Aporphine Alkaloids from the Leaves of Phoebe grandis (Nees) Mer. (Lauraceae) and Their Cytotoxic and Antibacterial Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Compound characterization
Position | 13C (δ, CDCl3) | Type | 1H (J, Hz) | HMBC (2J, 3J) |
---|---|---|---|---|
1 | 148.9 | Cq | - | |
1a | 141.1 | Cq | - | |
1b | 123.9 | Cq | - | |
2 | 141.1 | Cq | - | |
3 | 106.9 | CH | 6.51 s | C1, C1a, C2, C4 |
3a | 126.7 | Cq | - | |
4 | 25.1 | CH2 | 2.87 m (ax) | C3, C1b, C1a |
2.75 m (eq) | C3, C1b, C1a | |||
5 | 43.9 | CH2 | 3.55 m (ax) | C4, C6a, C1b |
3.16 m (eq) | C4, C6a | |||
6a | 56.8 | CH | 4.26 dd | C5, C7 |
(J = 6.9 Hz, | ||||
J = 9.8 Hz) | ||||
7 | 44.1 | CH2 | 2.73 m (ax) | C3, C3a, C1a |
1.87 m (eq) | C12, C7a, C6a | |||
7a | 46.2 | Cq | - | - |
8 | 38.5 | CH2 | 2.68 m (ax) | C10 |
2.41 m (eq) | C9, C7a, C10 | |||
9 | 36.2 | CH2 | 2.50 m (ax) | C8, C7a, C10 |
1.91 m (eq) | C11, C7a, C10 | |||
10 | 211.1 | C=O | - | - |
11 | 38.9 | CH2 | 2.46 m (ax) | C10 |
2.45 m (eq) | C12, C7a, C10 | |||
12 | 34.3 | CH2 | 2.10 m (ax) | C9, C7, C7a, C3a, C10 |
2.00 m (eq) | C9, C7a, C3a, C10 | |||
Methylenedioxy (O-CH2-O) | 100.9 | CH2 | 5.89 d (J = 1.3 Hz) | C1,C2 |
5.86 d (J = 1.3 Hz) | C1,C2 |
Position | 13C (δ, CDCl3) | Type | 1H (J, Hz) | HMBC (2J, 3J) |
---|---|---|---|---|
1 | 140.7 | Cq | - | - |
1a | 134.3 | Cq | - | - |
1b | 124.5 | Cq | - | - |
2 | 148.2 | Cq | - | - |
3 | 106.5 | CH | 6.49 s | C1a, C1, C2,C4 |
3a | 126.9 | Cq | - | |
4 | 27.4 | CH2 | 2.92 (m) ax | C1b, C5 |
2.72 (m) eq | C1b, C1a, C3 | |||
5 | 55.0 | CH2 | 3.09 (m) ax | C1b, C4, NCH3, C6a |
2.45 (m) eq | ||||
6a | 65.7 | CH | 3.30 br s | - |
7 | 44.5 | CH2 | 2.59 (m) ax | C3a, C1a, C8, C7a, C6a |
1.75 (m) eq | C8, C12, C7a, C6a | |||
7a | 46.0 | Cq | - | - |
8 | 34.6 | CH2 | 2.14 (m) ax | C3a, C12, C7 |
2.02 (m) eq | C3a, C12, C7a | |||
9 | 39.0 | CH2 | 2.47 (m) | C8, C11, C7a |
C8, C11, C7a | ||||
10 | 211.7 | C=O | - | - |
11 | 38.6 | CH2 | 2.70 (m) ax | C12, C7a |
2.43 (m) eq | C12, C7a | |||
12 | 36.5 | CH2 | 2.50 (m) ax | C8, C11, C7 |
1.93 (m) eq | C3a, C8, C11, C7a | |||
N-CH3 | 43.5 | CH3 | 2.39 s | C5, C6a |
Methlenedioxy | 100.6 | CH2 | 5.88 d (J = 1.2) | C1, C2 |
(O-CH2-O) | 5.83 d (J = 1.2) | C1, C2 |
Position | 13C (δ, CDCl3) | Type | 1H (J, Hz) | HMBC (2J, 3J) |
---|---|---|---|---|
1 | 148.1 | Cq | - | - |
1a | 129.0 | Cq | - | - |
1b | 131.0 | Cq | - | - |
2 | 140.8 | Cq | - | - |
3 | 105.9 | CH | 6.46 (s) | C1, C2,C4 |
3a | 124.0 | Cq | - | - |
4 | 27.3 | CH2 | 2.93 (m) ax | C5 |
2.71 (m) eq | C3a | |||
5 | 54.9 | CH2 | 3.11 (m) ax | C3a, C6a |
2.46 (m) eq | ||||
6a | 65.7 | CH | 3.26 (m) | - |
7 | 44.3 | CH2 | 2.44 (m) ax | C1a |
1.58 (m) eq | C12, C9 | |||
7a | 46.6 | Cq | - | - |
8 | 30.2 | CH2 | 2.03 (m) ax | C7a, C10 |
1.54 (m) eq | C12, C7a, C10 | |||
9 | 31.7 | CH2 | 2.41 (m) ax | |
1.46 (m) eq | C8, C7a, C10 | |||
10 | 67.1 | CH | 4.00 br, m | |
11 | 31.0 | CH2 | 1.75 (m) | C12, C7a, C10 |
12 | 29.7 | CH2 | 1.25 (m) | |
N-CH3 | 43.2 | CH3 | 2.39 (s) | C5, C6a |
(OCH2O) | 100.5 | CH2 | 5.90 (d, J = 1.2) | C1, C2 |
