext. of dried leafIn vitro-Cell culture Concentration for drugs: 500.0 μg/mL or 500.0 ppmInactive [122]
H2O ext. of dried rootIn vitro-Cell culture (SW480 colon cancer cells)—Concentration for drug: 500.0 ppmInactive [122]
MeCl2 ext. of dried rootIn vitro-Cell culture (CO115 colon cancer cells)—Concentration for drug: 500.0 μg/mLInactive [122]
MeOH or H2O ext. of dried rootIn vitro-Cell culture (CO115 colon cancer cells)—Concentration for drugs: 500.0 ppmInactive [122]
MeCl2 ext. of dried stemIn vitro-Cell culture (SW480 colon cancer cells or CO115 colon cancer cells)—Concentration for drug: 500.0 μg/mL Inactive [122]
MeOH or H2O ext. of dried stemIn vitro-Cell culture (SW480 colon cancer cells or CO115 colon cancer cells)—Concentration for drugs: 500.0 ppmInactive [122]
C. collinum Fresen.MeOH ext. of dried leafCell culture (T24 bladder or MCF7 breast cancer)—Concentration for drug: 25 µg/mLActive [15]
MeOH ext. of dried rootCell culture (T24 bladder, HELA cervical or MCF7 breast cancer)—Concentration for drug: 25 µg/mLActive [15]
C. comosum G. Don.MeOH, MeOH/H2O (50:50) or MeCl2 ext. of dried leavesIn vitro-Cell culture (THP1human monocytes)-IC50 for drugs: 63.1, >100 or 98.3 μg/mL, respectively Active [116]
C. cuspidatum Planch. ex Benth.MeOH, MeOH/H2O (50:50) or MeCl2 ext. of stem barksIn vitro-Cell culture (THP1 human monocytes)-IC50 for drugs: >100, >100 or 25.3 μg/mL, respectively Active [116]
C. duarteanum Cambess.EtOH (95%) ext. of dried leafIn vitro-Cell culture (KB cells)—Concentration not citedActive [153]
EtOH (95%) ext. of dried rootIn vitro-Cell culture (KB cells)—Concentration not cited Active [153]
EtOH (95%) ext. of dried stemIn vitro-Cell culture (KB cells)—Concentration not citedActive [153]
C. fragrans F. Hoffm.MeOH ext. of dried leaf or dried root Cell culture (T24 bladder, , HeLa cervical or MCF7 breast cancer)—Concentration for drugs: 25 µg/mLActive [15]
C. fruticosum (Loefl.) StuntzEtOAc extIn vitro-Cell culture (CA-9KB)—ED50 for drug: 6.5 μg/mL Active [154]
H2O extIn vitro-Cell culture (CA-9KB)—ED50 for drug: 10.0 μg/mLActive [154]
Type ext. not statedIn vitro-Cell culture (CA-9KB)—Dose for drug: >100 μg/mL Inactive [154]
Hexane ext.In vitro-Cell culture (CA-9KB)—ED50 for drug: 11.0 μg/mL Active [154]
C. hereroense SchinzMeOH ext. of dried stem barkCell culture (T24 bladder, HeLa cervical or MCF7 breast cancer)—Concentration for drug: 25µg/mLActive [15]
C. micranthum G. DonMeOH ext. of dried leafIn vitro-Cell culture (human monocytes-THP1 cells)—Concengration for drug: >25.0 μg/mLInactive [61]
MeOH ext. of dried leaf or dried rootIn vitro-Cell culture (T24 bladder, HeLa cervical or MCF7 breast cancer)—Concentration for drugs: 25 µg/mLActive [15]
C. nigricans Lepr.MeOH ext. of fresh leafIn vitro-Cell culture (U-373 MG human astrocytoma cells)—IC50 for drug: 41.0 μg/mL Active [155]
In vitro-Cell culture (HCT-15 colon human cells)—IC50 for drug: 41.0 μg/mL Active [155]
In vitro-Cell culture (A549 cancer cells)—IC50 for drug: 41.0 μg /mL Active [155]
In vitro-Cell culture (J82 human urothelial cells)—IC50 for drug: 41.0 μg/mL Active [155]
C. ovalifolium Roxb. var. cooperiEtOH-H2O (1:1) ext. of aerial partsIn vitro-Cell culture (CA-9KB cells)—Dose for drug: >20.0 μg/mL Inactive [152]
C. padoides Engl. & DielsMeOH ext. of dried stem bark In vitro-Cell culture (T24 bladder, HeLa cervical or MCF7 breast cancer)—Concentration for drug: 25 µg/mLActive [15]
MeOH ext. of dried rootIn vitro-Cell culture (T24 bladder, HeLa cervical or MCF7 breast cancer)—Concentration for drug: 25 µg/mLActive [15]
C. psidioides Welw.MeOH ext. of dried stem barkIn vitro-Cell culture (T24 bladder, HeLa cervical or MCF7 breast cancer)—Concentration for drug: 25 µg/mLActive [15]
C. zeyheri Sond.MeOH ext. of dried fruitIn vitro-Cell culture (T24 bladder, HeLa cervical or MCF7 breast cancer)—Concentration for drug: 25 µg/mLActive [15]
MeOH ext. of dried rootIn vitro-Cell culture (T24 bladder, HeLa cervical or MCF7 breast cancer)—Concentration for drug: 25 µg/mLActive [15]
MeCl2 ext. of dried leafIn vitro-Cell culture (Renal TK10, Breast MCF7 or Melanoma UACC62 cancer)—IC50 for drug: 15.00, 28.21 or 10.33 mg/mL, respectively Active [156]
C. erythrophyllum (Burch) SondMeOH ext. of dried woodIn vitro-DNA damage assay-Cell culture Ycp (gal) or pRAD52 (glu)—IC50 for drug: 4.0 or 15 μg/mL, respectively Active [91]
In vitro-DNA damage assay-Cell culture pRAD52 (gal)—IC50 for drug: >100 μg/mLInactive [91]
MeCl2 ext. of dried woodIn vitro-DNA damage assay-Cell culture Ycp (gal), pRAD52 (gal), pRAD52 (glu), phTOP1 (gal) or phTOP1 (glu)—IC50 for drug: 2.0, 34.0, 31.0, 3.3 or 4.3 μg/mL, respectivelyActive [91]
In vitro-DNA damage by agar diffusion assay (RS188-WT erg6 or RS321-Rad52.erg6.top1)—IC50 for drug: 73.7 or 5.9 μg/mL, respectivelyActive [91]
In vitro-DNA damage by agar diffusion assay (RS322-Rad52.erg6)—IC50 for drug: >100 μg/mLInactive [91]
EtOAc soluble fraction of dried woodIn vitro-DNA damage assay-Cell culture Ycp (gal) or pRAD52 (glu)—IC50 for drug: 4.0 or 12 μg/mL, respectively Active [91]
In vitro-DNA damage assay-Cell culture pRAD52 (gal)—IC50 for drug: >100 μg/mL Inactive [91]
Brine shrimp lethality
C. aculeatum Vent.MeCl2, MeOH and H2O ext. of dried leaf, dried root bark or dried stemIn vitro-Toxicity bioassay with Artemia salina L.—Concentration for all drugs: 500.0 μg/mL Inactive [122]
C. micranthum G. DonEtOH (100%) ext. of dried leafIn vitro-Toxicity bioassay with A. salina L.—LC50 for drug: 112.0 μg/mL Active [56]
CHCl3 or H2O ext. of dried leafn vitro-Toxicity bioassay with A. salina L.—LC50 for drugs: 492.0 or 634.0 μg/mL, respectivelyInactive [56]
EtOH (100%) ext. of dried barkIn vitro-Toxicity bioassay with A. salina L.—LC50 for drug: 432.0 μg/mL Inactive [56]
C. zeyheri SondMeOH ext. of dried rootIn vitro-Toxicity bioassay with A. salina L.—Concentration for all drugs: >0.1 mg/mL Inactive [157]
Molluscicidal
C. aculeatum Vent.MeCl2, MeOH or H2O ext. of dried leaf, dried root or dried stemIn vitro-Toxicity bioassay with Biomphalaria glabrata—Concentration for all drugs: 400.0 ppmInactive [122]
C. dolichopetalum Gils ex Engl.MeOH ext. of dried leafIn vitro-Toxicity bioassay with Bulinus globosus snail—Concentration for drug: 100.0 ppmInactive [158]
C. ghasalense Engl. & DielsMeOH ext. of dried fruit or dried leafIn vitro-Toxicity bioassay with B. globosus snail—Concentration for all drugs: 100.0 ppmInactive [158]
MeOH ext. of dried root or dried stemIn vitro-Toxicity bioassay with B. globosus snail—Concentration for all drugs: 100.0 ppmActive [158]
MeOH ext. of dried stemIn vitro-Toxicity bioassay with B. globosus snail—Concentration for drug: 100.0 ppmActive [159]
C. glutinosum Perrot. ex DCMeOH ext. of dried fruit, dried root or dried stemIn vitro-Toxicity bioassay with B. globosus snail—Concentration for all drugs: 100.0 ppmInactive [158]
C. leprosum Mart.EtOH (95%) or H2O ext. of dried stem barkIn vitro-Toxicity bioassay with B. glabrata or B. straminea—Concentration for all drugs: 1,000 ppmActive [160]
