The Activity of Cotinus coggygria Scop. Leaves on Staphylococcus aureus Strains in Planktonic and Biofilm Growth Forms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimicrobial Activity
Strain | Origin | Resistance to | MIC (mg·mL−1) | MBC (mg·mL−1) |
---|---|---|---|---|
1 | Atopic dermatitis | GEN, CIP | 0.313 | 0.313 |
2 | Atopic dermatitis | ERY, CLI, GEN | 0.313 | 0.625 |
3 | Atopic dermatitis | 0.313 | 0.625 | |
4 | Atopic dermatitis | OXA, ERY, CLI, CIP | 0.313 | 0.313 |
5 | Atopic dermatitis | ERY, CLI, GEN | 0.156 | 0.625 |
6 | Impetigo | 0.313 | 0.313 | |
7 | Impetigo | 0.313 | 0.313 | |
8 | Impetigo | OXA, CIP | 0.313 | 0.313 |
9 | Impetigo | OXA, CIP, TET, CMP | 0.313 | 0.313 |
10 | Impetigo | ERY | 0.156 | 0.313 |
11 | CCM 4750 (MRSA) | n.a. | 0.156 | 0.313 |
12 | CCM 4223 (MSSA) | n.a. | 0.156 | 0.313 |
2.2. Antibiofilm Activity
Strain | Biofilm Producing Activity (A570) | MBIC (mg·mL−1) | MBEC (mg·mL−1) |
---|---|---|---|
3 | 2.255 | 8 | 32 |
11 | 0.614 | 8 | 32 |
2.3. Phenolic Fingerprint of the 60% Methanol Extract of C. coggygria Leaves
Peak No. | Compound | TR (min) | [M − H]− (m/z) | MS2 (20 eV) (m/z) | Mass Concentration (μg·mg−1) * ± SD | Reference |
---|---|---|---|---|---|---|
1. | Quinic acid | 5.019 | 191.0564 | 173.0458 | 2.1 ± 0.01 # | [22] |
2. | Galloyl hexose | 6.599 | 331.0681 | 191.0576, 169.0153 | 1.9 ± 0.01 # | [22] |
3. | Gallic acid | 7.521 | 169.0147 | 125.0251 | 9.8 ± 0.01 # | [5,11] |
4. | Galloylshikimic acid | 8.600 | 325.0577 | 169.0148 | 1.5 ± 0.01 # | [22] |
5. | Protocatechuic acid hexoside | 12.314 | 315.0313 | 153.0198, 109.0304 | 1.3 ± 0.08 # | [22] |
6. | Methyl gallate | 21.083 | 183.0300 | 140.0106, 124.0171 | 31.2 ± 0.03 # | [5] |
7. | Trigalloyl hexoside | 30.510 | 635.0928 | 465.0673, 169.0150 | <LOQ # | [22] |
8. | Tetragalloyl hexoside | 31.774 | 787.1034 | 635.0890, 617.0881, 393.0474 | 1.3 ± 0.10 # | [22,25] |
9. | Tetragalloyl hexoside | 32.300 | 787.1033 | 635.0898, 617.0776, 393.0458 | <LOQ # | [22,25] |
10. | Myricetin glucoside | 33.090 | 479.0849 | 316.0205, 317.034 | 2.7 ± 0.09 † | [22] |
11. | Trigallic acid | 33.538 | 473.0369 | 321.0267, 169.0155 | <LOQ # | [22] |
12. | Pentagalloyl hexoside | 35.302 | 939.121 | 787.1022, 617.0859, 469.0534, 393.0480 | <LOQ # | [5] |
13. | Myricetin rhamnoside | 36.724 | 463.0903 | 316.0206 | 8.1 ± 0.09 † | [22,23] |
14. | Quercetin glucoside | 37.435 | 463.0901 | 301.0007 | 2.5 ± 0.29 † | [22] |
15. | Methyl digallate | 38.304 | 335.0416 | 183.0303 | <LOQ # | [22] |
16. | Methyl trigallate | 38.910 | 469.0533 | 335.0423, 183.0309 | 29.7 ± 4.39 # | [22] |
17. | Quercetin rhamnoside | 45.941 | 447.0956 | 301.0206 | 35.3 ± 2.09 † | [22,23] |
2.4. The Quantification of Phenolics
3. Experimental Section
3.1. Bacterial Strains
3.2. Antimicrobial Susceptibility Testing
3.3. Detection of Biofilm Formation
3.4. Antimicrobial Activity Testing
3.5. Antibiofilm Activity Testing
3.6. Phenolic Fingerprint. Identification of the Characteristic Constituents
3.7. Qualitative Determination of Constituents