5.86 (d, J = 1.2) | C1, C2 |
2.2. Cell Culture and MTT Cytotoxicity Activity
Compounds | IC50 (µg/mL) at 24 h | |
---|---|---|
MCF7 | HepG2 | |
1 | 26 | 27 |
2 | 60 | 14 |
3 | >100 | 81 |
4 | >100 | 20 |
Doxorubicin | 0.2 | 1.06 |
2.3. Antibacterial Activity
Sample | Inhibition diameter (mm ± SD) | ||||
---|---|---|---|---|---|
Staphylococcus epidermidis | Staphylococcus aureus | Bacillus subtilis | Pasteurella multocida | Enterobacter cloacae | |
(Gram +ve) | (Gram +ve) | (Gram +ve) | (Gram −ve) | (Gram −ve) | |
1 | 12.00 ± 0.00 | 13.33 ± 0.57 | 15.50 ± 0.57 | NI | NI |
2 | NI | NI | NI | NI | NI |
3 | NI | NI | NI | NI | NI |
4 | nt | nt | nt | nt | nt |
Streptomycin sulfate a | 20.00 ± 0.00 | 13.66 ± 0.57 | 21.00 ± 0.00 | 21.33 ± 1.15 | NI |
3. Experimental
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation of the Alkaloids
3.4. Cell Culture and MTT Cytotoxicity Assay
3.5. Bacterial Cultures and Disc Diffusion Assay
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Tayarani-Najaran, Z.; Ahmad Emami, S. Cytotoxic Plants: Potential Uses in Prevention and Treatment of Cancer, Current Cancer Treatment—Novel Beyond Conventional Approaches; Ozdemir, O., Ed.; In Tech: New York, NY, USA, 2011. Available online: http://www.intechopen.com (accessed on 9 December 2011).
- Parkin, D.M.; Fernandez, L.M.G. Use of statistics to assess the global burden of breast cancer. Breast J. 2006, 12, S70–S80. [Google Scholar] [CrossRef]
- Sakpakdeejaroen, I.; Itharat, A. Cytotoxic compounds against breast adenocarcinoma cells (MCF-7) from pikutbenjakul. J. Health Res. 2009, 23, 71–76. [Google Scholar]
- Abu-Dahab, R.; Afifi, F. Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7). Sci. Pharm. 2007, 75, 121–136. [Google Scholar] [CrossRef]
- Saleem, M.; Nazir, M.; Shaiq Ali, M.; Hussain, H.; Sup Lee, Y.; Riaz, N.; Jabbar, A. Antimicrobial natural products: An update on future antibiotic drug candidates. Nat. Prod. Rep. 2010, 27, 238–254. [Google Scholar] [CrossRef]
- Schleifer, K.H.; Kloos, W.E. Isolation and characterization of staphylococci from human skin I. Amended Descriptions of Staphylococcus epidermidis and Staphylococcus saprophyticus and Descriptions of three new species: Staphylococcus cohnii, Staphylococcus haemolyticus, and Staphylococcus xylosus. Int. J. Syst. Bacteriol. 1975, 25, 50–61. [Google Scholar] [CrossRef]
- Kluytmans, J.; van Belkum, A.; Verbrugh, H. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 1997, 10, 505–520. [Google Scholar]
- Cole, A.M.; Tahk, S.; Oren, A.; Yoshioka, D.; Kim, Y.H.; Park, A.; Ganz, T. Determinants of Staphylococcus aureus nasal carriage. Clin. Diagn. Lab. Immunol. 2001, 8, 1064–1069. [Google Scholar]
- Hong, H.A.; Khaneja, R.; Tam, N.M.K.; Cazzato, A.; Tan, S.; Urdaci, M.; Brisson, A.; Gasbarrini, A.; Barnes, I.; Cutting, S.M. Bacillus subtilis isolated from the human gastrointestinal tract. Res. Microbiol. 2009, 160, 134–143. [Google Scholar] [CrossRef]
- Boyce, J.D.; Adler, B. The capsule is a virulence determinant in the pathogenesis of Pasteurella multocida M1404 (B:2). Infect. Immun. 2000, 68, 3463–3468. [Google Scholar] [CrossRef]