C. micranthum G. DonMeOH ext. of dried leafIn vitro-Toxicity bioassay with B. globosus snail—Concentration for drug: 100.0 ppmInactive [158]
C. molle R. Br. ex G. DonH2O ext. of dried leafIn vitro-Toxicity bioassay with Biomphalaria pfeifferi—Concentration for drug: 1:1,000 (v:v)Active [75]
Toxicity on mammals
C. decandrum Roxb. (DC)EtOH 50% ext. of entire plantLethal dose 50% (LD50) in mice—LD50 for drug: 1.0 mg/kg (i.p.)Active [161]
C. dolichopetalum Gils ex Engl.EtOH (70%) ext. of dried root barkLD50 in rats—LD50 for drug: 246.0 mg/kg (i.p.)Active [97]
C. hypopiliumMeOH ext.LD50 in mice—LD50 for drug: 2.3 mg/kg (i.v.) Active [150]
C. leprosum Mart.EtOH (70%) ext. of dried stem barkLD50 in mice—LD50 for drug: 4,722 mg/kg (p.o.)Active [143]
C. nanum Ham. ex D. Don.EtOH-H2O (1:1) ext. of dried entire plantLD50 in mice—LD50 for drug: 500.0 mg/kg (i.p.)Active [162]
C. nigricans Lepr.MeOH ext. of seedLethal dose 50% (LD50) in mice—LD50 for drug: 580.0 mg/kg (i.v.) Active [150]
C. ovalifolium Roxb.var. cooperiEtOH-H2O (1:1) ext. of aerial partsLethal dose 50% (LD50) in mice—LD50 for drug: 500.0 mg/kg (i.p)Active [152]
C. racemosum P. BeauvHot H2O or EtOH (95%) ext. of dried leafLethal dose 50% (LD50) in mice—LD50 for drug: 17.78 mL/kg (i.p) Active [151]
C. sokodense Eng.MeOH ext. of seedLethal dose 50% (LD50) in mice—LD50 for drug: 700.0 mg/kg (i.v.) Active [150]
C. verticillatum Engl. & Diels MeOH ext. of seedLethal dose 50% (LD50) in mice—LD50 for drug: 800.0 mg/kg (i.v.) Active [150]
Antihepatotoxicity
C. dolichopetalum Gils ex Engl.EtOH (95%) ext. of fresh root barkParacetamol-induced hepatotoxicity in rat—Dose for drug: 100.0 mg/kg (p.o.)Active [95]
C. quadrangulare Kurz.MeOH ext. of dried seedD-Galactosamine (D-GalN)/tumor necrosis factor-alpha(TNF-alpha)-induced hepatotoxicity in mice—IC50 for drug: 56.4 μg /mL Active [101]
MeOH/H2O (1:1) or H2O ext. of dried seed D-Galactosamine (D-GalN)/tumor necrosis factor-alpha(TNF-alpha)-induced hepatotoxicity in mice —Concentration for drug: 100.0 μg/mLInactive [101]
H2O soluble fraction of dried seedD-Galactosamine (D-GalN)/tumor necrosis factor-alpha(TNF-alpha)-induced hepatotoxicity in mice —Concentration for drug: IC50 39.3 μg/mLActive [101]
MeOH soluble fraction of dried seedD-Galactosamine (D-GalN)/tumor necrosis factor-alpha(TNF-alpha)-induced hepatotoxicity in mice—Concentration for drug: 42.1 μg/mLInactive [101]
Abortifacient
C. glutinosum Perrot. ex DCDecoction of leafIn vitro-Inhibit hepatitis B virus antigen (HBsAg)—Concentration for drug: 100–500 ng/mLActive [147]
C. racemosum P. BeauvHot H2O ext. of dried leafAbortion in 7 days after oral administration of 10 g/mL in pregnant guinea pig Active [151]
Embryotoxic
C. molle R. Br. ex G. DonHot H2O ext. of dried entire plantRats treated with extract in dose of 10.0 mg/kg (p.o.) Inactive [79]
Gastrintestinal activity
Gastric antiulcer
C. dolichopetalumEtOH (70%) ext. of dried rootPyloric ligation together with histamine-induced ulcers and gastric secretions in rats—Dose for drug: 400.0 mg/kg (p.o.)Active [93]
EtOH (16%) ext. of dried rootIndomethacin and cold strees-induced ulcers in guinea pig—Dose for drug: 100.0 mg/kg (p.o.)Active [94]
C. duarteanum CambessEtOH or Hexane ext. of dried leafHCl/Ethanol, piroxican or immobilization-cold strees-induced ulcers in mice—Dose for drug: 62.5, 125, 250 and 500 mg/kg (p.o.)Active [163]
C. leprosum Mart. & EicheEtOH ext. of dried stem barkEthanol or Indomethacin induced gastric ulcer in rats—Doses for drug: 60, 125 and 250 mg/kg (p.o.)Active [164]
Gastric emptying
C. dolichopetalum Gils ex Engl.EtOH (70%) ext. of dried rootDelayed gastric emptying in rat—Dose for drug: 400.0 mg/kg (p.o.) Active [93]
Antispasmodic
C. ovalifolium var.cooperiEtOH-H2O (1:1) ext. of aerial partsAch and histamine-induced contractions in guinea pig ileum—Concentration not cited Active [152]
C. racemosum P. BeauvHot H2O ext. of dried leafAch, nicotine or histamine-induced contractions in guinea pig ileum—Concentration for drug:1.0g/mLActive [151]
Spontaneous contractions in rabbit jejunum blocked by DHE and propranolol—Concentration for drug: 0.2–1 g/mL Inactive [151]
C. dolichopetalum Gils ex Engl.EtOH (70%) ext. of dried rootAch or histamine-induced contractions in guinea pig ileum—Concentration for drug: 0.24 μg/mL Active [93]
Ach or histamine-induced contractions in guinea pig ileum—Concentration for drug: 10 μg/mLActive [94]
Relaxation effect in guinea pig ileum—EC50 for drug: 2.65 mg/mLActive [94]
Geniturinary activity
C. erythrophyllum (Burch.) Sond.H2O or EtOH (95%) ext. of dried leafIn vitro-Radioactivity of cyclooxygenase (prepared from sheep seminal vesicle microsomal fractions)—Concentration for drugs: 20.0 mg/mL or 2.5 mg/mL, respectivelyActive [92]
H2O or EtOH (95%) ext. of dried leafAch-induced contractility uterine in guinea pig—Dose for drugs: 10 mg/mL Active [92]
Oxytocin-induced contractility uterine in guinea pig—Dose for drugs: 10 mg/mLInactive [92]
Hot H2O ext. of dried branch and leafIn vitro-Contractions of uterus isolated from rat—Concentration not citedActive [165]
C. kraussii Hochst.Hot H2O ext. of dried rootIn vitro-Contractions of uterus isolated from rat—Concentration not citedActive [165]
C. nanum Ham. ex. D. Don.EtOH/H2O (1:1) ext. of dried entire plantSpermicidal effect in rat—Concentration not citedInactive [162]
C. platypetalum Sond.H2O or EtOH (95%) ext. of dried leafIn vitro-Radioactivity of cyclooxygenase (prepared from sheep seminal vesicle microsomal fractions)—Concentration for drugs: 20.0 mg/mL or 2.5 mg/mL, respectivelyActive [92]
Ach or oxytocin-induced contractility uterine in guinea pig—Dose for drugs: 10 mg/mLInactive [92]
C. racemosum P. BeauvHot H2O ext. of dried leafIn vitro-Contractions in guinea pig gravid and non-gravid uterus blocked by hydergine—Concentration for drug: 1–2 g/mLInactive [151]
Ext. induced spontaneus contractions in guinea pig vas deferens—Concentration for drug: 0.5 g/mLActive [151]
C. zeyheri Sond.H2O or EtOH (95%) ext. of dried barkRadioactivity of cyclooxygenase (prepared from sheep seminal vesicle microsomal fractions)—Concentration for drugs: 20.0 mg/mL or 2.5 mg/mL, respectivelyActive [92]
Ach or oxytocin-induced contractility uterine in guinea pig—Dose for drugs: 10 mg/mLInactive [92]
i.p. = intraperitoneal; p.o. = oral; i.v. = intravenous; EtOH ext. = ethanolic extract; H2O ext. = aqueous extract; MeOH ext. = methanolic extract; EtOAc ext. = ethyl acetate extract; CHCl3 ext. = chloroformic extract; CCl4 ext. = carbon tetrachloride extract; MeCl2 ext. = dichloromethane extract; EtOH/H2O ext. = crude aqueous/alcoholic extract; MeOH/H2O ext. = aqueous/methanolic extract; CHCl3/MeOH ext. = chloroformic and methanolic extract; MeOH/MeCl2 ext. = methanolic/dichloromethane extract; Pet ether ext. = Petroleum ether extract. Ach = Acethylcholine; DHE = Dihydroergotamine; ACE = Angiotensin converting enzyme.

