Synthesis and Antimicrobial Activity of N-Substituted-β-amino Acid Derivatives Containing 2-Hydroxyphenyl, Benzo[b]phenoxazine and Quinoxaline Moieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Study
Compound | Conc. (%) | Inhibition Diameter of Microorganism Growth (mm) | ||||
---|---|---|---|---|---|---|
Bacteria | Fungi | |||||
E. coli | S. aureus | M. luteum | C. tenuis | A. niger | ||
7b | 0.5 | 0 | 0 | 13.0 (b/s) | 0 | 12.0 (f/s) |
0.1 | 0 | 0 | 0 | 0 | 0 | |
7c | 0.5 | 0 | 0 | 16.0 (b/s) | 0 | 10.0 (f/s) |
0.1 | 0 | 0 | 0 | 0 | 0 | |
9a | 0.5 | 0 | 22.4 | 15.0 | 12.0 (f/s) | 0 |
0.1 | 0 | 15.4 | 0 | 0 | 0 | |
9b | 0.5 | 0 | 24.4 | 19.4 | 0 | 0 |
0.1 | 0 | 14.4 | 10.0 (b/s) | 0 | 0 | |
9c | 0.5 | 8.0 | 23.4 | 23.0 | 20.0 (f/s) | 0 |
0.1 | 0 | 14.0 | 0 | 15.0 (f/s) | 0 | |
10a | 0.5 | 0 | 0 | 7.0 (b/s) | 0 | 0 |
0.1 | 0 | 0 | 0 | 0 | 0 | |
10b | 0.5 | 0 | 0 | 11.4 | 0 | 0 |
0.1 | 0 | 0 | 6.0 | 0 | 0 | |
10c | 0.5 | 0 | 23.7 | 20.7 | 0 | 0 |
0.1 | 0 | 18.7 | 10.0 (b/s) | 0 | 0 | |
11a | 0.5 | 0 | 0 | 0 | 10.0 (f/s) | 0 |
0.1 | 0 | 0 | 0 | 0 | 0 | |
11b | 0.5 | 8.0 (b/s) | 0 | 0 | 0 | 0 |
0.1 | 0 | 0 | 0 | 0 | 0 | |
12d | 0.5 | 0 | 8.0 | 0 | 0 | 0 |
0.1 | 0 | 7.0 (b/s) | 0 | 0 | 0 | |
12e | 0.5 | 0 | 7.7 | 0 | 0 | 0 |
0.1 | 0 | 0 | 0 | 0 | 0 | |
12f | 0.5 | 0 | 24.0 | 15.4 | 0 | 0 |
0.1 | 0 | 13.4 | 6.0 | 0 | 0 | |
12g | 0.5 | 0 | 11.7 | 13.0 | 0 | 24.4 |
0.1 | 0 | 7.7 | 10.0 | 0 | 20.0 | |
13 | 0.5 | 0 | 0 | 11.0 | 0 | 0 |
0.1 | 0 | 0 | 0 | 0 | 0 | |
C * | 0.1 | 14.0 | 15.0 | 18.0 | 19.0 | 20.0 |
Comp. | E. coli | S. aureus | M. luteum |
---|---|---|---|
MIC (µg/mL) | |||
5d | + | + | 500.0 |
5f | + | + | 500.0 |
6 | + | + | 500.0 |
7a | + | 500.0 | 250.0 |
7b | + | 250.0 | 500.0 |
7c | + | 500.0 | 250.0 |
9a | + | 62.5 | 62.5 |
9b | + | 31.2 | 62.5 |
9c | 500.0 | 31.2 | 62.5 |
10b | + | + | 62.5 |
10c | + | 31.2 | 31.2 |
11c | 500.0 | + | + |
12f | + | 31.2 | 62.5 |
12g | + | + | 31.2 |
13 | + | + | 15.6 |
C * | 31.2 | 3.9 | 7.8 |
Compound | C. tenuis | A. niger |
---|---|---|
MIC (µg/mL) | ||
6 | 125.0 | + |
7a | + | 125.0 |
9a | 15.6 | 250.0 |
9b | 31.2 | + |
9c | 31.2 | 125.0 |
10a | + | 250.0 |
11a | 250.0 | 62.5 |
11b | 500.0 | + |
11c | + | 125.0 |
12e | + | 125.0 |
12f | + | 62.5 |
12g | + | 3.9 |
C * | 7.8 | 15.6 |
3. Experimental Section
3.1. General Information
3.2. Chemistry
3.2.1. General Procedure for Synthesis of N'-Aryl-3-[(2-hydroxyphenyl)amino]butanehydrazides (5d–g)
3.2.2. General Procedure for Synthesis of 3-[(2-[{3-Chloroquinoxalin-2-yl}oxy]-5-substitutedphenyl)amino]butanoic Acids 7a–c
3.2.3. General Procedure for Synthesis of Ethyl-3-[(2-Hydroxy-5-substitutedphenyl)amino]but-2-enoates (8a–c)
3.2.4. General Procedure for Synthesis of 3-(2-Substituted-6,11-dioxo-6,11-dihydro-12H-benzo[b]phenoxazin-12-yl)butanoic Acids 9a–c
3.2.5. General Procedure for Synthesis of Ethyl 3-(2-substituted-6,11-dioxo-6,11-dihydro-12H-benzo[b]phenoxazin-12yl)butanoates 10a–c
3.2.6. General Procedure for the Synthesis of 11a–c, 12d and 13
3.2.7. General Procedure for Synthesis of N'-Substituted-3-(6,11-dioxo-6,11-dihydro-12H-benzo[b]phenoxazin-12-yl)butanehydrazides 12e–g
3.3. Biology
3.3.1. Diffusion Technique
3.3.2. Serial Dilution Technique