- Harper, M.; Cox, A.D.; St Michael, F.; Wilkie, I.W.; Boyce, J.D.; Adler, B. A heptosyltransferase mutant of Pasteurella multocida produces a truncated lipopolysaccharide structure and is attenuated in virulence. Infect. Immun. 2004, 72, 3436–3443. [Google Scholar] [CrossRef]
- Musil, I.; Jensen, V.; Schilling, J.; Ashdown, B.; Kent, T. Enterobacter cloacae infection of an expanded polytetrafluoroethylene femoral-popliteal bypass graft: A case report. J. Med. Case Rep. 2010, 4, 131. [Google Scholar] [CrossRef]
- Ng, F.S.P. Tree Flora of Malaya; Longman: Kuala Lumpur, Malaysia, 1989; p. 4. [Google Scholar]
- Henry, T.A. The Plant Alkaloids, 4th ed.; J.A. Churchill Ltd.: London, UK, 1949; p. 317. [Google Scholar]
- Perry, L.M.; Metzgr, J. Medicinal Plants East and Southest Asia: Attributed Properties and Uses; MIT Press: Cambridge, MA, USA and London, UK, 1980; pp. 20, 201–202. [Google Scholar]
- Bhakuni, D.S.; Gupta, S. The Alkaloids of Stephania glabra. J. Nat Prod. 1982, 45, 407–411. [Google Scholar] [CrossRef]
- Castro, O.; Lopez, J.; Stermitz, F.R. New aporphine alkaloids from Phoebe valeriana. J. Nat. Prod. 1986, 49, 1036–1040. [Google Scholar] [CrossRef]
- CSIR, The Wealth of India, Raw Materials; Sp-W CSIR: New Delhi, India, 1989; Volume 10, pp. 41–44.
- Mukhtar, M.R.; Martin, M.T.; Domansky, M.; Pais, M.; Hadi, A.H.A.; Awang, K. Phoebegrandines A and B, proaporphine-tryptamine dimers, from Phoebe grandis. Phytochemistry 1997, 45, 1543–1546. [Google Scholar] [CrossRef]
- Mukhtar, M.R.; Hadi, A.H.A.; Sévenet, T.; Martin, M.T.; Awang, K. Phoebegrandines C A novel proaporphine-tryptamine dimer, from Phoebe grandis (Nees) Merr. Nat. Prod. Res. 2004, 18, 163–167. [Google Scholar] [CrossRef]
- Stermitz, F.R.; Castro, C.O. Pentasubstituted aporphine alkaloids from Phoebe molicella. J. Nat. Prod. 1983, 46, 913–916. [Google Scholar] [CrossRef]
- Castro, O.C.; Lopez, J.V.; Vergara, A.G. Aporphine alkaloids from Phoebe pittieri. Phytochemistry 1985, 24, 203–204. [Google Scholar] [CrossRef]
- Chen, C.C.; Huang, Y.L.; Lee, S.S.; Ou, J.C. Laurodionine, a new oxalyl-fused aporphine alkaloid from Phoebe formosana. J. Nat. Prod. 1997, 60, 826–827. [Google Scholar] [CrossRef]
- Semwal, D.K.; Rawat, U.; Singh, G. Further aporphine alkaloids from Phoebe lanceolata. Molbank 2008, 3, 581. [Google Scholar] [CrossRef]
- Mukhtar, M.R.; Aziz, A.N.; Thomas, N.F.; Hadi, A.H.A.; Litaudon, M.; Awang, K. Grandine A, a new proaporphine alkaloid from the bark of Phoebe grandis. Molecules 2009, 14, 1227–1233. [Google Scholar] [CrossRef]
- Hufford, C.; Morgan, J. Synthesis of (+-)-3-methoxy-N-acetylnornantenine. J. Organ. Chem. 1976, 41, 375–376. [Google Scholar] [CrossRef]
- Awang, K.; Mukhtar, M.R.; Mustafa, M.R.; Litaudon, M.; Shaari, K.; Mohamad, K.; Hadi, A.H.A. New alkaloids from Phoebe scortechinii. Nat. Prod. Res. 2007, 21, 704–709. [Google Scholar] [CrossRef]
- Chiou, C.M.; Kang, J.J.; Lee, S.S. Litebamine N-Homologues: Preparation and anti-acetylcholinesterase activity. J. Nat. Prod. 1998, 61, 46–50. [Google Scholar] [CrossRef]