4. Conclusions

The research papers cited in this review contribute to justifying the traditional use of the genus Combretum for the treatment of various health problems. This genus presents itself as a promising new scientific research topic to investigate the pharmacological potential of the extracts, fractions and compounds isolated from plant species of this genus.
We see that there is a need for further studies on the standardization or chemical characterization of the extracts used and for other more detailed phytochemical studies. With respect to pharmacological studies, there is an increasing need for further in vivo investigations of toxicity and biological activities, as well as for insights into the possible mechanisms involved. Therefore, new research findings could lead to greater safety and benefits to people who use these species to treat diseases, contributing to a better access to health care and thereby a better quality of life.

Acknowledgements

The authors thank the University of Illinois at Chicago, USA for the use of the NAPRALERT database for this study and A. Leyva for the English revision of the manuscript. Thanks are in order also for the financial support provided by CAPES/CNPq/PRONEX-FAPESQ.

References

  1. Hoareau, L.; Da Silva, E.J. Medicinal plants: A re-emerging health aid. Eletron. J. Biotechnol. 1999, 2, 56–70. [Google Scholar]
  2. Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 2005, 4, 685–688. [Google Scholar]
  3. Agra, M.F.; Freitas, P.F.; Barbosa-Filho, J.M. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev. Bras. Farmacogn. 2007, 17, 114–140. [Google Scholar] [CrossRef]
  4. Atindehou, K.K.; Schmid, C.; Brun, R.; Koné, M.W.; Traore, D. Antitrypanosomal and antiplasmodial activity of medicinal plants from Côte d’Ivoire. J. Ethnopharmacol. 2004, 90, 221–227. [Google Scholar] [CrossRef]
  5. Muthu, C.; Ayyanar, M.; Raja, N.; Ignacimuthu, S. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. J. Ethnobiol. Ethnomed. 2006, 2. [Google Scholar]
  6. Gansané, A.; Sanon, S.; Ouattara, L.P.; Traoré, A.; Hutter, S.; Ollivier, E.; Azas, N.; Traore, A.S.; Guissou, I.P.; Sirima, S.B.; et al. Antiplasmodial activity and toxicity of crude extracts from alternatives parts of plants widely used for the treatment of malaria in Burkina Faso: Contribution for their preservation. Parasitol. Res. 2010, 106, 335–340. [Google Scholar]
  7. Pietrovski, E.F.; Rosa, K.A.; Facundo, V.A.; Rios, K.; Marques, M.C.A.; Santos, A.R.S. Antinociceptive properties of the ethanolic extract and of the triterpene 3β,6β,16β-trihidroxilup-20(29)-ene obtained from flowers of Combretum leprosum in mice. Pharmacol. Biochem. Behav. 2006, 83, 90–99. [Google Scholar] [CrossRef]
  8. Rogers, C.B.; Verotta, L. Chemistry and Biological Properties of the African Combretaceae. In Chemistry, Biological and Pharmacological Properties of African Medicinal Plants; Hostettman, K., Chinyanganga, F., Maillard, M., Wolfender, J.L., Eds.; University of Zimbabwe Publications: Harare, Zimbabwe, 1996. [Google Scholar]
  9. Bisoli, E.; Garcez, W.S.; Hamerski, L.; Tieppo, C.; Garcez, F.R. Bioactive pentacyclic triterpenes from the stems of Combretum laxum. Molecules 2008, 13, 2717–2728. [Google Scholar] [CrossRef]
  10. Banskota, A.H.; Tezuka, Y.; Kim, Q.T.; Tanaka, K.; Saiki, L.; Kadota, S. Thirteen novel cycloartane-type triterpenes from Combretum quadrangulare. J. Nat. Prod. 2000, 63, 57–64. [Google Scholar]
  11. Ogan, A.U. The alkaloids in the leaves of Combretum micranthum. Studies on West African medicinal plants. VII. Planta Med. 1972, 21, 210–217. [Google Scholar] [CrossRef]
  12. Martini, N.D.; Katerere, D.R.P.; Eloff, J.N. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 2004, 93, 207–212. [Google Scholar] [CrossRef]
  13. Aderogba, M.A.; Kgatle, D.T.; McGaw, L.J.; Eloff, J.N. Isolation of antioxidant constituents from Combretum apiculatum subsp. apiculatum. South Afr. J. Bot. 2012, 79, 125–131. [Google Scholar] [CrossRef]
  14. Chaabi, M.; Benayache, S.; Benayache, F.; N’Gom, S.; Koné, M.; Anton, R.; Weniger, B.; Lobstein, A. Triterpenes and polyphenols from Anogeissus leiocarpus (Combretaceae). Biochem. Systemat. Ecol. 2008, 36, 59–62. [Google Scholar] [CrossRef]
  15. Fyhrquist, P.; Mwasumbi, L.; Vuorela, P.; Vuorela, H.; Hiltunen, R.; Murphy, C.; Adlercreutz, H. Preliminary antiproliferative effects of some species of Terminalia, Combretum and Pteleopsis collected in Tanzania on some human cancer cell lines. Fitoterapia 2006, 77, 358–366. [Google Scholar] [CrossRef]
  16. Moura, M.D.; Silva, J.S.; Oliveira, R.A.G.; Diniz, M.F.F.M.; Barbosa-Filho, J.M. Natural products reported as potential inhibitors of uterine cervical neoplasia. Acta Farm. Bonaerense 2002, 21, 67–74. [Google Scholar]
  17. Silva, J.S.; Moura, M.D.; Oliveira, R.A.G.; Diniz, M.F.F.; Barbosa-Filho, J.M. Natural product inhibitors of ovarian neoplasia. Phytomedicine 2003, 10, 221–232. [Google Scholar] [CrossRef]
  18. Quintans-Júnior, L.J.; Almeida, J.R.G.S.; Lima, J.T.; Nunes, X.P.; Siqueira, J.S.; Oliveira, L.E.G.; Almeida, R.N.; Athayde-Filho, P.F.; Barbosa-Filho, J.M. Plants with anticonvulsant properties—A review. Rev. Bras. Farmacogn. 2008, 18, 798–819. [Google Scholar] [CrossRef]
  19. Sousa, F.C.F.; Melo, C.T.V.; Citó, M.C.O.; Félix, F.H.C.; Vasconcelos, S.M.M.; Fonteles, M.M.F.; Barbosa-Filho, J.M.; Viana, G.S.B. Plantas medicinais e seus constituintes bioativos: Uma revisão da bioatividade e potenciais benefícios nos distúrbios da ansiedade em modelos animais. Rev. Bras. Farmacogn. 2008, 18, 642–654. [Google Scholar] [CrossRef]
  20. Almeida, R.N.; Navarro, D.S.; Barbosa-Filho, J.M. Plants with central analgesic activity. Phytomedicine 2001, 8, 310–322. [Google Scholar] [CrossRef]
  21. Pereira, J.V.; Modesto-Filho, J.; Agra, M.F.; Barbosa-Filho, J.M. Plant and plant-derived compounds employed in prevention of the osteoporosis. Acta Farm. Bonaerense 2002, 21, 223–234. [Google Scholar]
  22. Rocha, L.G.; Almeida, J.R.G.S.; Macedo, R.O.; Barbosa-Filho, J.M. A review of natural products with antileishmanial activity. Phytomedicine 2005, 12, 514–535. [Google Scholar] [CrossRef]
  23. Barbosa-Filho, J.M.; Nascimento-Júnior, F.A.; Tomaz, A.C.A.; Athayde-Filho, P.F.; Silva, M.S.; Cunha, E.V.L.; Souza, M.F.V.; Batista, L.M.; Diniz, M.F.F.M. Natural products with antileprotic activity. Rev. Bras. Farmacogn. 2007, 17, 141–148. [Google Scholar] [CrossRef]
  24. Lima, G.R.M.; Montenegro, C.A.; Almeida, C.L.F.; Athayde-Filho, P.F.; Barbosa-Filho, J.M.; Batista, L.M. Database survey of anti-inflammatory plants in South America: A review. Int. J. Mol. Sci. 2011, 12, 2692–2749. [Google Scholar]
  25. Souto, A.L.; Tavares, J.F.; Silva, M.S.; Diniz, M.F.F.M.; Athayde-Filho, P.F.; Barbosa Filho, J.M. Anti-inflammatory activity of alkaloids: An update from 2000 to 2010. Molecules 2011, 16, 8515–8534. [Google Scholar] [CrossRef]
  26. Mariath, I.R.; Falcão, H.S.; Barbosa-Filho, J.M.; Sousa, L.C.F.; Tomaz, A.C.A.; Batista, L.M.; Diniz, M.F.F.M.; Athayde-Filho, P.F.; Tavares, J.F.; Silva, M.S.; et al. Plants of the American continent with antimalarial activity. Rev. Bras. Farmacogn. 2009, 19, 158–192. [Google Scholar]
  27. Falcão, H.S.; Mariath, I.R.; Diniz, M.F.F.M.; Batista, L.M.; Barbosa-Filho, J.M. Plants of the American continent with antiulcer activity. Phytomedicine 2008, 15, 132–146. [Google Scholar] [CrossRef]
  28. Mota, K.S.L.; Dias, G.E.N.; Pinto, M.E.F.; Luiz-Ferreira, A.; Souza-Brito, A.R.M.; Hiruma Lima, C.A.; Barbosa-Filho, J.M.; Batista, L.M. Flavonoids with gastroprotective activity. Molecules 2009, 14, 979–1012. [Google Scholar] [CrossRef]