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rice, L.B. Unmet medical needs in antibacterial therapy. Biochem. Pharmacol. 2006, 71, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Patočka, J. β-Amino acids and their natural biologically active derivatives. 5. Derivatives of unusual alicyclic and heterocyclic β-amino acids. Mil. Med. Sci. Lett. 2011, 80, 2–11. [Google Scholar]
- Chemin, L.S.; Buisine, E.; Yardley, V.; Kohler, S.; Debreu, M.A.; Landry, V.; Sergheraert, C.; Croft, S.L.; Siegel, R.L.K.; Charvet, E.D. 2- and 3-Substituted 1,4-naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: Synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J. Med. Chem. 2001, 44, 548–565. [Google Scholar] [CrossRef] [PubMed]
- Uchimiya, M.; Stone, A.T. Reversible redox chemistry of quinones: Impact on biogeochemical cycles. Chemosphere 2009, 77, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sacau, E.; Díaz-Peñate, R.G.; Estévez-Braun, A.; Ravelo, A.G.; García-Castellano, J.M.; Pardo, L.; Campillo, M. Synthesis and pharmacophore modeling of naphthoquinone derivatives with cytotoxic activity in human promyelocytic leukemia HL-60 cell line. J. Med. Chem. 2007, 50, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Tandon, V.K.; Chhor, R.B.; Singh, R.V.; Rai, S.; Yadav, D.B. Design, synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antifungal and anticancer agents. Bioorg. Med. Chem. Lett. 2004, 14, 1079–1083. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Abe, H.; Yoshizaki, F. In vitro antifungal activity of naphthoquinone derivatives. Biol. Pharm. Bull. 2002, 25, 669–670. [Google Scholar] [CrossRef] [PubMed]
- Tandon, V.K.; Maurya, H.K.; Tripathi, A.; ShivaKesva, G.B.; Shukla, P.K.; Srivastava, A.; Panda, D. 2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo[b]phenothiazine-6,11-diones and related compounds: Synthesis and biological evaluation as potential antiproliferative and antifungal agents. Eur. J. Med. Chem. 2009, 44, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Voskienė, A.; Sapijanskaitė, B.; Mickevičius, V.; Kantminienė, K.; Stasevych, M.; Komarovska-Porokhnyavets, O.; Musyanovych, R.; Novikov, V. Synthesis, chemical properties and antimicrobial activity of 2- and 2,3-substituted[(tetrahydro-2,4-dioxopyrimidin-1(2H)-yl)-phenoxy]naphthalene-1,4-diones. Monatsh. Chem. 2011, 142, 529–537. [Google Scholar] [CrossRef]
- Voskienė, A.; Sapijanskaitė, B.; Mickevičius, V.; Jonuškienė, I.; Stasevych, M.; Komarovska-Porokhnyavets, O.; Musyanovych, R.; Novikov, V. Synthesis and microbial evaluation of new 2- and 2,3-diphenoxysubstituted naphthalene-1,4-diones with 5-oxypyrrolidine moieties. Molecules 2012, 17, 14434–14448. [Google Scholar] [CrossRef] [PubMed]
- Anusevičius, K.; Jonuškienė, I.; Mickevičius, V. Synthesis and antimicrobial activity of N-(4-chlorophenyl)-β-alanine derivatives with an azole moiety. Monatsh. Chem. 2013, 144, 1883–1891. [Google Scholar] [CrossRef]
- Ibis, C.; Tuyun, A.F.; Bahar, H.; Ayla, S.S.; Stasevych, M.V.; Musyanovych, R.Y.; Komarovska-Porokhnyavets, O.; Novikov, V. Synthesis of novel 1,4-naphthoquinone derivatives: Antibacterial and antifungal agents. Med. Chem. Res. 2013, 22, 2879–2888. [Google Scholar] [CrossRef]
