Perinatal Asphyxia: A Review from a Metabolomics Perspective
Abstract
:1. Brief Introduction to Perinatal Asphyxia
2. Metabolomics
3. Animal Models
3.1. Rat and Mouse Model
Species and Population | Method | Biofluid/Tissue | Aim | Discriminant Metabolites/Indicators | Reference |
---|---|---|---|---|---|
Sprague-Dawley rat 10 | 1H-NMR 31P-NMR | brain slice extract | Hypothermic therapy validation | Increase in hypothermia: ATP, ADP, PCr, N-acetylaspartate, glutamate, taurine Decrease in hypothermia: acetate, adenine, alanine, choline, isoleucine, lactate, leucine, tyrosine, valine, inosine, arginine | Liu et al., 2011 [18] |
Sprague-Dawley rat 10 | 1H-NMR 31P-NMR 13C-NMR | brain slice extract | Hypothermic therapy validation | Significant for clustering: pyruvate carboxylase metabolites/pyruvate dehydrogenase metabolites ratio, acetate/glucose ratio Increase in hypothermia: taurine, PCr, glutamine Decrease in normothermia: glutamine | Liu et al., 2012 [19] Liu et al., 2013 [20] |
Mice 6 hypothermia, no reoxygenation 6 controls 6 hypothermia 6 normothermia 6 hypothermia, rewarming 6 long normothermia | 1H-NMR | whole brain extract | Hypothermic therapy validation | Increase in hypoxia: alanine, ADP, choline, lactate, succinate, valine, γ-aminobutyric acid, isoleucine Decrease in hypoxia: ATP, PCr, phosphocholine (PCho), malate, aspartate, taurine, N-acetylaspartate Increase in normothermia: fumarate, succinate, isoleucine, N-acetylaspartylglutamate, acetate, formate Decrease in normotermia: taurine, histidine, malate, ascorbate Significant for clustering: taurine, acetate, formate, fumarate, glutamine, N‑acetylaspartylglutamate, succinate. | Liu et al., 2013 [21] |
Macaca nemestrina20 umbilical cord clamping vs. controls | GC × GC-TOFMS | umbilical cord blood | Differences between pre- and post-asphyxia | Increase: succinic acid, lactate, glutamate, 9H-purine, malate, glycerol, glucose, arachidonic acid, leucine, creatinine, fructose, myo-inositol, butanoic acid, pantothenic acid | Beckstrom et al., 2011 [22] |
Macaca nemestrina 6 | GC × GC-TOFMS | blood | Metabolites change from foetus to neonate | Increase: glutamic acid, myo-inositol, α-ketoglutaric acid, fumaric acid, malate, succinyl CoA, propanoic acid, d-ribohexitol, erythro-pentonic acid, gluconic acid lacton, glucuronic acid, glucose-1-phosphate, maltose, isovaleric acid, tryptophan, butanoic acid, creatinine, threonic acid, xylose Decrease: lactate, proline, hippuric acid, benzoic acid | Beckstrom et al., 2012 [23] |
Piglets 27 | (FIA)-MS/MS LC-MS/MS | urine | Resuscitation response to different oxygen concentrations | Increase in hypoxemia: lactate, α-ketoglutarate, succinate, fumarate Increase with 100% oxygen resuscitation: lanosterol, 24-S-hydroxycholesterol, 25-hydroxycholesterol Increase in severe hypoxemia: long chain acyl carnitines Decrease in severe hypoxemia carnitine, decadienyl-l-carnitine | Solberg et al., 2010 [24] |
Piglets 38 | NMR | urine | Resuscitation response to different oxygen concentrations | Increase in 18% oxygen: carbohydrate metabolism Increase in 21% oxygen: cellular function maintenance. glucose, lactate, alanine, glyceric acid, pyruvic acid, malonic acid, glycine, succinate, 3-methyladenine, acetylglycine, glutaconic acid, 4-hydroxyphenylpyruvic acid, 3-hydroxymethylglutarate Increase in 40%–100% oxygen: free radical processes.creatinine, urea, citric acid, tartaric acid, ethanol, glucose, indoxyl sulphate | Fanos et al., 2014 [25] |
Yorkshire-Landrace piglets 17 hypoxia vs. 15 controls | NMR | urine | Recognition hypoxia vs. control | Increase: 1-methylnicotinamide, 2-oxoglutarate, asparagine, betaine, citrate, creatine, fumarate, lactate, N-acetylglycine, N-carbamoyl-β-alanine, valine Decrease: alanine, hippurate | Skappak et al., 2013 [9] |