  29. Falcão, H.S.; Leite, J.A.; Barbosa-Filho, J.M.; Athayde-Filho, P.F.; Chaves, M.C.O.; Moura, M.D.; Ferreira, A.L.; Almeida, A.B.A.; Souza-Brito, A.R.M.; Diniz, M.F.F.M.; et al. Gastric and duodenal antiulcer activity of alkaloids: A review. Molecules 2008, 13, 3198–3223. [Google Scholar]
  30. Jesus, N.Z.T.; Falcão, H.S.; Gomes, I.F.; Leite, T.J.A.; Lima, G.R.M.; Barbosa-Filho, J.M.; Tavares, J.F.; Silva, M.S.; Athayde-Filho, P.F.; Batista, L.M. Tannins, peptic ulcer and related mechanisms. Int. J. Mol. Sci. 2012, 13, 3203–3228. [Google Scholar]
  31. Ribeiro-Filho, J.; Falcão, H.S.; Batista, L.M.; Barbosa Filho, J.M.; Piuvezam, M.R. Effects of plant extracts on HIV-1 protease. Curr. HIV Res. 2010, 8, 531–544. [Google Scholar] [CrossRef]
  32. Agra, M.F.; Silva, K.N.; Basílio, I.J.L.D.; Freitas, P.F.; Barbosa-Filho, J.M. Survey of medicinal plants used in the region Northeast of Brazil. Rev. Bras. Farmacogn. 2008, 18, 472–508. [Google Scholar] [CrossRef]
  33. Silva, F.L.; Fischer, D.C.H.; Tavares, J.F.; Silva, M.S.; Athayde-Filho, P.F.; Barbosa-Filho, J.M. Compilation of secondary metabolites from Bidens pilosa L. Molecules 2011, 16, 1070–1102. [Google Scholar] [CrossRef]
  34. Barbosa-Filho, J.M.; Alencar, A.A.; Nunes, X.P.; Tomaz, A.C.A.; Sena-Filho, J.G.; Athayde Filho, P.F.; Silva, M.S.; Souza, M.F.V.; Cunha, E.V.L. Sources of alpha-, beta-, gamma-,delta- and epsilon-carotenes: A twentieth century review. Rev. Bras. Farmacogn. 2008, 18, 135–154. [Google Scholar] [CrossRef]
  35. Alves, J.S.; Castro, J.C.M.; Freire, M.O.; Cunha, E.V.L.; Barbosa-Filho, J.M.; Silva, M.S. Complete assignment of the 1H and 13C spectra of four triterpenes of the ursane, artane, lupine and friedelane groups. Magn. Reson. Chem. 2000, 38, 201–206. [Google Scholar]
  36. Sena-Filho, J.G.; Duringer, J.; Maia, G.L.A.; Tavares, J.F.; Xavier, H.S.; da Silva, M.S.; da Cunha, E.V.L.; Barbosa-Filho, J.M. Ecdysteroids from Vitex species: Distribution and compilation of their 13C-NMR spectral data. Chem. Biodivers. 2008, 5, 707–713. [Google Scholar]
  37. Oliveira, S.L.; Silva, M.S.; Tavares, J.F.; Sena-Filho, J.G.; Lucena, H.F.S.; Romero, M.A.V.; Barbosa-Filho, J.M. Tropane alkaloids from genus Erythroxylum: Distribution and compilation of 13C-NMR spectral data. Chem. Biodivers. 2010, 7, 302–326. [Google Scholar] [CrossRef]
  38. Palmeira-Junior, S.F.; Conserva, L.M.; Barbosa Filho, J.M. Clerodane diterpenes from Croton species: Distribution and a compilation of their and 13C-NMR. Nat. Prod. Commun. 2006, 1, 319–344. [Google Scholar]
  39. Sena Filho, J.G.; Duringer, J.M.; Uchoa, D.E.A.; Xavier, H.S.; Barbosa Filho, J.M.; Braz Filho, R. Distribution of iridoid glucosides in plants from the genus Lippia (Verbenaceae): An investigation of Lippia alba (Mill.) N.E. Brown. Nat. Prod. Commun. 2007, 2, 715–716. [Google Scholar]
  40. Lira, N.S.; Montes, R.C.; Tavares, J.F.; Silva, M.S.; Cunha, E.V.L.; Athayde-Filho, P.F.; Rodrigues, L.C.; Dias, C.S.; Barbosa-Filho, J.M. Brominated compounds from marine sponges of the genus Aplysina and a compilation of their 13C-NMR spectral data. Mar. Drugs 2011, 9, 2316–2368. [Google Scholar]
  41. Honório Júnior, J.E.R.; Soares, P.M.; Melo, C.L.; Arruda Filho, A.C.V.; Sena Filho, J.G.; Barbosa-Filho, J.M.; Sousa, F.C.F.; Fonteles, M.M.F.; Leal, L.K.A.; Queiroz, M.G.R.; et al. Atividade farmacológica da monocrotalina isolada de plantas do gênero Crotalaria. Rev. Bras. Farmacogn. 2010, 20, 453–458. [Google Scholar]
  42. Vasconcelos, S.M.M.; Honório-Júnior, J.E.R.; Abreu, R.N.D.C.; Silva, M.C.C.; Barbosa-Filho, J.M.; Lobato, R.F.G. Pharmacologic Study of Some Plant Species from the Brazilian Northeast: Calotropis procera, Agava sisalana, Solanum paludosum, Dioscorea cayenensis and Crotalaria retusa. In Medicinal Plants: Classification, Biosynthesis and Pharmacology; Varela, A., Ibañez, J., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; Volume 4, pp. 189–202. [Google Scholar]
  43. Vasconcelos, S.M.M.; Pereira, E.C.; Chaves, E.M.C.; Lobato, R.F.G.; Barbosa-Filho, J.M.; Patrocínio, M.C.A. Pharmacologic Study of Amburana cearensis and Aniba genus. In Recent Progress in Medicinal Plants. Drug Plant IV; Singh, V.K., Govil, J.N., Eds.; Studium Press LLC: Houston, TX, USA, 2010; Volume 30, pp. 51–64. [Google Scholar]
  44. Barbosa-Filho, J.M.; Sette, I.M.F.; Cunha, E.V.L.; Guedes, D.N.; Silva, M.S. Protoberberine Alkaloids. In The Alkaloids; Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 62, pp. 1–75. [Google Scholar]
  45. Conserva, L.M.; Pereira, C.A.B.; Barbosa-Filho, J.M. Alkaloids of the Hernandiaceae: Occurrence and a Compilation of Their Biological Activities. In The Alkaloids; Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 62, pp. 175–243. [Google Scholar]
  46. Barbosa-Filho, J.M.; Cunha, E.V.L.; Gray, A.I. Alkaloids of the Menispermaceae. In The Alkaloids; Cordell, G.A., Ed.; Academic Press: San Diego, CA, USA, 2000; Volume 54, pp. 1–199. [Google Scholar]
  47. Almeida, C.L.F.; Falcão, H.S.; Lima, G.R.M.; Montenegro, C.A.; Lira, N.S.; Athayde-Filho, P.F.; Rodrigues, L.C.; Souza, M.F.V.; Barbosa-Filho, J.M.; Batista, L.M. Bioactivities from marine algae of the genus Gracilaria. Int. J. Mol. Sci. 2011, 12, 4550–4573. [Google Scholar]
  48. Le Grand, A.; Wondergem, P.A. Antiinfective phytotherapy of the savannah forests of Senegal (East Africa) I. An inventory. J. Ethnopharmacol. 1987, 21, 109–125. [Google Scholar] [CrossRef]
  49. Le Grand, A. Anti-infectious phytotherapy of the tree-savannah, Senegal (Western Africa) III: A review of the phytochemical substances and anti-microbial activity of 43 species. J. Ethnopharmacol. 1989, 25, 315–338. [Google Scholar] [CrossRef]
  50. Comley, J.C.W. New macrofilaricidal leads from plants? Trop. Med. Parasitol. 1990, 41, 1–9. [Google Scholar]
  51. Tignokpa, M.; Laurens, A.; Mboup, S.; Sylla, O. Popular medicinal plants of the markets of Dakar (Senegal). Int. J. Crude. Drug. Res. 1986, 24, 75–80. [Google Scholar]
  52. Malcolm, S.A.; Sofowora, E.A. Antimicrobial activity of selected Nigerian folk remedies and their constituent plants. Lloydia 1969, 32, 512–517. [Google Scholar]
  53. Laurens, A.; Mboup, S.; Tignokpa, M.; Sylla, O.; Masquelier, J. Antimicrobial activity of some medicinal species of Dakar markets. Pharmazie 1985, 40, 482–485. [Google Scholar]
  54. Le Grand, A.; Wondergem, P.A.; Verpoorte, R.; Pousset, J.L. Anti-infectious phytotherapies of the tree-savannah of Senegal (West-Africa). Antimicrobial activity of 33 species. J. Ethnopharmacol. 1988, 22, 25–31. [Google Scholar] [CrossRef]
  55. Bassene, E.; Mahamat, B.; Lo, M.; Boye, C.S.B.; Faye, B. Comparison of the antibacterial activity of three Combretaceae: Combretum micranthum, Guiera senegalensis and Terminalia avicennioides. Fitoterapia 1995, 66, 86–88. [Google Scholar]
  56. Adoum, A.O.; Dabo, N.T.; Fatope, M.O. Bioactivities of some savanna plants in the brine shrimp lethality test and in vitro antimicrobial assay. Int. J. Pharmacog. 1997, 35, 334–337. [Google Scholar] [CrossRef]
  57. Abreu, P.M.; Martins, E.S.; Kayser, O.; Bindseil, K.U.; Siems, K.; Seemann, A.; Frevert, J. Antimicrobial, antitumor and antileischmania screening of medicinal plants from Guinea-Bissau. Phytomedicine 1999, 6, 187–195. [Google Scholar] [CrossRef]
  58. Ferrea, G.; Canessa, A.; Sampietro, F.; Cruciani, M.; Romussi, G.; Bassetti, D. In vitro activity of a Combretum micranthum extract against Herpes simplex virus types 1 and 2. Antiviral Res. 1993, 21, 317–325. [Google Scholar] [CrossRef]
