Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality
Abstract
:1. Introduction
2. Results and Discussion
2.1. Metabolites
2.1.1. Antioxidants
2.1.2. Amino Acids
Cultivars | GSH (μmol·g−1 FW) | GSH Redox Status (%) | ASC (μmol·g−1 FW) | ASC Redox Status (%) | Alfa Toc. (ng/100 g FW) | Beta Toc. (ng/100 g FW) | Gamma Toc. (ng/100 g FW) | Delta Toc. (ng/100 g FW) |
---|---|---|---|---|---|---|---|---|
Nabot Saif | 0.025 ± 0.003 | 77.366 ± 5.532 | 0.254 ± 0.023 | 99.259 ± 2.637 | 0.086 ± 0.009 | 0.023 ± 0.002 | 0.016 ± 0.001 | 0 ± 0.0 |
Rashodia | 0.247 ± 0.026 | 43.523 ± 5.111 | 0.541 ± 0.049 | 99.643 ± 2.646 | 0.124 ± 0.013 | 0.013 ± 0.002 | 0.021 ± 0.002 | 0 ± 0.0 |
Ajwa Al Madinah | 0.062 ± 0.007 | 86.049 ± 5.794 | 0.051 ± 0.005 | 85.244 ± 3.061 | 0.212 ± 0.022 | 0.022 ± 0.002 | 0.022 ± 0.003 | 0.003 ± 0.00 |
Khodry | 0.011 ± 0.001 | 39.373 ± 4.728 | 0.387 ± 0.035 | 98.891 ± 3.551 | 0.197 ± 0.02 | 0.033 ± 0.002 | 0.044 ± 0.004 | 0.002 ± 0.00 |
Khlas Al Ahsa | 0.177 ± 0.018 | 96.507 ± 22.175 | 0.206 ± 0.019 | 100.791 ± 3.619 | 0.14 ± 0.014 | 0.026 ± 0.002 | 0.016 ± 0.001 | 0.010 ± 0.001 |
Sokary | 0.059 ± 0.006 | 21.736 ± 0.580 | 0.526 ± 0.047 | 87.570 ± 2.326 | 0.218 ± 0.022 | 0.019 ± 0.0021 | 0.043 ± 0.005 | 0.011 ± 0.001 |
Saffawy | 0.039 ± 0.005 | 48.128 ± 5.652 | 0.423 ± 0.038 | 98.662 ± 2.621 | 0.179 ± 0.0188 | 0.023 ± 0.0024 | 0.038 ± 0.0 | 0.04 ± 0.002 |
Khlas Al Kharj | 0.054 ± 0.006 | 94.605 ± 11.110 | 0.346 ± 0.031 | 100.261 ± 2.717 | 0.113 ± 0.0177 | 0.027 ± 0.0024 | 0.018 ± 0.001 | 0.003 ± 0.0 |
Mabroom | 0027 ± 0.003 | 38.279 ± 1.021 | 0.296 ± 0.027 | 99.577 ± 14.785 | 0.197 ± 0.02 | 0.014 ± 0.0018 | 0.023 ± 0.002 | 0.008 ± 0.00 |
Khla Al Qassim | 0.039 ± 0.004 | 72.546 ± 1.935 | 0.421 ± 0.038 | 99.408 ± 14.760 | 0.072 ± 0.007 | 0.025 ± 0.001 | 0.0157 ± 0.003 | 0.001 ± 0.00 |
Nabtit AIi | 0.295 ± 0.031 | 47.527 ± 1.267 | 0.516 ± 0.049 | 86.407 ± 6.863 | 0.158 ± 0.0165 | 0.020 ± 0.0012 | 0.038 ± 0.004 | 0 ± 0.00 |
Khals El Shiokh | 0.065 ± 0.007 | 82.268 ± 2.194 | 0.376 ± 0.034 | 100.600 ± 15.382 | 0.163 ± 0.017 | 0.019 ± 0.0021 | 0.016 ± 0.002 | 0.005 ± 0.00 |
p value | 0 | 0 | 0 | 0.093 | 0 | 0.154 | 0 | 0 |
Cultivars | Proline | Glycine | Lysine | Histidine | Alanine | Arginie | Ornithine | Glutamine | Asparagine | Isoleucine |
---|---|---|---|---|---|---|---|---|---|---|
Nabot Saif | 76 ± 11 | 78 ± 8.8 | 3.8 ± 0.6 | 1.16 ± 0.18 | 19.2 ± 2.1 | 0.43 ± 0.0 | 0.03 ± 0.00 | 0.41 ± 0.04 | 0.72 ± 0.07 | 0.10 ± 0.01 |
Rashodia | 85 ± 13 | 39 ± 4.5 | 2.9 ± 0.4 | 0.84 ± 0.13 | 11.3 ± 1.2 | 2.7 ± 0.3 | 0.13 ± 0.01 | 1.61 ± 0.16 | 1.101 ± 0.1 | 0.15 ± 0.01 |
Ajwa Al Madinah | 16 ± 2.6 | 65 ± 7.4 | 7.3 ± 1.1 | 0.99 ± 0.1 | 9.2 ± 1.0 | 1.42 ± 0.1 | 0.15 ± 0.01 | 1.02 ± 0.1 | 0.26 ± 0.03 | 0.15 ± 0.01 |
Khodry | 11 ± 1.7 | 57 ± 6.5 | 3.2 ± 0.5 | 0.98 ± 0.1 | 8.07 ± 0.9 | 0.31 ± 0.0 | 0.042 ± 0.0 | 0.14 ± 0.01 | 1.07 ± 0.1 | 0.09 ± 0.0 |
Khlas Al Ahsa | 14 ± 2.2 | 75 ± 8.5 | 4.4 ± 0.6 | 1.47 ± 0.2 | 12.8 ± 1.4 | 0.24 ± 0.0 | 0.13 ± 0.02 | 0.56 ± 0.05 | 0.518 ± 0.2 | 0.15 ± 0.05 |
Sokary | 12 ± 19 | 13 ± 1.5 | 2.2 ± 0.3 | 1.40 ± 0.2 | 5.8 ± 0.64 | 1.11 ± 0.1 | 0.1 ± 0.01 | 1.20 ± 0.1 | 4.4 ± 0.4 | 1.79 ± 0.17 |
Saffawy | 28 ± 4.3 | 49 ± 5.5 | 3.2 ± 0.5 | 0.97 ± 0.1 | 11.5 ± 1.2 | 0.30 ± 0.0 | 0.038 ± 0.0 | 0.30 ± 0.03 | 1.2 ± 0.1 | 0.08 ± 0.00 |
Khlas Al Kharj | 8 ± 1.3 | 49 ± 5.6 | 3.4 ± 0.5 | 1.20 ± 0.2 | 7.6 ± 0.8 | 0.43 ± 0.0 | 0.1 ± 0.02 | 0.30 ± 0.03 | 0.07 ± 0.0 | 0.13 ± 0.01 |
Mabroom | 10 ± 1.5 | 57 ± 6.5 | 4.52 ± 0. | 0.07 ± 0.01 | 13.6 ± 1.5 | 0.21 ± 0.0 | 0.021 ± 0.0 | 0.43 ± 0.01 | 0.93 ± 0.08 | 0.081 ± 0.0 |
Khla Al Qassim | 9.5 ± 1.5 | 47 ± 5.3 | 1.9 ± 0.3 | 0.91 ± 0.14 | 16 ± 1.8 | 0.99 ± 0.1 | 0.06 ± 0.01 | 0.25 ± 0.02 | 0.09 ± 0.0 | 0.11 ± 0.01 |
