Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products
Abstract
:1. Introduction
2. Classification of Ligand Fishing Strategies
2.1. Commonly Used Techniques in Off-Line Mode Ligand Fishing
2.1.1. Ultrafiltration
2.1.2. Magnetic Beads or Magnetic Nanoparticles
2.1.3. Equilibrium Dialysis
2.1.4. Other Materials
2.2. Commonly Used Techniques in On-Line Mode Ligand Fishing
2.2.1. Biochromatography
2.2.2. Capillary Electrophoresis
2.2.3. Bio-Reactor
3. Applications of Ligand Fishing Approaches in TCM
4. Future Perspectives of Ligand Fishing for TCM
4.1. Screening Active Compounds Based on the Multi-Target
4.2. Screening Active Compounds Based on Microfluidic
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, Y.; Fan, X.; Qu, H.; Gao, X.; Cheng, Y. Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine. Curr. Top. Med. Chem. 2012, 12, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 2011, 17, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Bergsdorf, C.; Ottl, J. Affinity-based screening techniques: Their impact and benefit to increase the number of high quality leads. Exp. Opin. Drug Discov. 2010, 5, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Hage, D.S.; Anguizola, J.A.; Bi, C.; Li, R.; Matsuda, R.; Papastavros, E.; Pfaunmiller, E.; Vargas, J.; Zheng, X. Pharmaceutical and biomedical applications of affinity chromatography: Recent trends and developments. J. Pharm. Biomed. Anal. 2012, 69, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Jonker, N.; Kool, J.; Irth, H.; Niessen, W.M. Recent developments in protein-ligand affinity mass spectrometry. Anal. Bioanal. Chem. 2011, 399, 2669–2681. [Google Scholar] [CrossRef] [PubMed]
- Zehender, H.; Mayr, L.M. Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein-protein interactions. Curr. Opin. Chem. Biol. 2007, 11, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Annis, D.A.; Nickbarg, E.; Yang, X.; Ziebell, M.R.; Whitehurst, C.E. Affinity selection-mass spectrometry screening techniques for small molecule drug discovery. Curr. Opin. Chem. Biol. 2007, 11, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Seok, Y.J.; Sondej, M.; Badawi, P.; Lewis, M.S.; Briggs, M.C.; Jaffe, H.; Peterkofsky, A. High affinity binding and allosteric regulation of Escherichia coli glycogen phosphorylase by the histidine phosphocarrier protein, HPr. J. Biol. Chem. 1997, 272, 26511–26521. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.; Bergsma, D.J.; Chambers, J.K.; Muir, A.I.; Fantom, K.G.; Ellis, C.; Murdock, P.R.; Herrity, N.C.; Stadel, J.M. Orphan G-protein-coupled receptors: The next generation of drug targets? Br. J. Pharmacol. 1998, 125, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A. Optical biosensors in drug discovery. Nat. rev. Drug Discov. 2002, 1, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, R.B.; Nikolic, D.; Bolton, J.L. Metabolic screening using on-line ultrafiltration mass spectrometry. Drug Metab. Dispos. 1998, 26, 85–90. [Google Scholar] [PubMed]
- Li, H.; Song, F.; Xing, J.; Tsao, R.; Liu, Z.; Liu, S. Screening and structural characterization of alpha-glucosidase inhibitors from hawthorn leaf flavonoids extract by ultrafiltration LC-DAD-MS(n) and SORI-CID FTICR MS. J. Am. Soc. Mass Spectrom. 2009, 20, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, Y.; Sun, L.; Wang, Y.; Gao, X.; Cheng, Y. An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterising tyrosinase inhibitors from Mulberry leaves. Anal. Chim. Acta 2012, 719, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Song, H.P.; Chen, J.; Hong, J.Y.; Hao, H.; Qi, L.W.; Lu, J.; Fu, Y.; Wu, B.; Yang, H.; Li, P. A strategy for screening of high-quality enzyme inhibitors from herbal medicines based on ultrafiltration LC-MS and in silico molecular docking. Chem. Commun. 2015, 51, 1494–1497. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Carregal-Romero, S.; Casula, M.F.; Gutierrez, L.; Morales, M.P.; Bohm, I.B.; Heverhagen, J.T.; Prosperi, D.; Parak, W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012, 41, 4306–4334. [Google Scholar] [CrossRef] [PubMed]
- Otieno, B.A.; Krause, C.E.; Latus, A.; Chikkaveeraiah, B.V.; Faria, R.C.; Rusling, J.F. On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers. Biosens. Bioelectron. 2014, 53, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Palecek, E.; Fojta, M. Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta 2007, 74, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Lima-Tenorio, M.K.; Pineda, E.A.; Ahmad, N.M.; Fessi, H.; Elaissari, A. Magnetic nanoparticles: In vivo cancer diagnosis and therapy. Int. J. Pharm. 2015, 493, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Marszall, M.P.; Bucinski, A. A protein-coated magnetic beads as a tool for the rapid drug-protein binding study. J. Pharm. Biomed. Anal. 2010, 52, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Wilson, D.R.; Fugmann, S.D.; Moaddel, R. Synthesis and characterization of SIRT6 protein coated magnetic beads: Identification of a novel inhibitor of SIRT6 deacetylase from medicinal plant extracts. Anal. Chem. 2011, 83, 7400–7407. [Google Scholar] [CrossRef] [PubMed]