  59. Benoit, F.; Valentin, A.; Pelissier, Y.; Diafouka, F.; Marion, C.; Kone-Bamba, D.; Kone, M.; Mallie, M.; Yapo, A.; Bastide, J.M. In vitro antimalarial activity of vegetal extracts used in west african traditional medicine. Am. J. Trop. Med. Hyg. 1996, 54, 67–71. [Google Scholar]
  60. Karou, D.; Dicko, M.H.; Sano, S.; Simpore, J.; Traore, A.S. Antimalarial activity of Sida acuta Burm. F. (Malvaceae) and Pterocarpus erinaceus Poir. (Fabaceae). J. Ethnopharmacol. 2003, 89, 291–294. [Google Scholar] [CrossRef]
  61. Ancolio, C.; Azas, N.; Mahiou, V.; Ollivier, E.; di Giorgio, C.; Keita, A.; Timon-David, P.; Balansard, G. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother. Res. 2002, 16, 466–469. [Google Scholar]
  62. Di Carlo, F.J.; Haynes, L.J.; Sliver, N.J.; Phillips, G.E. Reticuloendothelial system stimulants of botanical origin. J. Reticuloendothel. Soc. 1964, 1, 224. [Google Scholar]
  63. Chika, A.; Bello, S.O. Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats. J. Ethnopharmacol. 2010, 129, 34–37. [Google Scholar] [CrossRef]
  64. Keay, R.W.J. Trees of Nigeria.; Clarendon Press: Oxford, UK, 1989; Volume 3, pp. 146–216. [Google Scholar]
  65. McGaw, L.J.; Jager, A.K.; Staden, J.V. Antibacterial, anthelmintic and anti-amoebic activity in South African medicinal plants. J. Ethnopharmacol. 2000, 72, 247–263. [Google Scholar] [CrossRef]
  66. Fyhrquist, P.; Mwasumbi, L.; Haeggstrom, C.; Vourela, H.; Hiltunem, R.; Vurela, P. Ethnobotanical and antimicrobial investigation on some species of Terminalia and Combretum (Combretaceae) growing in Tanzania. J. Ethnopharmacol. 2002, 79, 169–177. [Google Scholar] [CrossRef]
  67. Bussmann, R.W.; Gilbreath, G.G.; Soilo, J.; Lutura, M.; Lutuluo, R.; Kunguru, K.; Wood, N.; Mathenge, S.G. Plant use of the Massai of Sekenani Valley, Massai Mara, Kenya. J. Ethnobiol. Ethnomed. 2006, 2. [Google Scholar]
  68. Grønhaug, T.E.; Glæserud, S.; Skogsrud, M..; Ballo, N.; Bah, S.; Diallo, D.; Pualsen, B.S. Ethnopharmacological survey of six medicinal plants from Mali, West Africa. J. Ethnobiol. Ethnomed. 2008, 4. [Google Scholar]
  69. Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef]
  70. Geyid, A.; Abebe, D.; Debella, A.; Makonnen, Z.; Aberra, F.; Teka, F.; Kebede, T.; Urga, K.; Yersaw, K.; Biza, T.; et al. Screening of some medicinal plants of Ethiopia for their anti-microbial properties and chemical profiles. J. Ethnopharmacol. 2005, 97, 421–427. [Google Scholar] [CrossRef]
  71. Njume, C.; Jide, A.A.; Ndip, R.N. Aqueous and organic solvent-extracts of selected South African medicinal plants possess antimicrobial activity against drug-resistant strains of Helicobacter pylori: Inhibitory and bactericidal potential. Int. J. Mol. Sci. 2011, 12, 5652–5665. [Google Scholar] [CrossRef]
  72. Baba-Moussa, F.; Akpagana, K.; Bouchet, P. Antifungal activities of seven West African Combretaceae used in traditional medicine. J. Ethnopharmacol. 1999, 66, 335–338. [Google Scholar] [CrossRef]
  73. Masoko, P.; Picard, J.; Eloff, J.N. The antifungal activity of twenty-four Southern African Combretum species (Combretaceae). South Afr. J. Bot. 2007, 73, 173–183. [Google Scholar] [CrossRef]
  74. Lall, N.; Meyer, J.J.M. In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants. J. Ethnopharmacol. 1999, 66, 347–354. [Google Scholar] [CrossRef]
  75. Kloos, H.; Thiongo, F.W.; Ouma, J.H.; Butterworth, A.E. Preliminary evaluation of some wild and cultivated plants for snail control in Machakos District, Kenya. J. Trop. Med. Hyg. 1987, 90, 197–204. [Google Scholar]
  76. Asres, K.; Bucar, F.; Knauder, E.; Yardley, V.; Kendrick, H.; Croft, S.L. In vitro antiprotozoal activity of extract and compounds from the stem bark of Combretum molle. Phytother. Res. 2001, 15, 613–617. [Google Scholar] [CrossRef]
  77. Ademola, I.O.; Eloff, J.N. In vitro anthelmintic activity of Combretum molle (R. Br. ex G. Don) (Combretaceae) against Haemonchus contortus ova and larvae. Vet. Parasitol. 2010, 169, 198–203. [Google Scholar] [CrossRef]
  78. Asres, K.; Balcha, F. Phytochemical screening and in vitro antimalarial activity of the stem bark of Combretum molle R. Br. ex G. Don Ethiopian. Pharm. J. 1998, 16, 25–33. [Google Scholar]
  79. Osore, H. Screening of selected medicinal plants for novel female regulating agents. Fitoterapia 1987, 58, 345–346. [Google Scholar]
  80. Bessong, P.O.; Obi, C.L.; Andréola, M.L.; Rojas, L.B.; Pouységu, L.; Igumbor, E.; Meyer, J.J.M.; Quideau, S.; Litvak, S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol. 2005, 99, 83–91. [Google Scholar] [CrossRef]
  81. Ojewole, J.A.O. Analgesic and anti-inflammatory effects of mollic acid glucoside, a 1a-hydroxycycloartenoid saponin extractive from Combretum molle R. Br. ex G. Don (Combretaceae) leaf. Phytother. Res. 2008, 22, 30–35. [Google Scholar] [CrossRef]
  82. Ojewole, J.A.O. Cardiovascular effects of mollic acid glucoside, a 1alpha-hydroxycycloartenoid saponin extractive from Combretum molle R Br. ex G. Don (Combretaceae) leaf. Cardiovasc. J. Afr. 2008, 19, 128–134. [Google Scholar]
  83. Ojewole, J.A.O.; Adewole, S.O. Hypoglycaemic effect of mollic acid glucoside, a 1a-hydroxycycloartenoid saponin extractive from Combretum molle R. Br. ex G. Don (Combretaceae) leaf, in rodents. J. Nat. Med. 2009, 63, 117–123. [Google Scholar] [CrossRef]
  84. Asres, K.; Bucar, F. Anti-HIV activity against immunodeficiency virus type 1 (HIV-I) and type II (HIV-II) of compounds isolated from the stem bark of Combretum molle. Ethiop. Med. J. 2005, 43, 15–20. [Google Scholar]
  85. Gelfand, M.; Mavis, S.; Drummond, R.B.; Ndemera, B. The Traditional Medical Practitioner in Zimbabwe; Mambo Press: Gweru, Zimbabwe, 1985. [Google Scholar]
  86. Sohni, Y.R.; Kale, P.G. Mutagenicity of Combretum erythrophyllum in sex-linked recessive lethal test in Drosophila. Phytother. Res. 1997, 11, 524–526. [Google Scholar] [CrossRef]
  87. Hutchings, A.; Scott, A.H.; Lewis, G.; Cunningham, A.B. Zulu Medicinal Plants: An Inventory; University of Natal Press: Pietermaritzburg, South Africa, 1996. [Google Scholar]
  88. Martini, N.; Eloff, J.N. The preliminary isolation of several antibacterial compounds from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 1998, 62, 255–263. [Google Scholar] [CrossRef]
  89. Eloff, J.N. It is possible to use herbarium specimens to screen for antibacterial components in some plants. J. Ethnopharmacol. 1999, 67, 355–360. [Google Scholar] [CrossRef]
  90. Sohni, Y.R.; Mutangadura-Mhlanga, T.; Kale, P.G. Bacterial mutagenicity of eight medicinal herbs from Zimbabwe. Mutat. Res. 1994, 322, 133–140. [Google Scholar] [CrossRef]
  91. Schwikkard, S.; Xhou, B.N.; Glass, T.E.; Sharp, J.L.; Mattern, M.R.; Johnson, R.K.; Kingston, D.G.I. Bioactive compounds from Combretum erythrophyllum. J. Nat. Prod. 2000, 63, 457–460. [Google Scholar] [CrossRef]
  92. Lindsey, K.; Jager, A.K.; Raidoo, D.M.; van Staden, J. Screening of plants used by Southern African traditional healers in the treatment of dysmenorrhoea for prostaglandin–synthesis inhibitors and uterine relaxing activity. J. Ethnopharmacol. 1999, 64, 9–14. [Google Scholar]
  93. Asuzu, I.U.; Njoku, J.C. The pharmacological properties of the ethanolic root extract of Combretum dolichopetalum. Phytother. Res. 1992, 6, 125–128. [Google Scholar] [CrossRef]
  94. Asuzu, I.U.; Onu, O.U. Anti-ulcer activity of the ethanolic extract of Combretum dolichopetalum roots. Int. J. Crude Drug Res. 1990, 28, 27–32. [Google Scholar]