Nabtit AIi | 126 ± 6 | 17 ± 1.9 | 1.0 ± 0.0 | 0.97 ± 0.15 | 7.07 ± 0.7 | 2.65 ± 0.2 | 0.13 ± 0.0 | 3.5 ± 0.34 | 1.4 ± 0.15 | 1.39 ± 0.14 |
Khals El Shiokh | 10.3 ± 1.6 | 38 ± 4.3 | 3.0 ± 0.4 | 1.09 ± 0.17 | 13.2 ± 1.5 | 0.50 ± 0.0 | 0.09 ± 0.01 | 0.48 ± 005 | 0.97 ± 0.1 | 0.15 ± 0.01 |
p value | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cultivars | Leucine | Methionine | Threonine | Valine | Serine | Phenylalanine | Glutamic acid | Cysteine | Tyrosine | |
Nabot Saif | 0.014 ± 0.0 | 0.012 ± 0.00 | 0.074 ± 0.0 | 1.157 ± 0.2 | 0.13 ± 0.0 | 0.38 ± 0.05 | 1.0 ± 0.18 | 0.01 ± 0.0 | 0.462 ± 0.05 | |
Rashodia | 0.018 ± 0.0 | 0.016 ± 0.0 | 0.112 ± 0.01 | 0.93 ± 0.17 | 0.19 ± 0.0 | 0.19 ± 0.03 | 0.7 ± 0.13 | 0.02 ± 0.0 | 0.39 ± 0.04 | |
Ajwa Al Madinah | 0.02 ± 0.00 | 0.021 ± 0.00 | 0.027 ± 0.0 | 3.13 ± 0.6 | 0.19 ± 0.0 | 0.99 ± 0.14 | 0.8 ± 0.15 | 0.001 ± 0.0 | 0.80 ± 0.08 | |
Khodry | 0.1 ± 0.01 | 0.09 ± 0.01 | 0.110 ± 0.01 | 1.188 ± 0.2 | 0.11 ± 0.0 | 0.36 ± 0.05 | 0.8 ± 0.15 | 0.009 ± 0.0 | 0.35 ± 0.00 | |
Khlas Al Ahsa | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.053 ± 0.00 | 0.80 ± 0.15 | 0.19 ± 0.0 | 0.70 ± 0.1 | 1.3 ± 0.22 | 0.001 ± 0.0 | 0.94 ± 0.1 | |
Sokary | 0.19 ± 0.02 | 0.173 ± 0.02 | 0.45 ± 0.05 | 0.493 ± 0.09 | 2.20 ± 0.2 | 0.43 ± 0.07 | 1.2 ± 0.2 | 0.16 ± 0.01 | 0.74 ± 0.08 | |
Saffawy | 0.07 ± 0.00 | 0.067 ± 0.0 | 0.12 ± 0.01 | 0.71 ± 0.13 | 0.11 ± 0.0 | 0.11 ± 0.02 | 0.8 ± 0.1 | 0.007 ± 0.0 | 0.06 ± 0.0 | |
Khlas Al Kharj | 0.25 ± 0.02 | 0.22 ± 0.02 | 0.0074 ± 0.0 | 0.87 ± 0.17 | 0.17 ± 0.0 | 0.32 ± 0.05 | 1.0 ± 0.1 | 0.007 ± 0.0 | 0.63+0.07 | |
Mabroom | 0.07 ± 0.00 | 0.064 ± 0.00 | 0.095 ± 0.01 | 0.81 ± 0.15 | 0.10 ± 0.0 | 0.44 ± 0.07 | 0.06 ± 0.0 | 0.007 ± 0.0 | 0.42 ± 0.05 | |
Khla Al Qassim | 0.082 ± 0.0 | 0.072 ± 0.00 | 0.009 ± 0.00 | 0.47 ± 0.08 | 0.13 ± 0.0 | 0.18 ± 0.03 | 0.79 ± 0.1 | 0.15 ± 0.02 | 0.43 ± 0.05 | |
Nabtit AIi | 0.084 ± 0.0 | 0.074 ± 0.00 | 0.15 ± 0.01 | 0.69 ± 0.13 | 1.72 ± 0.1 | 0.12 ± 0.02 | 0.85 ± 0.1 | 0.11 ± 0.01 | 0.48 ± 0.05 | |
Khals El Shiokh | 0.082 ± 0.0 | 0.071 ± 0.01 | 0.09 ± 0.01 | 0.65 ± 0.1 | 0.18 ± 0.0 | 0.27 ± 0.04 | 0.95 ± 0.17 | 0.11 ± 0.01 | 0.613 ± 0.07 | |
p value | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2.1.3. Sugars
2.1.4. Organic Acids
Cultivars | Glucose | Fructose | Sucrose | Oxalic | Malic | Succinic | Citric | Isobutyric | Formic |
---|---|---|---|---|---|---|---|---|---|
Nabot Saif | 50.1 ± 0.0 | 58.8 ± 1.8 | 26.55 ± 0.0 | 1.93 ± 0.11 | 9.66 ± 0.58 | 1.59 ± 0.08 | 2.70 ± 0.14 | 2.34 ± 0.12 | 0.29 ± 0.02 |
Rashodia | 42.5 ± 0.6 | 53.0 ± 0.0 | 112.5 ± 0.0 | 1.64 ± 0.1 | 7.03 ± 0.79 | 5.69 ± 0.7 | 2.86 ± 0.38 | 2.88 ± 0.15 | 0.37 ± 0.02 |
Ajwa Al Madinah | 35.4 ± 0.5 | 39.4 ± 2.5 | 13.45 ± 0.2 | 1.46 ± 0.09 | 10.12 ± 1.18 | 0.76 ± 0.08 | 2.01 ± 0.23 | 3.12 ± 0.19 | 0.35 ± 0.02 |
Khodry | 58.1 ± 0.0 | 69.16 ± 2.1 | 19.42 ± 0.0 | 2.24 ± 0.13 | 11.41 ± 0.69 | 1.19 ± 0.07 | 2.31 ± 0.22 | 2.09 ± 0.11 | 0.32 ± 0.02 |
Khlas Al Ahsa | 58.2 ± 3.6 | 74.1 ± 4.7 | 17.9 ± 0.27 | 2.73 ± 0.17 | 13.98 ± 0.85 | 1.23 ± 0.08 | 2.33 ± 0.14 | 2.01 ± 0.12 | 0.17 ± 0.01 |
Sokary | 1.5 ± 1.8 | 59.5 ± 3.7 | 138.5 ± 5.0 | 2.18 ± 0.13 | 10.43 ± 0.55 | 9.26 ± 0.56 | 4.65 ± 0.25 | 2.94 ± 0.18 | 0.29 ± 0.02 |
Saffawy | 47.3 ± 0.07 | 54.26 ± 2.4 | 28.7 ± 1.04 | 1.82 ± 0.1 | 9.10 ± 0.47 | 1.86 ± 0.11 | 0.95 ± 0.05 | 3.23 ± 0.18 | 0.21 ± 0.01 |
Khlas Al Kharj | 95.40 ± 0.0 | 112.7 ± 3.4 | 31.9 ± 0.0 | 1.90 ± 0.1 | 17.68 ± 1.08 | 1.82 ± 0.09 | 0.93 ± 0.05 | 3.30 ± 0.17 | 0.27 ± 0.02 |
Mabroom | 46.30 ± 0.70 | 62.0 ± .00 | 20.1 ± 0.0 | 1.85 ± 0.1 | 8.68 ± 0.88 | 1.07 ± 0.13 | 2.14 ± 0.26 | 2.62 ± 0.31 | 0.17 ± 0.02 |