3.2. Macaca Nemestrina Model
3.3. Piglet Model
3.4. Human Studies
Method | Biofluid | Aim | Population | Discriminant metabolites | Reference |
---|---|---|---|---|---|
GC-MS Organic acids | Urine | Discrimination of different outcomes | 13 good-outcome
vs. matched controls 11 poor-outcome vs. matched controls | Increase(good > poor): ethylmalonate, 3-hydroxy-3-methylglutarate, 2-hydroxyglutarate, 2-oxoglutarate Decrease (poor > good): glutarate, methylmalonate, 3-hydroxybutyrate, orotate | Chu et al., 2006 [28] |
LC-MS/MS | Umbilical cord blood | Discrimination between asphyxia and HIE occurrence | 40 Asphyxia vs. matched controls | lysoPC a C16:0, PC aa C34:1, PC aa C36:4, PC aa C38:4, PC aa C38:5, taurine a | Walsh et al., 2012 [29] |
31 HIE vs. matched controls | alanine, asparagine, isoleucine, methionine, phenylalanine , proline, tyrosine, valine, PC ae C38:4 | ||||
1H-NMR | Umbilical cord blood | Discrimination between asphyxia and HIE occurrence | 34 Asphyxia vs. matched controls | 3-hydroxybutyrate, acetone, alanine, betaine, choline, creatine, creatinine, glucose, glycerol, isoleucine, lactate, leucine, myo-inositol, O-phosphocholine, phenylalanine, pyruvate, succinate, valine | Reinke et al., 2013 [30] |
25 HIE vs. matched controls | alanine, choline, creatine, glycerol, isoleucine, lactate, leucine, methionine, myo-inositol, phenylalanine, pyruvate, succinate, valine | ||||
LC-TOF/MS | Urine | Differences between pre- and post-hypoxia | 6 adults | Increase: 1-methyladenosine, uric acid, xanthine, carnitine, propanoyl carnitine Decrease: 3-indoleacetic acid, glutamine, glutamic acid, succinic acid | Bih-Show 2014 [ 31] |
4. Conclusions
Acknowledgments
Author Contributions
List of Abbreviations
ACSF | Artificial CerebroSpinal Fluid |
NMR | Nuclear Magnetic Resonance |
PCA | Principal Component Analysis |
PLS-DA | Partial Least Square Discriminant Analysis |
PCr | PhosphoCreatine |
ELISA | Enzyme-Linked ImmunoSorbent Assay |
PCho | PhosphoCholine |
OGD | Oxygen–Glucose Deprivation |
GC×GC–TOFMS | Gas Chromatography coupled to Time-Of-Flight Mass Spectrometry |
HIE | Hypoxic Ischemic Encephalopathy |
OXPHOS | OXidative PHOSphorylation |
ROS | Reactive Oxygen Species |
FIA | Flow Injection Analysis |
LC | Liquid Chromatography |
MAP | Mean Arterial Pressure |
BCAA | Branched Chain Amino Acids |
Ala | Alanine |
GC | Gas Chromatography |
NICU | Neonatal Intensive Care Unit |
PND | PeriNatal Death |
BMI | Body Mass Index |
BSTFA | Bis(trimethylsilyl)trifluoroacetamid |
EEG | ElectroEncephaloGram |
CoA | Coenzyme A |
AUC | Area Under ROC Curve |
DSS | 2,2-Dimethyl-2-Sila-3,3,4,4,5,5-hexadeuteropentane sulfonic acid |
Conflicts of Interest
References
- Lawn, J.E.; Cousens, S.; Zupan, J. 4 million neonatal deaths: When? Where? Why? Lancet 2005, 365, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, A.; Kumar, P. Systemic effects of perinatal asphyxia. Indian J. Pediatr. 2014, 81, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Campbell, D.E.; Imaizumi, S.O.; Bernbaum, J.C. Health and developmental outcomes of infants requiring neonatal intensive care. In American Academy of Pediatrics Textbook of Pediatric Care; McInerny, T.K., Adam, H.M., Campbell, D.E., Kamat, D.M., Kelleher, K.J., Eds.; AAP: Elk Grove Village, IL, USA, 2008; pp. 852–866. [Google Scholar]