  95. Udem, S.C.; Madubunyi, I.; Okoye, J.O.A.; Anika, S.M. Anti-hepatotoxic effects of the ethanolic extracts of Combretum dolichopetalum root bark and Morinda lucida leaf. Fitoterapia 1997, 68, 21–24. [Google Scholar]
  96. Asuzu, I.U.; Adimorah, R.I. The antiinflamatory activity of extracts from the root of Combretum dolichopetalum. Phytomedicine 1998, 5, 25–28. [Google Scholar] [CrossRef]
  97. Udem, S.C.; Madubunyi, I.; Asuzu, I.U.; Anika, S.M. The trypanocidal action of the root extract of Combretum dolichopetalum. Fitoterapia 1996, 67, 31–37. [Google Scholar]
  98. Lecompte, O. Museum National d’Histoire Naturalle. Flore du Cambodge, du Laos et du Vietnam 1969, 58–61. [Google Scholar]
  99. Somanabandhu, A.; Wungchinda, S.; Wiwat, C. Chemical Composition of Combretum Quadrangulare Kurz, 4th ed; Asian Symp. Med. Plants Spices: Bangkok, Thailand, 1980. [Google Scholar]
  100. Ohsugi, M.; Basnet, P.; Kadota, S.; Ishii, E.; Tamura, T.; Okumura, Y.; Namba, T. Antibacterial activity of traditional medicines and an active constituent lupulone from Humulus lupulus against Helicobacter pylori. J. Tradit. Med. 1997, 14, 186–191. [Google Scholar]
  101. Adnyana, L.K.; Tezuka, Y.; Banskota, A.H.; Tran, K.Q.; Kadota, S. Hepatoprotective constituents of the seeds of Combretum quadrangulare. Biol. Pharm. Bull. 2000, 23, 1328–1332. [Google Scholar] [CrossRef]
  102. Kiuchi, F.; Matsuo, K.; Itano, Y.; Ito, M.; Honda, G.; Oui, TK.; Nakajima Shimada, J.; Aoki, T. Screening of natural medicines used in Vietnam for trypanocidal activity against epimastigotes of Trypanosoma cruzi. Nat. Med. 2002, 56, 64–68. [Google Scholar]
  103. Tewtrakul, S.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kawahata, T.; Otake, T.; Yoshinaga, T.; Fujiwara, T.; Supavita, T.; Yuenyongsawad, S.; et al. HIV-1 integrase inhibitory substances from Coleus parvifolius. Phytother. Res. 2003, 17, 232–239. [Google Scholar] [CrossRef]
  104. Adnyana, I.K.; Tezuka, Y.; Awale, S.; Banskota, A.H.; Tran, K.Q.; Kadota, S. 1-O-galloyl-6-O-(4-hydroxy-3,5-dimethoxy)benzoyl-beta-D-glucose, a new hepatoprotective constituent from Combretum quadrangulare. Planta Med. 2001, 67, 370–371. [Google Scholar] [CrossRef]
  105. Adnyana, I.K.; Tezuka, Y.; Banskota, A.H.; Tran, K.Q.; Kadota, S. Three New triterpenes from the seeds of Combretum quadrangulare and their hepatoprotective activity. J. Nat. Prod. 2001, 64, 360–363. [Google Scholar] [CrossRef]
  106. Eldeen, I.M.S.; Vas Staden, J. In vitro pharmacological investigation of extracts from some trees used in Sudanese traditional medicine. South Afr. J. Bot. 2007, 73, 435–440. [Google Scholar] [CrossRef]
  107. Braga, F.C.; Wagner, H.; Lombardi, J.A.; De Oliveira, A.B. Screening the Brazilian flora for antihypertensive plant species for in vitro angiotensin-I-converting enzyme inhibiting. Phytomedicine 2000, 7, 245–250. [Google Scholar] [CrossRef]
  108. Serra, C.P.; Côrtes, S.F.; Lombardi, J.A.; Braga de Oliveira, A.; Braga, F.C. Validation of a colorimetric assay for the in vitro screening of inhibitors of angiotensin-converting enzyme (ACE) from plant extracts. Phytomedicine 2005, 12, 424–432. [Google Scholar] [CrossRef]
  109. Braga, F.C.; Serra, C.P.; Viana, N.S., Jr.; Oliveira, A.B.; Côrtes, S.F.; Lombardi, J.A. Angiotensin-converting enzyme inhibition by Brazilian plants. Fitoterapia 2007, 78, 353–358. [Google Scholar]
  110. Wall, M.E.; Wani, M.C.; Brown, D.M.; Fullas, F.; Oswald, J.B.; Josephson, F.F.; Thornton, N.M.; Pezzuto, J.M.; Beecher, C.W.W.; Farnsworth, N.R.; et al. Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytomedicine 1996, 3, 281–285. [Google Scholar] [CrossRef]
  111. Ampofo, O.F. Plants that heal. World Health 1977, 26–30. [Google Scholar]
  112. McGaw, L.J.; Rabe, T.; Sparg, S.G.; Jager, A.K.; Eloff, J.N.; Van Staden, J. An investigation on the biological activity of Combretum species. J. Ethnopharmacol. 2001, 75, 45–50. [Google Scholar] [CrossRef]
  113. Simon, M.K.; Ajanusi, O.J.; Abubakar, M.S.; Idris, A.L.; Suleiman, M.M. The anthelmintic effect of aqueous methanol extract of Combretum molle (R. Br. x. G. Don) (Combretaceae) in lambs experimentally infected with Haemonchus contortus. Vet. Parasitol. 2012. [Google Scholar]
  114. Sofowora, E.A. Fip sections special: Section for the study of medicinal plants. V. West African traditional plant medicines. Pharm. Int. 1982, 3, 137. [Google Scholar]
  115. Waterman, C.; Smith, R.A.; Pontiggia, L.; DerMarderosian, A. Anthelmintic screening of Sub Saharan African plants used in traditional medicine. J. Ethnopharmacol. 2010, 127, 755–759. [Google Scholar] [CrossRef]
  116. Lamidi, M.; DiGiorgio, C.; Delmas, F.; Favel, A.; Eyele Mve-Mba, C.; Rondi, M.L.; Ollivier, E.; Nze-Ekekang, L.; Balansard, G. In vitro cytotoxic, antileishmanial and antifungal activities of ethnopharmacologically selected Gabonese plants. J. Ethnopharmacol. 2005, 102, 185–190. [Google Scholar] [CrossRef]
  117. Gessler, M.C.; Nkunyak, M.H.H.; Mwasumbi, L.B.; Heinrich, M.; Tanner, M. Screening Tanzanian medicinal plants for antimalarial activity. Acta Tropica. 1994, 56, 65–77. [Google Scholar] [CrossRef]
  118. Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G.; Bhagwandin, N.; Smith, P.J.; Folb, P.I. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J. Ethnopharmacol. 2004, 92, 177–191. [Google Scholar] [CrossRef]
  119. Elsheikh, S.H.; Bashir, A.K.; Suliman, S.M.; Wassila, M.E. Toxicity of certain Sudanese plant extracts on cercariae and miracidia of Schistosoma mansoni. Int. J. Crude. Drug. Res. 1990, 28, 241–245. [Google Scholar]
  120. Sparg, S.G.; Van Staden, J.; Jager, A.K. Efficiency of traditionally used South African plants against schistosomiasis. J. Ethnopharmacol. 2000, 73, 209–214. [Google Scholar] [CrossRef]
  121. Bizimana, N.; Tietjen, U.; Zessin, K.H.; Diallo, D.; Djibril, C.; Melzig, M.F.; Clausen, P.H. Evaluation of medicinal plants from Mali for their in vitro and in vivo trypanocidal activity. J. Ethnopharmacol. 2006, 103, 350–356. [Google Scholar] [CrossRef]
  122. Cepleanu, F.; Hamburger, M.O.; Sordat, B.; Msonthi, J.D.; Gupta, M.P.; Saadou, M.; Hostettmann, K. Screening of tropical medicinal plants for mulluscicidal, larvicidal, fungicidal and cytotoxic activities and brine shrimp toxicity. Int. J. Pharmacog. 1994, 32, 294–307. [Google Scholar] [CrossRef]
  123. Odda, J.; Kristensen, S.; Kabasa, J.; Waako, P. Larvicidal activity of Combretum collinum Fresen against Aedes aegypti. J. Vector. Borne Dis. 2008, 45, 321–324. [Google Scholar]
  124. Olukoya, D.K.; Idika, N.; Odugbemi, T. Antibacterial activity of some medicinal plants from Nigeria. J. Ethnopharmacol. 1993, 39, 69–72. [Google Scholar] [CrossRef]
  125. Eloff, J.N. Which extractant should be used for the screening and isolation of antimicrobial components from plants. J. Ethnopharmacol. 1998, 60, 1–8. [Google Scholar] [CrossRef]
  126. Eldeen, I.M.S.; Vas Staden, J. Cyclooxygenase inhibition and antimycobacterial effects of extracts from Sudanese medicinal plants. South Afr. J. Bot. 2008, 74, 225–229. [Google Scholar] [CrossRef]
  127. Angeh, J.E.; Huang, X.; Sattler, I.; Swan, G.E.; Dahse, H.; Härtl, A.; Eloff, J.N. Antimicrobial and anti-inflammatory activity of four known and one new triterpenoid from Combretum imberbe (Combretaceae). J. Ethnopharmacol. 2007, 110, 56–60. [Google Scholar] [CrossRef]
  128. Asres, K.; Bucar, F.; Edelsbrunner, S.; Kartnig, T.; Hoger, G.; Thiel, W. Investigation on antimycobacterial activity of some Ethiopian medicinal plants. Phytother. Res. 2001, 15, 323–326. [Google Scholar] [CrossRef]