Khla Al Qassim | 79.6 ± 0.0 | 101.2 ± 0.0 | 26.1 ± 0.0 | 1.57 ± 0.08 | 13.20 ± 1.76 | 1.40 ± 0.16 | 2.41 ± 0.27 | 2.07 ± 0.23 | 0.20 ± 0.03 |
Nabtit AIi | 21.08 ± 0.3 | 23.20 ± 1.47 | 150.5 ± 2.2 | 0.83 ± 0.04 | 10.01 ± 1.1 | 8.66 ± 0.82 | 4.43 ± 0.42 | 2.16 ± 0.22 | 0.23 ± 0.03 |
Khals El Shiokh | 58.2 ± 0.0 | 71.29 ± 2.2 | 9.23 ± 0.0 | 2.49 ± 0.15 | 12.94 ± 0.78 | 0.62 ± 0.04 | 1.98 ± 0.12 | 1.70 ± 0.1 | 0.19 ± 0.01 |
p value | 0.01 | 0 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 |
2.1.5. Phenolics and Flavonoids
2.1.6. Elemental Profiling (Macro- and Micronutrients)
Cultivars | Caffeic acid | Ferulic acid | Protocatechuic acid | Catechin | Gallic acid | p-Coumaric acid | Resorcinol | Chlorogenic acid | Syringic acid | Total phenolic |
---|---|---|---|---|---|---|---|---|---|---|
Nabot Saif | 0.018 ± 0.004 | 1.94 ± 0.42 | 0.162 ± 0.028 | 0.574 ± 0.12 | 15.227 ± 3.3 | 3.275 ± 0.720 | 0.033 ± 0.007 | 0.2 ± 0.044 | 0.58 ± 0.6 | 22.00 ± 5.35 |
Rashodia | 0.013 ± 0.001 | 1.44 ± 0.09 | 0.115 ± 0.007 | 0.426 ± 0.02 | 11.312 ± 0.7 | 2.433 ± 0.154 | 0.025 ± 0.002 | 0.149 ± 0.009 | 0.66 ± 0.0 | 16.58 ± 1.05 |
Ajwa Al Madinah | 0.026 ± 0.001 | 2.52 ± 0.11 | 1.217 ± 0.057 | 0.526 ± 0.02 | 13.973 ± 0.6 | 3.087 ± 0.004 | 0.030 ± 0.002 | 0.184 ± 0.009 | 0.82 ± 0.0 | 22.11 ± 1.10 |
Khodry | 0.024 ± 0.005 | 2.56 ± 0.57 | 1.094 ± 0.243 | 0.473 ± 0.10 | 12.564 ± 2.7 | 2.702 ± 0.601 | 0.028 ± 0.006 | 0.165 ± 0.037 | 0.63 ± 0.2 | 20.13 ± 4.21 |
Khlas Al Ahsa | 0.018 ± 0.004 | 1.94 ± 0.42 | 0.527 ± 0.588 | 0.353 ± 0.07 | 9.370 ± 2.05 | 2.015 ± 0.443 | 0.021 ± 0.005 | 0.123 ± 0.027 | 0.55 ± 0.1 | 14.92 ± 3.75 |
Sokary | 0.019 ± 0.003 | 2.01 ± 0.34 | 0.893 ± 0.119 | 0.386 ± 0.05 | 10.24 ± 1.36 | 2.309 ± 0.324 | 0.022 ± 0.004 | 0.135 ± 0.018 | 0.60 ± 0.0 | 17.10 ± 2.84 |
Saffawy | 0.026 ± 0.001 | 2.52 ± 0.11 | 1.217 ± 0.057 | 0.526 ± 0.02 | 13.973 ± 0.6 | 3.005 ± 0.142 | 0.030 ± 0.002 | 0.184 ± 0.009 | 0.82 ± 0.0 | 21.99 ± 1.27 |
Khlas Al Kharj | 0.024 ± 0.005 | 2.56 ± 0.57 | 1.094 ± 0.243 | 0.333 ± 0.09 | 8.829 ± 2.48 | 1.302 ± 0.290 | 0.013 ± 0.003 | 0.080 ± 0.018 | 0.74 ± 0.1 | 14.97 ± 1.28 |
Mabroom | 0.018 ± 0.004 | 1.94 ± 0.42 | 0.527 ± 0.588 | 0.353 ± 0.07 | 9.370 ± 2.05 | 0.971 ± 0.213 | 0.010 ± 0.002 | 0.059 ± 0.013 | 0.55 ± 0.1 | 13.80 ± 3.50 |
Khla Al Qassim | 0.013 ± 0.001 | 1.44 ± 0.09 | 0.606 ± 0.038 | 0.262 ± 0.01 | 6.9610.441 | 0.721 ± 0.046 | 0.008 ± 0.001 | 0.044 ± 0.003 | 0.41 ± 0.0 | 10.47 ± 0.63 |
Nabtit Ali | 0.019 ± 0.003 | 2.01 ± 0.34 | 0.893 ± 0.119 | 0.386 ± 0.05 | 10.246 ± 1.3 | 1.062 ± 0.141 | 0.011 ± 0.001 | 0.065 ± 0.009 | 0.60 ± 0.0 | 15.80 ± 2.69 |
Khals El Shiokh | 0.026 ± 0.001 | 2.52 ± 0.11 | 1.217 ± 0.057 | 0.526 ± 0.02 | 13.973 ± 0.6 | 1.448 ± 0.068 | 0.015 ± 0.001 | 0.089 ± 0.004 | 0.82 ± 0.0 | 20.37 ± 1.17 |
p value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.049 | 0.00 |
Cultivars | Quercetin | Luteolin | Apigenin | Isoquercetrin | Rutin | Total Flavonoid |
---|---|---|---|---|---|---|
Nabot Saif | 0.170 ± 0.020 | 0.045 ± 0.010 | 0.291 ± 0.064 | 0.726 ± 0.160 | 0.943 ± 0.207 | 2.175 ± 0.461 |
Rashodia | 1.001 ± 0.063 | 0.033 ± 0.002 | 0.216 ± 0.014 | 0.540 ± 0.034 | 0.701 ± 0.044 | 2.491 ± 0.158 |
Ajwa Al Madinah | 1.219 ± 0.071 | 0.041 ± 0.002 | 0.263 ± 0.015 | 0.411 ± 0.001 | 0.853 ± 0.049 | 2.787 ± 0.138 |
Khodry | 1.112 ± 0.247 | 0.026 ± 0.007 | 0.240 ± 0.053 | 0.360 ± 0.080 | 0.547 ± 0.154 | 2.284 ± 0.219 |
Khlas Al Ahsa | 0.536 ± 0.597 | 0.028 ± 0.006 | 0.179 ± 0.039 | 0.268 ± 0.059 | 0.580 ± 0.128 | 1.591 ± 0.366 |
Sokary | 0.838 ± 0.025 | 0.028 ± 0.001 | 0.181 ± 0.005 | 0.271 ± 0.008 | 0.665 ± 0.093 | 1.983 ± 0.104 |