- Jordão, A.K.; Novais, J.; Leal, B.; Escobar, A.C.; dos Santos, H.M., Jr.; Castro, H.C.; Ferreira, V.F. Synthesis using microwave irradiation and antibacterial evaluation of new N,O-acetals and N,S-acetals derived from 2-amino-1,4-naphthoquinones. Eur. J. Med. Chem. 2013, 63, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Tandon, V.K.; Yadav, D.B.; Singh, R.V.; Vaish, M.; Chaturvedi, A.K.; Shukla, P.K. Synthesis and biological evaluation of novel 1,4-naphthoquinone derivatives as antibacterial and antiviral agents. Bioorg. Med. Chem. Lett. 2005, 15, 3463–3466. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, D.; Chettiar, S.N.; Etter, J.P.; Mok, M.; Li, P.-K. Anticancer activity and SAR studies of substituted 1,4-naphthoquinones. Bioorg. Med. Chem. 2013, 21, 4662–4669. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.M.S.; Camara, C.S.; Barbosa, T.P.; Soares, A.Z.; Cunha, L.C.; Pinto, A.C.; Vargas, M.D. Molluscicidal activity of synthetic lapachol amino and hydrogenated derivatives. Bioorg. Med. Chem. 2009, 13, 193–196. [Google Scholar] [CrossRef]
- Lee, K.; Cho, S.H.; Lee, J.H.; Goo, J.; Lee, S.Y.; Boovanahalli, S.K.; Yeo, S.K.; Lee, S.J.; Kim, Y.K.; Kim, D.H.; et al. Synthesis of a novel series of 2-alkylthio substituted naphthoquinones as potent acyl-CoA: Cholesterol acyltransferase (ACAT) inhibitors. Eur. J. Med. Chem. 2013, 62, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Ismail, M.M.F.; El-Gaby, M.S.A.; Zahran, M.A.; Ammar, Y.A. Synthesis and antimicrobial activities of some novel quinoxalinone derivatives. Molecules 2000, 5, 864–873. [Google Scholar] [CrossRef]
- Badran, M.M.; Moneer, A.A.; Refaat, H.M.; El-Malah, A.A. Synthesis and antimicrobial activity of novel quinoxaline derivatives. J. Chin. Chem. Soc. 2007, 2, 469–478. [Google Scholar]
- González, M.; Cerecetto, H. Quinoxaline derivatives: A patent review (2006-present). Exp. Opin. Ther. Pat. 2012, 22, 1289–1302. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, A.; Chawla, G. Synthesis, antiinflammatory and antimicrobial activities of new hydrazone and quinoxaline derivatives. Int. J. ChemTech Res. 2009, 1, 1177–1181. [Google Scholar]
- Patidar, A.K.; Jeyakandan, M.; Mobiya, A.K.; Selvam, G. Exploring potential of quinoxaline moiety. Int. J. PharmTech Res. 2011, 3, 386–392. [Google Scholar]
- Wu, P.; Su, Y.; Liu, X.; Yan, J.; Ye, Y.; Zhang, L.; Xu, J.; Weng, S.; Li, Y.; Liu, T.; et al. Discovery of novel morpholino-quinoxalines as PI3Kα inhibitors by pharmacophore-based screening. Med. Chem. Commun. 2012, 3, 659–662. [Google Scholar] [CrossRef]
- Noolvi, M.N.; Patel, H.M.; Bhardwaj, V.; Chauhan, A. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent. Eur. J. Med. Chem. 2011, 46, 2327–2346. [Google Scholar] [CrossRef] [PubMed]
- Mielcke, T.R.; Mascarello, A.; Fillipi-Chiela, E.; Zanin, R.F.; Lenz, G.; Leal, P.C.; Chiaradia, L.D.; Yunes, R.A.; Nunes, R.J.; Battastini, A.M.; et al. Activity of novel quinoxaline-derived chalcones on in vitro glioma cell proliferation. Eur. J. Med. Chem. 2012, 48, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, C.A.M.; Barreiro, E. Medicinal chemistry of N-acylhydrazones: New lead-compounds of analgesic, antiinflammatory and antithrombotic drugs. J. Curr. Med. Chem. 2006, 13, 167–198. [Google Scholar] [CrossRef]
- Rollas, S.; Küçükgüzel, S.G. Biological activities of hydrazone derivatives. Molecules 2007, 12, 1910–1939. [Google Scholar] [CrossRef] [PubMed]
- Zulkepli, N.A.; Rou, K.V.K.; Sulaiman, W.N.H.W.; Salhin, A.; Saad, B.; Seeni, A. A synthetic hydrazone derivative acts as an apoptotic inducer with chemopreventive activity on a tongue cancer cell line. Asian Pac. J. Cancer Prev. 2011, 12, 259–263. [Google Scholar] [PubMed]