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Singh, K.; Tiwari, V.; Prajapat, R. Study of Antimicrobial Activity of Medicinal Plants Against Various Multiple Drug Resistance Pathogens and Their Molecular Characterization and it’s Bioinformatics Analysis of Antibiotic Gene From Genomic Database with Degenerate Primer Prediction. Int. J. Biol. Technol. 2010, 1, 15–19. [Google Scholar]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [PubMed]
- Mandel, G.L.; Bennett, J.E.; Dolin, R. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 7th ed.; Churchill Livingstone Elsevier: Philadelphia, PA, USA, 2010; pp. 267–514. [Google Scholar]
- Novaković, M.; Vučković, I.; Janaćković, P.; Soković, M.; Filipović, A.; Tešević, V.; Milosavljević, S. Chemical composition, antibacterial and antifugal activity of the essential oils of Cotinus coggygria from Serbia. J. Serb. Chem. Soc. 2007, 72, 1045–1051. [Google Scholar] [CrossRef]
- Westenburg, E.H.; Lee, K.J.; Lee, S.K.; Fong, H.H.S.; van Breemen, R.B.; Pezzuto, J.M.; Kinghorn, A.D. Activity-Guided Isolation of Antioxidative Constituents of Cotinus coggygria. J. Nat. Prod. 2000, 63, 1696–1698. [Google Scholar] [CrossRef] [PubMed]
- Demirci, B.; Demirci, F.; Baser, K.H.C. Composition of essential oil of Cotinus coggygria Scop. from Turkey. Flavour Fragr. J. 2003, 18, 43–44. [Google Scholar] [CrossRef]
- Tzakou, O.; Bazos, I.; Yannitsaros, A. Essential oils of leaves, inflorescences and infructescenses of spontaneous Cotinus coggygria Scop. from Greece. Flavour Fragr. J. 2005, 20, 531–533. [Google Scholar] [CrossRef]
- Matić, S.; Stanić, S.; Mihailović, M.; Bogojević, D. Cotinus coggygria Scop.: An overview of its chemical constituents, pharmacological and toxicological potential. Saudi J. Biol. Sci. 2015, in press. [Google Scholar]
- Matić, S.; Stanić, S.; Solujić, S.; Milošević, T.; Nciforović, N. Biological properties of the Cotinus coggygria methanol extract. Period. Biol. 2011, 113, 87–92. [Google Scholar]
- Tunç, K.; Hoş, A.; Güneş, B. Investigation of antibacterial properties of Cotinus coggygria from Turkey. Pol. J. Environ. Stud. 2013, 22, 1559–1561. [Google Scholar]
- Marčetić, M.; Božić, D.; Milenković, M.; Malešević, N.; Radulović, S.; Kovačević, N. Antimicrobial, antioxidant and anti-inflammatory activity of young shoots of the smoke tree, Cotinus coggygria Scop. Phytother. Res. 2013, 27, 1658–1663. [Google Scholar] [CrossRef] [PubMed]
- Hirai, I.; Okuno, M.; Katsuma, R.; Arita, N.; Tachibana, M.; Yamamoto, Y. Characterisation of anti-Staphylococcus aureus activity of quercetin. Int. J. Food Sci. Technol. 2010, 45, 1250–1254. [Google Scholar] [CrossRef]
- Choi, J.G.; Kang, O.H.; Lee, Y.S.; Oh, Y.CH.; Chae, H.S.; Jang, H.J.; Shin, D.W.; Kwon, D.Y. Antibacterial Activity of Methyl Gallate Isolated from Galla Rhois or Carvacrol Combined with Nalidixic Acid Against Nalidixic Acid Resistant Bacteria. Molecules 2009, 14, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Vuković, D.; Holá, V.; di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Chauhan, A.; Rendueles, O.; Beloin, C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013, 2, 288–356. [Google Scholar] [CrossRef] [PubMed]
- Hoiby, N. Genetics, physiology, pathology and antibiotic resistance of biofilms in infections. In Proceedings of the 25th European Congress of Clinical Microbiology and Infectious Diseases, Copenhagen, Denmark, 25–28 April 2015.