Saffawy | 1.270 ± 0.002 | 0.041 ± 0.002 | 0.263 ± 0.015 | 0.394 ± 0.023 | 0.853 ± 0.049 | 2.821 ± 0.088 |
Khlas Al Kharj | 1.112 ± 0.247 | 0.026 ± 0.007 | 0.081 ± 0.023 | 0.173 ± 0.039 | 0.547 ± 0.154 | 1.939 ± 0.102 |
Mabroom | 0.536 ± 0.597 | 0.028 ± 0.006 | 0.086 ± 0.019 | 0.129 ± 0.028 | 0.580 ± 0.128 | 1.359 ± 0.778 |
Khla Al Qassim | 0.616 ± 0.039 | 0.020 ± 0.001 | 0.064 ± 0.004 | 0.096 ± 0.006 | 0.431 ± 0.027 | 1.228 ± 0.078 |
NabtitAIi | 0.950 ± 0.133 | 0.028 ± 0.001 | 0.087 ± 0.003 | 0.346 ± 0.049 | 0.665 ± 0.093 | 2.076 ± 0.272 |
Khals El Shiokh | 1.219 ± 0.071 | 0.041 ± 0.002 | 0.127 ± 0.007 | 0.443 ± 0.026 | 0.853 ± 0.049 | 2.683 ± 0.155 |
p value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Cultivars | K | Ca | Mg | P | Na | Cu | Fe | Mn | Cd | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Nabot Saif | 431.88 ± 27 | 0.480 ± 0.042 | 50.814 ± 3.09 | 68.603 ± 4.65 | 5.48 ± 0.609 | 0.66 ± 0.053 | 0.27 ± 0.022 | 0.245 ± 0.016 | 0.002 ± 0 | 0.940 ± 0.06 |
Rashodia | 376.39 ± 24 | 0.410 ± 0.036 | 43.436 ± 2.64 | 55.960 ± 3.79 | 4.39 ± 0.488 | 2.62 ± 0.212 | 1.09 ± 0.088 | 0.196 ± 0.013 | 0.006 ± 0 | 0.75 ± 0.05 |
Ajwa Al Madinah | 290.025 ± 4.6 | 0.339 ± 0.030 | 35.941 ± 2.18 | 53.823 ± 3.65 | 7.01 ± 0.782 | 0.37 ± 0.030 | 0.15 ± 0.013 | 0.313 ± 0.020 | 0.001 ± 0 | 1.200 ± 0.07 |
Khodry | 463.502 ± 6.9 | 0.564 ± 0.050 | 59.738 ± 3.63 | 80.547 ± 5.46 | 6.52 ± 0.725 | 0.49 ± 0.040 | 0.20 ± 0.017 | 0.291 ± 0.019 | 0.001 ± 0 | 1.117 ± 0.07 |
Khlas Al Ahsa | 515.911 ± 7.7 | 0.637 ± 0.056 | 67.530 ± 4.11 | 110.170 ± 7.4 | 9.06 ± 1.005 | 0.57 ± 0.046 | 0.23 ± 0.019 | 0.404 ± 0.026 | 0.001 ± 0 | 1.550 ± 0.10 |
Sokary | 436.75 ± 6.5 | 0.512 ± 0.045 | 54.297 ± 3.3 | 80.640 ± 5.46 | 6.30 ± 0.701 | 3.94 ± 0.319 | 1.64 ± 0.133 | 0.281 ± 0.018 | 0.009 ± 0 | 1.077 ± 0.07 |
Saffawy | 387.4 ± 5.8 | 0.467 ± 0.041 | 49.442 ± 3.01 | 67.377 ± 4.56 | 5.40 ± 0.601 | 0.77 ± 0.062 | 0.32 ± 0.026 | 0.241 ± 0.015 | 0.002 ± 0 | 0.923 ± 0.06 |
Khlas Al kharj | 796.72 ± 31.3 | 0.919 ± 0.081 | 97.365 ± 5.92 | 63.887 ± 4.33 | 9.37 ± 1.039 | 0.70 ± 0.057 | 0.29 ± 0.024 | 0.418 ± 0.027 | 0.002 ± 0 | 1.603 ± 0.10 |
Mabroom | 396.95 ± 15.6 | 0.479 ± 0.042 | 50.808 ± 3.09 | 69.453 ± 4.71 | 5.85 ± 0.65 | 0.53 ± 0.043 | 0.22 ± 0.018 | 0.261 ± 0.017 | 0.001 ± 0 | 1.000 ± 0.06 |
Khla Al Qassim | 665.36 ± 26.1 | 0.783 ± 0.069 | 82.930 ± 5.04 | 57.083 ± 3.87 | 8.9 ± 0.999 | 0.65 ± 0.053 | 0.27 ± 0.022 | 0.401 ± 0.026 | 0.002 ± 0 | 1.537 ± 0.1 |
Nabtit Ali | 180.755 ± 7.1 | 0.200 ± 0.018 | 21.141 ± 1.28 | 30.470 ± 2.06 | 6.58 ± 0.728 | 3.95 ± 0.319 | 1.64 ± 0.133 | 0293 ± 0.019 | 0009 ± 0 | 1.127 ± 0.07 |
Khals El Shiokh | 486.383 ± 19.1 | 0.581 ± 0.051 | 61.581 ± 3.74 | 103.13 ± 6.99 | 8.6 ± 0.953 | 0.29 ± 0.024 | 0.12 ± 0.010 | 0.383 ± 0.024 | 0.001 ± 0 | 1.470 ± 0.09 |
p value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.2. Principal Component Analysis (PCA) and Hierarchical Clustering (HCA)
2.3. Biological Activity
2.3.1. DPPH (1,1-Diphenyl-2-picrylhydrazyl) Free Radical Scavenging Activity
2.3.2. Anti-lipid Peroxidation Assay
2.4. Discussion
3. Experimental Section
3.1. Sample Collection and Extract Preparation
3.2. Biological Activity
3.2.1. DPPH Free Radical Scavenging Assay
3.2.2. Anti-Lipid Peroxidation Assay
3.3. Metabolic Profiling
3.3.1. Amino Acids
3.3.2. Sugars
3.3.3. Organic Acids
3.3.4. Phenolics
3.3.5. Ascorbate, Glutathione and Tocopherols
3.3.6. Macro-Minerals and Trace Elements
3.4. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chao, C.T.; Krueger, R.R. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. Hort. Sci. 2007, 42, 1046–1311. [Google Scholar]