- Semwal, D.K.; Rawat, U.; Bamola, A.; Semwal, R. Antimicrobial activity of Phoebe lanceolata and Stephania Glabra: Preliminary screening studies. J. Sci. Res. 2009, 1, 662–666. [Google Scholar]
- Ridley, H.N. The Flora of Malay Peninsular; L. Reeve, Co. Ltd.: London, UK, 1967; pp. 103–106. [Google Scholar]
- Corner, E.H.J. Wayside Trees of Malaya, 3rd ed.; The Malayan Nature Society: Kuala Lumpur, Malaysia, 1988; pp. 371–381. [Google Scholar]
- Awang, K.; Mukhtar, M.R.; Hadi, A.H.A.; Litaudon, M.; Latip, J.; Abdullah, N.R. New alkaloids from Phoebe grandis (Nees) Merr. Nat. Prod. Res. 2006, 20, 567–572. [Google Scholar] [CrossRef]
- Castro, O.; Lopez, J.; Vergara, A.; Stermitz, F.R. Phenylpropanoids in alkaloid-free species of Phoebe. J. Nat. Prod. 1985, 48, 640–641. [Google Scholar] [CrossRef]
- Mukhtar, M.R.; Hadi, A.H.A.; Rondeau, D.; Richomme, P.; Litaudon, M.; Mustafa, M.R.; Awang, K. New proaporphines from the bark of Phoebe scortechinii. Nat. Prod. Res. 2008, 22, 921–926. [Google Scholar] [CrossRef] [Green Version]
- Nakasato, T.; Asada, S. Structure of litsericine. J. Pharmac. Soc. Jpn. 1966, 86, 1205. [Google Scholar]
- Chen, C.L.; Chang, H.M.; Cowling, E.B. Aporphine alkaloids and lignans in heartwood of Liriodendron tulipifera. Phytochemistry 1976, 15, 547–550. [Google Scholar] [CrossRef]
- Svatava, D.; Ldislav, H.; Vladimir, P.; Frantisek, S. The oxoaporphine alkaloids. Heterocycles 1975, 3, 575–613. [Google Scholar] [CrossRef]
- Duddley, H.W.; Fleming, I. Spectroscopic Methods in Organic Chemistry, 4th ed.; Mc Graw Hill: London, UK, 1989; pp. 29–62. [Google Scholar]
- Guinaudeau, H.; Leboeuf, M.; Cavé, A. Aporphinoid alkaloids, III. J. Nat. Prod. 1983, 46, 761–835. [Google Scholar] [CrossRef]
- Harrigan, G.G.; Gunatilaka, A.L.; Kingston, D.G.I.; Chan, G.W.; Johnson, R.K. Isolation of bioactive and other oxoaporphine alkaloids from two annonaceous plants, Xylopia aethiopica and Miliusa cf. banacea. J. Nat. Prod. 1994, 57, 68–73. [Google Scholar] [CrossRef]
- Casagrande, C.; Canonica, L.; Ricca, G.S. Title. J. Chem. Soc. Perkin 1 1975, 17, 1659. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Likhitwitayawuid, K.; Angerhofer, C.K.; Chai, H.; Pezzuto, J.M.; Cordell, G.A. Cytotoxic and antimalarial alkaloids from the tubers of Stephania pierrei. J. Nat. Prod. 1993, 56, 1468–1478. [Google Scholar] [CrossRef]
- Mohammed, M.M.D.; Ibrahim, N.A.; Awad, N.E.; Matloub, A.A.; Mohamed-ali, A.G.; Barakat, E.E.; Mohamed, E.E.; Colla, P.L. Anti-HIV-1 and cytotoxicity of the alkaloids of Erythrina abyssinica Lam. Growing in Sudan. Nat. Prod. Res. 2012, 26, 1565–1575. [Google Scholar] [CrossRef]
- Makarasen, A.; Sirithana, W.; Mogkhuntod, S.; Khunnawutmanotham, N.; Chimnoi, N.; Techasakul, S. Cytotoxic and antimicrobial activities of aporphine alkaloids isolated from Stephania venosa (blume) spreng. Planta Med. 2011, 77, 1519–1524. [Google Scholar] [CrossRef]
- Vlietinck, A.J.; Hoof, L.V.; Totte, J.; Lasure, A.; Berghe, D.V.; Rwangabo, P.C.; Mvukiyumwami, J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharmacol. 1995, 46, 31–47. [Google Scholar] [CrossRef]