- Hansmann, G. Neonatal resuscitation on air: It is time to turn down the oxygen tanks? Lancet 2004, 364, 1293–1294. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, J.; Perlman, J.M.; Kattwinkel, J.; Atkins, D.L.; Chameides, L.; Goldsmith, J.P.; Guinsburg, R.; Hazinski, M.F.; Morley, C.; Richmond, S.; et al. On behalf of the Neonatal Resuscitation Chapter Collaborators. Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2010, 81, e260–e287. [Google Scholar] [CrossRef] [PubMed]
- Kattwinkel, J.; Perlman, J.M.; Aziz, K.; Colby, C.; Fairchild, K.; Gallagher, J.; Hazinski, M.F.; Halamek, L.P.; Kumar, P.; Little, G.; et al. Part 15: Neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010, 122 (Suppl. 3), S909–S919. [Google Scholar] [CrossRef] [PubMed]
- Saugstad, O.D. New guidelines for newborn resuscitation—A critical evaluation. Acta Paediatr. 2011, 100, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, H.B.; Sarnat, M.S. Neonatal encephalopathy following fetal distress: A clinical and electroencephalographic study. Arch. Neurol.-Chicago 1976, 33, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Skappak, C.; Regush, S.; Cheung, P.Y.; Adamko, D.J. Identifying hypoxia in a newborn piglet model using urinary NMR metabolomic profiling. PLoS ONE 2013, 8, e65035–. [Google Scholar] [CrossRef] [PubMed]
- Bollard, M.E.; Stanley, E.G.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed. 2005, 18, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 2011, 40, 387–426. [Google Scholar] [CrossRef] [PubMed]
- Atzori, L.; Antonucci, R.; Barberini, L.; Griffin, J.L.; Fanos, V. Metabolomics: A new tool for the neonatologist. J. Matern. Fetal. Neonatal. Med. 2009, 22, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Atzori, L.; Griffin, J.L.; Noto, A.; Fanos, V. Metabolomics: A new approach to drug delivery in perinatology. Curr. Med. Chem. 2012, 19, 4654–4661. [Google Scholar] [CrossRef] [PubMed]
- Atzori, L.; Mussap, M.; Noto, A.; Barberini, L.; Puddu, M.; Coni, E.; Murgia, F.; Lussu, M.; Fanos, V. Clinical metabolomics and urinary NGAL for the early prediction of chronic kidney disease in healthy adults born ELBW. J. Matern. Fetal. Neonatal. Med. 2011, 24, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Atzori, L.; Antonucci, R.; Barberini, L.; Locci, E.; Marincola, F.C.; Scano, P.; Cortesi, P.; Agostiniani, R.; Defraia, R.; Weljie, A.; et al. 1H-NMR-based metabolomic analysis of urine from preterm and term neonates. Front. Biosci. 2011, 3, 1005–1012. [Google Scholar]
- Fanos, V.; Locci, E.; Noto, A.; Lazzarotto, T.; Manzoni, P.; Atzori, L.; Lanari, M. Urinary metabolomics in newborns infected by human cytomegalovirus: A preliminary investigation. Early Hum. Dev. 2013, 89, S58–S61. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Litt, L.; Segal, M.R.; Kelly, M.J.; Yoshihara, H.A.; Jame, T.L. Outcome-related metabolomic patterns from 1H/31P NMR after mild hypothermia treatments of oxygen–glucose deprivation in a neonatal brain slice model of asphyxia. J. Cereb. Blood Flow Metab. 2011, 31, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Litt, L.; Pelton, J.G.; Segal, M.R.; Kelly, M.J.; Kim, M.; James, T.L. 1H/13C-NMR metabolomics in a neonatal rat brain slice model of early and late mild hypothermia treatments of asphyxia. FASEB J. 2012, 26, 1151–16. [Google Scholar] [CrossRef]
- Liu, J.; Segal, M.R.; Kelly, M.J.; Pelton, J.G.; Kim, M.; James, T.L.; Litt, L. 13C-NMR metabolomic evaluation of immediate and delayed mild hypothermia in cerebrocortical slices after oxygen-glucose deprivation. Anesthesiology 2013, 119, 1120–1136. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sheldon, R.A.; Segal, M.R.; Kelly, M.J.; Pelton, J.G.; Ferriero, D.M.; James, T.L.; Litt, L. 1H nuclear magnetic resonance brain metabolomics in neonatal mice after hypoxia-ischemia distinguished normothermic recovery from mild hypothermia recoveries. Pediatr. Res. 2013, 74, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Beckstrom, A.C.; Humston, E.M.; Snyder, L.R.; Synovec, R.E.; Juul, S.E. Application of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method to identify potential biomarkers of perinatal asphyxia in a non-human primate model. J. Chromatogr. A 2011, 1218, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Beckstrom, A.C.; Tanya, P.; Humston, E.M.; Snyder, L.R.; Synovec, R.E.; Juul, S.E. The perinatal transition of the circulating metabolome in a nonhuman primate. Pediatr. Res. 2012, 71, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Solberg, R.; Enot, D.; Deigne, H.-P.; Koal, T.; Scholl-Bürgi, S.; Saugstad, O.D.; Keller, M. Metabolomic analyses of plasma reveals new insights into asphyxia and resuscitation in pigs. PLoS ONE 2010, 5, e9606–. [Google Scholar] [CrossRef] [PubMed]
- Fanos, V.; Noto, A.; Xanthos, T.; Lussu, M.; Murgia, F.; Barberini, L.; Finco, G.; d’Aloja, E.; Papalois, A.; Iacovidou, N.; et al. Metabolomics network characterization of resuscitation after normocapnic hypoxia in a newborn piglet model supports the hypothesis that room air is better. BioMed Res. Int. 2014, 2014, 731620. [Google Scholar] [CrossRef] [PubMed]
- Saugstad, O.D.; Speer, C.P.; Halliday, H.L. Oxygen saturation in immature babies: Revisited with updated recommendations. Neonatology 2011, 100, 217–218. [Google Scholar] [CrossRef] [PubMed]
- Vento, M.; Sastre, J.; Asensi, M.A.; Vina, J. Room-air resuscitation causes less damage to heart and kidney than 100%. Oxygen. Am. J. Respir. Crit. Care 2005, 172, 1393–1398. [Google Scholar] [CrossRef]
- Chu, C.Y.; Xiao, X.; Zhou, X.G.; Lau, T.K.; Rogers, M.S.; Fok, T.F.; Law, L.K.; Pang, C.P.; Wang, C.C. Metabolomic and bioinformatic analyses in asphyxiated neonates. Clin. Biochem. 2006, 39, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B.H.; Broadhurst, D.I.; Mandal, R.; Wishart, D.S.; Boylan, G.B.; Kenny, L.C.; Murray, D.M. The metabolomic profile of umbilical cord blood in neonatal hypoxic ischaemic encephalopathy. PLoS ONE 2012, 7, e50520–. [Google Scholar] [CrossRef] [PubMed]
- Reinke, S.N.; Walsh, B.H.; Boylan, G.B.; Sykes, B.D.; Kenny, L.C.; Murray, D.M.; Broadhurst, D.I. 1H-NMR derived metabolomic profile of neonatal asphyxia in umbilical cord serum: Implications for hypoxic ischemic encephalopathy. J. Proteom. Res. 2013, 12, 4230–4239. [Google Scholar] [CrossRef]
- Lou, B.-S.; Wu, P.-S.; Liu, Y.; Wang, J.-S. Effects of acute systematic hypoxia on human urinary metabolites using LC-MS-based metabolomics. High Alt. Med. Biol. 2014, 15, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Denihan, N.M.; Boylan, G.B.; Murray, D.M. Metabolomic profiling in perinatal asphyxia: A promising new field. BioMed Res. Int. 2015, 2015, 254076. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattuoni, C.; Palmas, F.; Noto, A.; Fanos, V.; Barberini, L. Perinatal Asphyxia: A Review from a Metabolomics Perspective. Molecules 2015, 20, 7000-7016. https://doi.org/10.3390/molecules20047000
Fattuoni C, Palmas F, Noto A, Fanos V, Barberini L. Perinatal Asphyxia: A Review from a Metabolomics Perspective. Molecules. 2015; 20(4):7000-7016. https://doi.org/10.3390/molecules20047000
Chicago/Turabian StyleFattuoni, Claudia, Francesco Palmas, Antonio Noto, Vassilios Fanos, and Luigi Barberini. 2015. "Perinatal Asphyxia: A Review from a Metabolomics Perspective" Molecules 20, no. 4: 7000-7016. https://doi.org/10.3390/molecules20047000
APA StyleFattuoni, C., Palmas, F., Noto, A., Fanos, V., & Barberini, L. (2015). Perinatal Asphyxia: A Review from a Metabolomics Perspective. Molecules, 20(4), 7000-7016. https://doi.org/10.3390/molecules20047000