- Awad, M.A. Increasing the rate of ripening of date palm fruit (Phoenix dactylifera L.) cv. Helali by preharvest and postharvest treatments. Postharvest Biol. Technol. 2007, 43, 121–127. [Google Scholar] [CrossRef]
- Fayadh, J.M.; Al-showiman, S.S. Chemical composition of date palm (Phoenix dactylifera L.). J. Chem. Soc. Pakistan 1990, 12, 84–103. [Google Scholar]
- Besbes, S.; Blecker, C.; Deroanne, C.; Drira, N.E.; Attia, H. Date seeds: Chemical composition and characteristic profiles of the lipid fraction. Food Chem. 2004, 84, 577–584. [Google Scholar] [CrossRef]
- Al-Shahib, W.; Marshall, R.J. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2003, 54, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Vayalil, P.K. Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae). J. Agric. Food Chem. 2002, 50, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Embarek, G.; Kokkalou, E.; Kefalas, P. Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem. 2005, 89, 411–420. [Google Scholar] [CrossRef]
- Al-Turki, S.; Shahba, M.A.; Stushnoff, C. Diversity of antioxidant properties and phenolic content of date palm (Phoenix dactylifera L.) fruits as affected by cultivar and location. J. Food Agric. Environ. 2010, 8, 253–260. [Google Scholar]
- Al-Farsi, M.; Alasalvar, C.; Al-Abid, M.; Al-Shoaily, K.; Al-Amry, M.; Al-Rawahy, F. Compositional and functional characteristics of dates, syrups, and their by-products. Food Chem. 2007, 104, 943–947. [Google Scholar] [CrossRef]
- Yousif, A.K.; Benjamin, N.D.; Kado, A.; Alddin, S.M.; Ali, S.M. Chemical composition of four Iraqi date cultivars. Date Palm J. 1982, 1, 285–294. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Sallal, A.K.; Ashkenani, A. Effect of date extract on growth and spore germination of Bacillus subtilis. Microbios 1989, 59, 203–210. [Google Scholar] [PubMed]
- Shraideh, Z.A.; Abu-Elteen, K.H.; Sallal, A.K.J. Ultrastructural effects of date extract on Candida albicans. Mycopathologia 1998, 142, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Selim, S.A.; Alfy, S.E.; Al-Ruwaili, M.; Abdo, A; Jaouni, S.A. Susceptibility of imipenem-resistant Pseudomonas aeruginosa to flavonoid glycosides of date palm (Phoenix dactylifera L.) tamar Growing in Al Madinah, Saudi Arabia. Afr. J. Biotechnol. 2012, 11, 416–422. [Google Scholar] [CrossRef]
- Abdul, J.C.; Shyam, S.K.; Sreeramanan, S. Variations in hormones and antioxidant status in relation to flowering in early, mid, and late varieties of date palm (Phoenix dactylifera) of United Arab Emirates. Sci. World J. 2015, 2015. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Farfan-Vignolo, E.R.; de Vos, D.; Asard, H. Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Sci. 2015, 231, 1–10. [Google Scholar] [CrossRef] [PubMed]
- AbdElgawad, H.; de Vos, D.; Zinta, G.; Domagalska, M.A.; Beemster, G.T.S.; Asard, H. Grassland species differentially regulate proline concentrations under future climate conditions: An integrated biochemical and modelling approach. New Phytol. 2015. [Google Scholar] [CrossRef] [PubMed]
- AbdElgawad, H.; Peshev, D.; Zinta, G.; van den Ende, W.; Janssens, I.A.; Asard, H. Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: A comparison of fructan and non-fructan accumulators. PLoS ONE 2014, 9, e92044. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Zinta, G.; AbdElgawad, H.; Ahmad, A.; Jain, V.; Janssens, I.A. Physiological and molecular alterations in plants exposed to high CO2 under phosphorus stress. Biotechnol. Adv. 2015, 33, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Zinta, G.; AbdElgawad, H.; Domagalska, M.A.; Vergauwen, L.; Knapen, D.; Nijs, I.; Janssens, I.A.; Beemster, G.T.; Asard, H. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob. Change Biol. 2014, 20, 3670–3685. [Google Scholar] [CrossRef] [PubMed]