- Martin, G.J. A Methods Manual; Chapman and Hall: London, UK, 1995; p. 80. [Google Scholar]
- Paz, E.A.; Cerdeiras, M.P.; Fernandez, J.; Ferreira, F.; Moyna, P.; Soubes, M.; Vazquez, A.; Vero, S.; Zunino, L. Screening of Uruguayan medicinal plants for antimicrobial activity. J. Ethnopharmacol. 1995, 45, 67–70. [Google Scholar] [CrossRef]
- Yao, J.; Moellering, R. Antibacterial Agents. In Manual of Clinical Microbiology; Murray, P., Baron, E., Pfaller, M., Tenover, F., Yolken, R., Eds.; ASM Press: Washington, DC, USA, 1995; pp. 1281–1290. [Google Scholar]
- Nikaido, H. Outer Membrane. In Escherichia coli and Salmonella: Cellular and Molecular Biology; Neidhardt, F.C., Ed.; ASM Press: Washington, DC, USA, 1996; Volume 1, pp. 29–47. [Google Scholar]
- Gao, Y.; van Belkum, M.J.; Stiles, M.E. The outer membrane of Gram-negative bacteria inhibits antibacterial activity of brochocin-C. Appl. Environ. Microb. 1999, 65, 4329–4333. [Google Scholar]
- Duffy, C.F.; Power, R.F. Antioxidant and antimicrobial properties of some Chinese plant extracts. Int. J. Antimicrob. Agent. 2001, 17, 527–529. [Google Scholar] [CrossRef]
- Westh, H.; Zinn, C.S.; Rosdahl, V.T.; Sarisa, S. An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aureus isolates from 15 hospitals in 14 countries. Microb. Drug Resis. 2004, 10, 169–176. [Google Scholar] [CrossRef]
- Hashim, N.M.; Rahmani, M.; Ee, G.C.L.; Sukari, M.A.; Yahayu, M.; Amin, M.A.M.; Ali, A.M.; Go, R. Antioxidant, antimicrobial and tyrosinase inhibitory activities of xanthones isolated from Artocarpus obtusus FM Jarrett. Molecules 2012, 17, 6071–6082. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are not available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Omar, H.; Hashim, N.M.; Zajmi, A.; Nordin, N.; Abdelwahab, S.I.; Azizan, A.H.S.; Hadi, A.H.A.; Ali, H.M. Aporphine Alkaloids from the Leaves of Phoebe grandis (Nees) Mer. (Lauraceae) and Their Cytotoxic and Antibacterial Activities. Molecules 2013, 18, 8994-9009. https://doi.org/10.3390/molecules18088994
Omar H, Hashim NM, Zajmi A, Nordin N, Abdelwahab SI, Azizan AHS, Hadi AHA, Ali HM. Aporphine Alkaloids from the Leaves of Phoebe grandis (Nees) Mer. (Lauraceae) and Their Cytotoxic and Antibacterial Activities. Molecules. 2013; 18(8):8994-9009. https://doi.org/10.3390/molecules18088994
Chicago/Turabian StyleOmar, Hanita, Najihah Mohd. Hashim, Asdren Zajmi, Noraziah Nordin, Siddiq Ibrahim Abdelwahab, Ainnul Hamidah Syahadah Azizan, A. Hamid A. Hadi, and Hapipah Mohd Ali. 2013. "Aporphine Alkaloids from the Leaves of Phoebe grandis (Nees) Mer. (Lauraceae) and Their Cytotoxic and Antibacterial Activities" Molecules 18, no. 8: 8994-9009. https://doi.org/10.3390/molecules18088994
APA StyleOmar, H., Hashim, N. M., Zajmi, A., Nordin, N., Abdelwahab, S. I., Azizan, A. H. S., Hadi, A. H. A., & Ali, H. M. (2013). Aporphine Alkaloids from the Leaves of Phoebe grandis (Nees) Mer. (Lauraceae) and Their Cytotoxic and Antibacterial Activities. Molecules, 18(8), 8994-9009. https://doi.org/10.3390/molecules18088994