- Amorena, B.; Gracia, E.; Monzón, M.; Leiva, J.; Oteiza, C.; Pérez, M.; Alabart, J.L.; Hernández-Yago, J. Antibiotic susceptibility assay for Staphylocccus aureus in biofilms developed in vitro. J. Antimicrob. Chemother. 1999, 44, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Černohorská, L.; Votava, M. Determination of minimal regrowth concentration (MRC) in clinical isolates of various biofilm-forming bacteria. Folia Microbiol. 2004, 49, 75–78. [Google Scholar] [CrossRef]
- Hajdu, S.; Lassnigg, A.; Graninger, W.; Hirschl, A.M.; Presterl, E. Effects of Vancomycin, Daptomycin, Fosfomycin, Tigecycline, and Ceftriaxone on Staphylococcus epidermidis Biofilms. J. Orthop. Res. 2009, 27, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.; Das, J.; Foley, I. Biofilm susceptibility to antimicrobials. Adv. Dent. Res. 1997, 11, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Kotulová, D.; Slobodníková, L. Susceptibility of Staphylococcus aureus Biofilms to Vancomycin, Gentamicin and Rifampin. Epidemiol. Mikrobiol. Imunol. 2010, 59, 80–87. [Google Scholar] [PubMed]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arráez-Román, D.; Segura-Carretero, A. HPLC-DAD-ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Regazzoni, L.; Arlandini, E.; Garzon, D.; Santagati, N.A.; Beretta, G.; Maffei Facino, R. A rapid profiling of gallotannins and flavonoids of the aqueous extract of Rhus coriaria L. by flow injection analysis with high-resolution mass spectrometry assisted with database searching. J. Pharm. Biomed. Anal. 2013, 72, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Antal, D.S.; Schwaiger, S.; Ellmerer-Müller, E.P.; Stuppner, H. Cotinus coggygria wood: Novel flavanone dimer and development of an HPLC/UV/MS method for the simultaneous determination of fourteen phenolic constituents. Planta Med. 2010, 76, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Cha, M.R.; Park, J.H.; Choi, Y.H.; Choi, C.W.; Hong, K.S.; Choi, S.U.; Kim, Y.S.; Kim, Y.K.; Kim, Y.H.; Ryu, S.Y. Alphaglucosidase inhibitors from the branches extract of Cotinus coggygria. Korean J. Pharmacogn. 2009, 40, 229–232. [Google Scholar]
- EUCAST—The European Committee on Antimicrobial Susceptibility Testing. Available online: http://www.eucast.org (accessed on 25 November 2015).
- Fialová, S.; Slobodníková, L.; Veizerová, L.; Grančai, D. Lycopus europaeus: Phenolic fingerprint, antioxidant activity and antimicrobial effect on clinical Staphylococcus aureus strains. Nat. Prod. Res. 2015, 29, 2271–2274. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples and extracts are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rendeková, K.; Fialová, S.; Jánošová, L.; Mučaji, P.; Slobodníková, L. The Activity of Cotinus coggygria Scop. Leaves on Staphylococcus aureus Strains in Planktonic and Biofilm Growth Forms. Molecules 2016, 21, 50. https://doi.org/10.3390/molecules21010050
Rendeková K, Fialová S, Jánošová L, Mučaji P, Slobodníková L. The Activity of Cotinus coggygria Scop. Leaves on Staphylococcus aureus Strains in Planktonic and Biofilm Growth Forms. Molecules. 2016; 21(1):50. https://doi.org/10.3390/molecules21010050
Chicago/Turabian StyleRendeková, Katarína, Silvia Fialová, Lucia Jánošová, Pavel Mučaji, and Lívia Slobodníková. 2016. "The Activity of Cotinus coggygria Scop. Leaves on Staphylococcus aureus Strains in Planktonic and Biofilm Growth Forms" Molecules 21, no. 1: 50. https://doi.org/10.3390/molecules21010050
APA StyleRendeková, K., Fialová, S., Jánošová, L., Mučaji, P., & Slobodníková, L. (2016). The Activity of Cotinus coggygria Scop. Leaves on Staphylococcus aureus Strains in Planktonic and Biofilm Growth Forms. Molecules, 21(1), 50. https://doi.org/10.3390/molecules21010050