- El-Shafey, N.M.; Abd-Elgawad, H. Luteolin, a bioactive flavone compound extracted from Cichorium endivia L. subsp. divaricatum alleviates the harmful effect of salinity on maize. Acta Physiol. Plant. 2012, 34, 2165–2177. [Google Scholar] [CrossRef]
- El-Soud, W.A.; Hegab, M.M.; AbdElgawad, H.; Zinta, G.; Asard, H. Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiol. Biochem. 2013, 71, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Mohsen, M.; Heinke, R.; Wessjohann, L.A. Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI-qTOF-MS and GC-MS analyzed by chemometrics. Food Res. Int. 2014, 64, 218–226. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Compositional and sensory characteristics of three native sun-dried date (Phoenix dactylifera L.) varieties grown in oman. J. Agric. Food Chem. 2005, 53, 7586–7591. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Guizani, N.; Essa, M.M.; Hakkim, F.L.; Rahman, M.S. Comparative analysis of total phenolics, flavonoid content and antioxidant profile of different date varieties (Phoenix dactylifera L.) from Sultanate of Oman. Int. Food Res. J. 2012, 19, 1063–1070. [Google Scholar]
- Allaith, A.A.A. Antioxidant activity of Bahraini date palm (Phoenix dactylifera L.) fruit of various cultivars. Int. J. Food Sci. Technol. 2008, 43, 1033–1040. [Google Scholar] [CrossRef]
- Okada, T.; Nakamura, Y.; Kanaya, S.; Takano, A.; Malla, K.J.; Nakane, T.; Kitayama, M.; Sekita, S. Metabolome analysis of ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS. Planta Med. 2009, 75, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Saafi, E.B.; Louedi, M.; Elfeki, A.; Zakhama, A.; Najjar, M.F.; Hammami, M.; Achour, L. Protective effect of date palm fruit extract (Pheonix dactylifera L.) on dimethoate induced-oxidative stress in rat liver. Exp. Toxicol. Pathol. 2011, 63, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Shahrzad, S.; Aoyagi, K.; Winter, A.; Koyama, A.; Bitsch, I. Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J. Nutr. 2001, 131, 1207–1210. [Google Scholar] [PubMed]
- Emmons, C.L.; Peterson, D.M. Antioxidant activity and phenolic content of oatas affected by cultivar and location. Crop Sci. 2001, 41, 1676–1681. [Google Scholar] [CrossRef]
- Luke, R.; Howard, J.R. Antioxidant capacity and phenolic content in blue berries as affected by genotype and growing season. J. Sci. Food Agric. 2003, 83, 1238–1247. [Google Scholar]
- Hong, Y.J.; Tomas-Barberan, F.A.; Kader, A.; Mitchell, A.E. The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera). J. Agric. Food Chem. 2006, 54, 2405–2411. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Moreno, C. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 2002, 8, 121–137. [Google Scholar] [CrossRef]
- Chaira, N.; Smaali, M.I.; Martinez-Tome, M.; Mrabet, A.; Murcia, M.A.; Ferchichi, A. Simple phenolic composition, flavonoid contents and antioxidant capacities in water-methanol extracts of Tunisian common date cultivars (Phoenix dactylifera L.). Int. J. Food Sci. Nutr. 2009, 60, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Bilgari, F.; Alkarkhi, A.F.M.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008, 107, 1636–1641. [Google Scholar]
- Wuytac, T.; AbdElgawad, H.; Staelens, J.; Asard, H.; Boeckx, P.; Verheyen, K.; Samson, R. The response of the foliar antioxidant system and stable isotopes (δ13C and δ15N) of white willow to low-level air pollution. Plant Physiol. Biochem. 2013, 67, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Shinmoto, H.; Dosako, S.; Nakajima, I. Antioxidant activity of bovine lactoferrin on iron/ascorbate induce lipid peroxidation. Biosci. Biotechnol. Biochem. 1992, 56, 2079–2080. [Google Scholar] [CrossRef]