- Wardakhan, W.W.; El-Sayed, N.N.R.; Mohareb, M. Synthesis and anti-tumor evaluation of novel hydrazide and hydrazide-hydrazone derivatives. Acta Pharm. 2013, 63, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Mickevičius, V.; Voskienė, A.; Jonuškienė, I.; Kolosej, R.; Šiugždaitė, J.; Venskutonis, P.R.; Kazernavičiūtė, R.; Brazienė, Z.; Jakienė, E. Synthesis and biological activity of 3-[phenyl(1,3-thiazol-2-yl)-amino]propanoic acids and their derivatives. Molecules 2013, 18, 15000–15018. [Google Scholar] [CrossRef] [PubMed]
- Tumosienė, I.; Jakienė, E.; Kantminienė, K.; Rutkauskas, K.; Beresnevičius, Z.J. Synthesis and plant growth regulating activity of halo derivatives of 3,3'-(arylimino)dipropanoic acids. CHEMIJA 2010, 21, 139–144. [Google Scholar]
- Brokaitė, K.; Mickevičius, V.; Mikulskienė, G. Synthesis and structural investigation of some 1,4-disubstituted 2-pyrrolidinones. ARKIVOC 2006, 2, 61–67. [Google Scholar]
- Anusevicius, K.; Mickevicius, V.; Stasevych, M.; Zvarych, V.; Komarovska-Porokhnyavets, O.; Novikov, V.; Tarasova, O.; Gloriozova, T.; Poroikov, V. Synthesis and chemoinformatics analysis of N-aryl-β-alanine derivatives. Res. Chem. Intermed. 2014. [CrossRef]
- Stankevičienė, R.; Jonuškienė, I.; Baranauskaitė, R.; Mickevičius, V. The influence of N-(2-hydroxyphenyl)-β-alanines and products of their interaction with 2,3-dichloro-1,4-naphthoquinone on barley (Hordeum vulgare L.) growth and flavonoids formation. Chem. Technol. 2010, 56, 19–24. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard—12th ed.; CLSI Document M02-A12; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, Approved Standard—2nd ed.; CLSI Document M38-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Mickevičius, V.; Baltrušis, R.; Beresnevičius, Z. Synthesis and cyclization of N-(2-hydroxyphenyl)-β-alanines and N-(2-benzylhydroxyphenyl)-β-alanines. Khim. Geterotsikl. Soedin. 1991, 4, 527–531. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mickevičienė, K.; Baranauskaitė, R.; Kantminienė, K.; Stasevych, M.; Komarovska-Porokhnyavets, O.; Novikov, V. Synthesis and Antimicrobial Activity of N-Substituted-β-amino Acid Derivatives Containing 2-Hydroxyphenyl, Benzo[b]phenoxazine and Quinoxaline Moieties. Molecules 2015, 20, 3170-3189. https://doi.org/10.3390/molecules20023170
Mickevičienė K, Baranauskaitė R, Kantminienė K, Stasevych M, Komarovska-Porokhnyavets O, Novikov V. Synthesis and Antimicrobial Activity of N-Substituted-β-amino Acid Derivatives Containing 2-Hydroxyphenyl, Benzo[b]phenoxazine and Quinoxaline Moieties. Molecules. 2015; 20(2):3170-3189. https://doi.org/10.3390/molecules20023170
Chicago/Turabian StyleMickevičienė, Kristina, Rūta Baranauskaitė, Kristina Kantminienė, Maryna Stasevych, Olena Komarovska-Porokhnyavets, and Volodymyr Novikov. 2015. "Synthesis and Antimicrobial Activity of N-Substituted-β-amino Acid Derivatives Containing 2-Hydroxyphenyl, Benzo[b]phenoxazine and Quinoxaline Moieties" Molecules 20, no. 2: 3170-3189. https://doi.org/10.3390/molecules20023170
APA StyleMickevičienė, K., Baranauskaitė, R., Kantminienė, K., Stasevych, M., Komarovska-Porokhnyavets, O., & Novikov, V. (2015). Synthesis and Antimicrobial Activity of N-Substituted-β-amino Acid Derivatives Containing 2-Hydroxyphenyl, Benzo[b]phenoxazine and Quinoxaline Moieties. Molecules, 20(2), 3170-3189. https://doi.org/10.3390/molecules20023170