  129. Khan, M.N.; Ngassapa, O.; Matee, M.I.N. Antimicrobial activity of Tanzanian chewing sticks against oral pathogenic microbes. Pharm. Biol. 2000, 38, 235–230. [Google Scholar]
  130. Steenkamp, V.; Fernandes, A.C.; Van Rensburg, C.E.J. Antibacterial activity of Venda medicinal plants. Fitoterapia 2007, 78, 561–564. [Google Scholar] [CrossRef]
  131. Regassa, F.; Araya, M. In vitro antimicrobial activity of Combretum molle (Combretaceae) against Staphylococcus aureus and Streptococcus agalactiae isolated from crossbred dairy cows with clinical mastitis. Trop. Anim. Health Prod. 2012, 44, 1169–1173. [Google Scholar] [CrossRef]
  132. Desta, B. Ethiopian traditional herbal drugs. Part II: Antimicrobial activity of 63 medicinal plants. J. Ethnopharmacol. 1993, 39, 129–139. [Google Scholar] [CrossRef]
  133. Mela, C. Investigation of the presence of substances having antibiotic action in higher plants. Fitoterapia 1950, 21, 98–99. [Google Scholar]
  134. Sawhney, A.N.; Khan, M.R.; Ndaalio, G.; Nkunya, M.H.H.; Wevers, H. Studies on the rationale of African traditional medicine. Part II. Preliminary screening of medicinal plants for antigonoccoci activity. Pak. J. Sci. Ind. Res. 1978, 21, 189–192. [Google Scholar]
  135. Almagboul, A.Z.; Bashir, A.K.; Karim, A.; Salih, M.; Farouk, A.; Khalid, S.A. Antimicrobial activity of certain Sudanese plants used in folkloric medicine. Screening for antifungal activity (VI). Fitoterapia 1988, 59, 393–396. [Google Scholar]
  136. Steenkamp, V.; Fernandes, A.C.; Van Rensburg, C.E.J. Screening of Venda medicinal plants for antifungal activity against Candida albicans. South Afr. J. Bot. 2007, 73, 256–258. [Google Scholar] [CrossRef]
  137. Sawhney, A.N.; Khan, M.R.; Ndaalio, G.; Nkunya, M.H.H.; Wevers, H. Studies on the rationale of African traditional medicine. Part III. Preliminary screening of medicinal plants for antifungal activity. Pak. J. Sci. Ind. Res. 1968, 21, 193–196. [Google Scholar]
  138. Pannangpetch, P.; Taejarernwiriyakul, O.; Kongyingyoes, B. Ethanolic extract of Combretum decandrum Roxb. decreases blood glucose level and oxidative damage in streptozotocin-induced diabetic rats. Diab. Res. Clin. Pract. 2008, 79, 107–108. [Google Scholar]
  139. Recio, M.C.; Giner, R.M.; Manez, S.; Rios, J.L.; Marston, A.; Hostettmann, K. Screening of tropical medicinal plants for antiinflammatory activity. Phytother. Res. 1995, 9, 571–574. [Google Scholar] [CrossRef]
  140. Gouveia, M.G.; Xavier, M.A.; Barreto, A.S.; Gelain, D.P.; Santos, J.P.; Araújo, A.A.; Silva, F.A.; Quintans, J.S.; Agra, M.F.; Cabral, A.G.; et al. Antioxidant, antinociceptive, and anti-inflammatory properties of the ethanolic extract of Combretum duarteanum in rodents. J. Med. Food 2011, 14, 1389–1396. [Google Scholar] [CrossRef]
  141. Hiermann, A.; Bucar, F. Influence of some traditional medicinal plants of Senegal on prostaglandin biosynthesis. J. Ethnopharmacol. 1994, 42, 111–116. [Google Scholar] [CrossRef]
  142. Olajide, O.A.; Modupemakinde, J.; Okpako, D.T. Evaluation of the anti-inflammatory property of the extract of Combretum micranthum G. Don (Combretaceae). Inflammopharmacology 2003, 11, 293–298. [Google Scholar] [CrossRef]
  143. Lira, S.R.S.; Almeida, R.N.; Almeida, F.R.C.; Oliveira, F.S.; Duarte, J.C. Preliminary studies on the analgesic properties of the ethanol extract of Combretum leprosum. Pharm. Biol. 2002, 40, 213–215. [Google Scholar] [CrossRef]
  144. Pettit, G.R.; Cragg, G.M.; Singh, S.B. Antineoplastic agents, 122. Constituents of Combretum caffrum. J. Nat. Prod. 1987, 50, 386–391. [Google Scholar] [CrossRef]
  145. George, R.P.; Gordon, M.C.; Delbert, L.H.; Jean, M.S.; Prasert, L. Antineoplastic agents, 84. Isolation and structure of combretastatin. Can. J. Chem. 1982, 60, 1374–1376. [Google Scholar] [CrossRef]
  146. Ngaba, J.; Olschwang, D.; Giono-Barber, H.; Pousset, J.L. African medicinal plants. III study of antitussive action of Combretum glutinosum Perr. Ann. Pharm. Fr. 1980, 38, 529–536. [Google Scholar]
  147. Pousset, J.L.; Rey, J.P.; Levesque, J.; Coursaget, P.; Galen, F.X. Hepatitis B surface antigen (HBSAG) inactivation and angiotensin-converting enzyme (ACE) inhibition in vitro by Combretum glutinosum Perr. (Combretaceae) extract. Phytother. Res. 1993, 7, 101–102. [Google Scholar] [CrossRef]
  148. Van Den Berghe, D.A.; Ieven, M.; Mertens, F.; Vlietinck, A.J.; Lammens, E. Screening of higher plants for biological activities. II. Antiviral activity. J. Nat. Prod. 1978, 41, 463–467. [Google Scholar]
  149. Asres, K.; Bucar, F.; Kartnig, T.; Witvrouw, M.; Pannecoupue, C.; de Clercq, E. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother. Res. 2001, 15, 62–69. [Google Scholar] [CrossRef]
  150. Bamgbose, S.O.A.; Dramane, K.L. Studies on Combretum species. II. Preliminary report on studies on four seeds of Combretum species. Planta Med. Suppl. 1977, 32, 350–356. [Google Scholar] [CrossRef]
  151. Akubue, P.I.; Mittal, G.C.; Aguwa, C.N. Preliminary pharmacological study of some Nigerian medicinal plants 1. J. Ethnopharmacol. 1983, 8, 53–63. [Google Scholar] [CrossRef]
  152. Dhar, M.L.; Dhar, M.N.; Dhawan, B.N.; Mehrotra, B.N.; Srimal, R.C.; Tandon, J.S. Screening of Indian plants for biological activity. Part IV. Indian. J. Exp. Biol. 1973, 11, 43–54. [Google Scholar]
  153. Nascimento, S.C.; Chiappeta, A.A.; Lima, R.M.O.C. Antimicrobial and cytotoxic activities in plants from Pernambuco, Brazil. Fitoterapia 1990, 61, 353–355. [Google Scholar]
  154. Nascimento, S.C.; de Mello, J.F.; Chiappeta, A.A. Cytotoxic agents. Experiments with KB cells. Rev. Inst. Antibiot. Univ. Fed. Pernambuco 1985, 22, 19–26. [Google Scholar]
  155. Simon, G.; Dewelle, J.; Nacoulma, O.; Guissou, P.; Kiss, R.; Daloze, D.; Braekman, J.C. Cytotoxic pentacyclic triterpenes from Combretum nigricans. Fitoterapia 2003, 74, 339–344. [Google Scholar] [CrossRef]
  156. Fouchea, G.; Cragg, G.M.; Pillay, P.; Kolesnikova, N.; Maharaj, V.J.; Senabe, J. In vitro anticancer screening of South African plants. J. Ethnopharmacol. 2008, 119, 455–461. [Google Scholar] [CrossRef]
  157. Massele, A.Y.; Nshimo, C.M. Brine shrimp bioassay for biological activity of medicinal plants used in traditional medicines in Tanzania. East Afr. Med. J. 1995, 72, 661–663. [Google Scholar]
  158. Sofowora, E.A.; Adewunmi, C.O. Preliminary screening of some plant extracts for molluscicidal activity. Planta Med. 1980, 39, 57–65. [Google Scholar] [CrossRef]
  159. Adewunmi, C.O. Natural products as agents of schistosomiasis control in Nigeria: A review of progress. Int. J. Crude. Drug. Res. 1984, 22, 161–166. [Google Scholar]
  160. Sousa, M.P.; Rouquayrol, M.Z. Molluscicidal activity of plants from Northeast Brazil. Rev. Brasil. Pesq. Med. Biol. 1974, 7, 389–394. [Google Scholar]
  161. Bhakuni, O.S.; Dhar, M.L.; Dhar, M.M.; Dhawan, B.N.; Mehrotra, B.N. Screening of Indian plants for biological activity. Part II. Indian J. Exp. Biol. 1969, 7, 250–262. [Google Scholar]
  162. Dhawan, B.N.; Dubey, M.P.; Mehrotra, B.N.; Rastogi, R.P.; Tandon, J.S. Screening of Indian plants for biological activity. Part IX. Indian J. Exp. Biol. 1980, 18, 594–606. [Google Scholar]
  163. Lima, G.R.M. Atividade gastroprotetora de Combretum duarteanum Cambess. (Combretaceae) em modelos animais.
  164. Nunes, P.H.M.; Cavalcanti, P.M.S.; Galvão, S.M.P.; Martins, M.C.C. Antiulcerogenic activity of Combretum leprosum. Pharmazie 2009, 64, 58–62. [Google Scholar]
  165. Brookes, K.B.; Doudoukina, O.V.; Katsoulis, L.C.; Veale, D.J.H. Uteroactive constituents from Combretum kraussii. South Afr. J. Chem. 1999, 52, 127–132. [Google Scholar]