- Bilgari, F.; Alkarkhi, A.F.M.; Easa, A.M. Cluster analysis of antioxidant compounds in dates (Phoenix dactylifera): Effect of long-term cold storage. Food Chem. 2009, 112, 998–1001. [Google Scholar]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.U.; Hussain, S.; Jabbar, S.; Rashid, F.; Khalid, N.; Mehmood, A. A review on the nutritional content, functional properties and medicinal potential of dates. Sci. Lett. 2015, 3, 17–22. [Google Scholar]
- Johnson, D.V.; Al-Khayri, J.M.; Jain, S.M. Introduction: Date production status and prospects in Asia and Europe. In Date Palm Genetic Resources and Utilization. 2: Asia and Europe; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 2, pp. 1–16. [Google Scholar]
- Shi, L.E.; Zheng, W.; Aleid, S.M.; Tang, Z.X. Date pits: Chemical composition, nutritional and medicinal value, utilization. Crop Sci. 2014, 4, 1322–1330. [Google Scholar] [CrossRef]
- Borochov-Neori, H.; Judeinstein, S.; Greenberg, A.; Volkova, N.; Rosenblat, M.; Aviram, M. Antioxidant and antiatherogenic properties of phenolic acid and flavonol fractions of fruits of “Amari” and “Hallawi” date (Phoenix dactylifera L.) Varieties. J. Agric. Food Chem. 2015, 63, 3189–3195. [Google Scholar] [CrossRef] [PubMed]
- Taha, K.K.; Al Ghtani, F.M. Determination of the elemental contents of date palm (Phoenix dactylifera L.) from Kharj Saudi Arabia. World Sci. News 2015, 6, 125–135. [Google Scholar]
- Bouaziz, A.M.; Besbes, S.; Blecker, C.; Wathelet, B.; Deroanne, C.; Attia, H. Protein and amino acid profiles of Tunisian Deglet Nour and Allig date palm fruit seeds. Fruits 2008, 63, 37–43. [Google Scholar] [CrossRef]
- Salim, S.; Ahmed, A. Protein and amino acid contents of some Saudi Arabian date palm seeds (Phoenix dactylifera L.). Arab. Gulf. J. Sci. Res. 1992, 10, 1–9. [Google Scholar]
- Shinwari, M.A. Date palm. In Encyclopaedia of Food Science, Food Technology & Nutrition; Macrae, R., Robinson, R.K., Sadler, M.J., Eds.; Academic Press: London, UK, 1993; Volume 2, pp. 1300–1305. [Google Scholar]
- Rinderknecht, H. The free amino acid of dates in relation to their darkening maturation and storage. Food Res. 1959, 24, 298–304. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Ahmed, A.W.K.; Robinson, R.K. Chemical composition of date varieties as influenced by the stage of ripening. Food Chem. 1995, 54, 305–309. [Google Scholar] [CrossRef]
- Messaoudi, R.S.; Abbeddou, S.; Mansouri, A.; Calokerinos, A.C.; Kefalas, P. Phenolic profile and antioxidant activity of date-pits of seven algerian date palm fruit varieties. Int. J. Food Prop. 2013, 16, 1037–1047. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G. Vitamin E. In Modern Nutrition in Health and Disease, 10th ed.; Shils, M.E., Shike, M., Ross, A.C., Caballero, B., Cousins, R., Eds.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2006; pp. 396–411. [Google Scholar]
- Gill, S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Assirey, E.A. Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J. Taibah Univ. Sci. 2015, 9, 75–79. [Google Scholar] [CrossRef]
- Al-Hooti, S.; Sidhu, J.S.; Qabazard, H. Studies on the physico-chemical characteristics of date fruits of five UAE cultivars at different stages of maturity. Arab. Gulf. J. Sci. Res. 1995, 13, 553–569. [Google Scholar]