Share and Cite

MDPI and ACS Style

De Morais Lima, G.R.; De Sales, I.R.P.; Caldas Filho, M.R.D.; De Jesus, N.Z.T.; De Sousa Falcão, H.; Barbosa-Filho, J.M.; Cabral, A.G.S.; Souto, A.L.; Tavares, J.F.; Batista, L.M. Bioactivities of the Genus Combretum (Combretaceae): A Review. Molecules 2012, 17, 9142-9206. https://doi.org/10.3390/molecules17089142

AMA Style

De Morais Lima GR, De Sales IRP, Caldas Filho MRD, De Jesus NZT, De Sousa Falcão H, Barbosa-Filho JM, Cabral AGS, Souto AL, Tavares JF, Batista LM. Bioactivities of the Genus Combretum (Combretaceae): A Review. Molecules. 2012; 17(8):9142-9206. https://doi.org/10.3390/molecules17089142

Chicago/Turabian Style

De Morais Lima, Gedson Rodrigues, Igor Rafael Praxedes De Sales, Marcelo Ricardo Dutra Caldas Filho, Neyres Zínia Taveira De Jesus, Heloina De Sousa Falcão, José Maria Barbosa-Filho, Analúcia Guedes Silveira Cabral, Augusto Lopes Souto, Josean Fechine Tavares, and Leônia Maria Batista. 2012. "Bioactivities of the Genus Combretum (Combretaceae): A Review" Molecules 17, no. 8: 9142-9206. https://doi.org/10.3390/molecules17089142

Article Metrics

Back to TopTop