- Al-Hooti, S.; Sidhu, J.S.; Qabazard, H. Physicochemical characteristics of five date fruit cultivars grown in the United Arab Emirates. Plant Foods Hum. Nutr. 1997, 50, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, R.M.A.; Fageer, A.S.M.; Eltayeb, M.M.; Ahmed, I.A.M. Chemical composition, antioxidant capacity, and mineral extractability of Sudanese date palm (Phoenix dactylifera L.) fruits. Food Sci. Nutr. 2014, 2, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.W.; Vollmer, M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Gasim, A.A. Changes in sugar quality and mineral elements during fruit development in five date palm cultivars in Al-Madinah Al-Munawwarah, JKAU. Science 1994, 6, 29–36. [Google Scholar] [CrossRef]
- Fahad, A.L.; Juhaimi, K.G.; Özcan, M.M. Physicochemical properties and mineral contents of seven different date fruit (Phoenix dactylifera L.) varieties growing in Saudi Arabia. Environ. Monit. Assess. 2014, 186, 2165–2170. [Google Scholar]
- Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 7, 249–255. [Google Scholar] [CrossRef]
- Patro, B.S.; Rele, S.; Chintalwar, G.J.; Chattopadhyay, S.; Adhikari, S.; Mukherjee, T. Protective activities of some phenolic 1,3-diketones against lipid peroxidation: Possible involvement of the 1,3-diketone moiety. Chem. Biochem. 2002, 3, 364–370. [Google Scholar] [CrossRef]
- Sinhaa, A.K.; Giblena, T.; AbdElgawad, H.; de Rop, M.; Asard, H.; Blust, R.; Boeck, G. Regulation of amino acid metabolism as a defensive strategy in the brain of three freshwater teleosts in response to high environmental ammonia exposure. Aquat. Toxicol. 2013, 130, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Shahidi, F.; Liyanapathirana, C.M.; Ohshima, T. Turkish tombul hazelnut (Corylus avellana L.). 1. Compositional characteristics. J. Agric. Food Chem. 2003, 51, 3790–3796. [Google Scholar] [CrossRef] [PubMed]
- Gomaa, N.H.; AbdElgawad, H.R. Phytotoxic effects of Echinochloa colona (L.) Link. (Poaceae) extracts on the germination and seedling growth of weeds. Span. J. Agric. Res. 2012, 10, 492–501. [Google Scholar] [CrossRef]
- Potters, G.; Horemans, N.; Bellone, S.; Caubergs, R.J.; Trost, P.; Guisez, Y.; Asard, H. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol. 2004, 134, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Siebert, K.J. Modeling the flavor thresholds of organic acids in beer as a function of their molecular properties. Food Qual. Pref. 1999, 10, 129–137. [Google Scholar] [CrossRef]
- Agusa, T.; Kunito, T.; Yasunaga, G.; Iwata, H.; Subramanian, A.; Ismail, A.; Tanabe, S. Concentrations of trace elements in marine fish and its risk assessment in Malaysia. Mar. Pollut. Bull. 2005, 51, 896–911. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Not available.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamad, I.; AbdElgawad, H.; Al Jaouni, S.; Zinta, G.; Asard, H.; Hassan, S.; Hegab, M.; Hagagy, N.; Selim, S. Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality. Molecules 2015, 20, 13620-13641. https://doi.org/10.3390/molecules200813620
Hamad I, AbdElgawad H, Al Jaouni S, Zinta G, Asard H, Hassan S, Hegab M, Hagagy N, Selim S. Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality. Molecules. 2015; 20(8):13620-13641. https://doi.org/10.3390/molecules200813620
Chicago/Turabian StyleHamad, Ismail, Hamada AbdElgawad, Soad Al Jaouni, Gaurav Zinta, Han Asard, Sherif Hassan, Momtaz Hegab, Nashwa Hagagy, and Samy Selim. 2015. "Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality" Molecules 20, no. 8: 13620-13641. https://doi.org/10.3390/molecules200813620
APA StyleHamad, I., AbdElgawad, H., Al Jaouni, S., Zinta, G., Asard, H., Hassan, S., Hegab, M., Hagagy, N., & Selim, S. (2015). Metabolic Analysis of Various Date Palm Fruit (Phoenix dactylifera L.) Cultivars from Saudi Arabia to Assess Their Nutritional Quality. Molecules, 20(8), 13620-13641. https://doi.org/10.3390/molecules200813620