- Marszall, M.P.; Moaddel, R.; Kole, S.; Gandhari, M.; Bernier, M.; Wainer, I.W. Ligand and protein fishing with heat shock protein 90 coated magnetic beads. Anal. Chem. 2008, 80, 7571–7575. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Wu, J.H.; Luo, Q.; Li, X.; Zheng, W.; Zhai, G.; Wang, F.; Lu, S.; Feng, Y.Q.; et al. Quantitative mass spectrometry combined with separation and enrichment of phosphopeptides by titania coated magnetic mesoporous silica microspheres for screening of protein kinase inhibitors. Anal. Chem. 2012, 84, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Jonker, N.; Kretschmer, A.; Kool, J.; Fernandez, A.; Kloos, D.; Krabbe, J.G.; Lingeman, H.; Irth, H. Online magnetic bead dynamic protein-affinity selection coupled to LC-MS for the screening of pharmacologically active compounds. Anal. Chem. 2009, 81, 4263–4270. [Google Scholar] [CrossRef] [PubMed]
- Pochet, L.; Heus, F.; Jonker, N.; Lingeman, H.; Smit, A.B.; Niessen, W.M.; Kool, J. Online magnetic bead based dynamic protein affinity selection coupled to LC-MS for the screening of acetylcholine binding protein ligands. J. Chromatogr. B 2011, 879, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, T. Equilibrium dialysis using chromophoric sugar derivatives. Methods Mol. Biol. 2014, 1200, 165–171. [Google Scholar] [PubMed]
- Hou, G.; Niu, J.; Song, F.; Liu, Z.; Liu, S. Studies on the interactions between ginsenosides and liposome by equilibrium dialysis combined with ultrahigh performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2013, 923–924, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, X.; Wang, S.; Tao, S.; Ai, N.; Wang, Y. Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures. J. Chromatogr. A 2015, 1392, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, Y.; Wang, Y.; Cheng, Y. Hollow fiber based affinity selection combined with high performance liquid chromatography-mass spectroscopy for rapid screening lipase inhibitors from Lotus leaf. Anal. Chim. Acta 2013, 785, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhou, M.; Jiang, Q.; Wang, S.; He, L. A vascular smooth muscle/cell membrane chromatography-offline-gas chromatography/mass spectrometry method for recognition, separation and identification of active components from traditional Chinese medicines. J. Chromatogr. A 2009, 1216, 7081–7087. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sun, M.; Zhang, Y.; Du, H.; He, L. A new A431/cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening epidermal growth factor receptor antagonists from Radix sophorae flavescentis. J. Chromatogr. A 2010, 1217, 5246–5252. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.G.; Wong, V.K.; Zeng, W.; Liu, L.; Law, B.Y. Identification of novel autophagic Radix Polygalae fraction by cell membrane chromatography and UHPLC-(Q)TOF-MS for degradation of neurodegenerative disease proteins. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, J.; Ma, J.; Chen, L. Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis 2012, 33, 2933–2952. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Scriba, G.K. Advances in capillary electrophoretic enzyme assays. J. Pharm. Biomed. Anal. 2010, 53, 1076–1090. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, Y.; Qiu, D.; Kang, J. Screening of epidermal growth factor receptor inhibitors in natural products by capillary electrophoresis combined with high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2015, 1400, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Ghafourifar, G.; Fleitz, A.; Waldron, K.C. Development of glutaraldehyde-crosslinked chymotrypsin and an in situ immobilized enzyme microreactor with peptide mapping by capillary electrophoresis. Electrophoresis 2013, 34, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Asanomi, Y.; Yamaguchi, H.; Miyazaki, M.; Maeda, H. Enzyme-immobilized microfluidic process reactors. Molecules 2011, 16, 6041–6059. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhao, W.; Tian, M.; Zhang, Q.; Guo, L.; Yang, L. A capillary electrophoresis-based immobilized enzyme reactor using graphene oxide as a support via layer by layer electrostatic assembly. Analyst 2014, 139, 1973–1979. [Google Scholar] [CrossRef] [PubMed]
- Camara, M.A.; Tian, M.; Liu, X.; Liu, X.; Wang, Y.; Yang, J.; Yang, L. Determination of the inhibitory effect of Green tea extract on glucose-6-phosphate dehydrogenase based on multi-layer capillary enzyme micro-reactor. Biomed. Chromatogr. BMC 2016, 30, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Ye, F.; Lu, J.; Zhao, S. Screening alpha-glucosidase inhibitor from natural products by capillary electrophoresis with immobilised enzyme onto polymer monolith modified by gold nanoparticles. Food Chem. 2013, 141, 1854–1859. [Google Scholar] [CrossRef] [PubMed]
- Schejbal, J.; Reminek, R.; Zeman, L.; Madr, A.; Glatz, Z. On-line coupling of immobilized cytochrome P450 microreactor and capillary electrophoresis: A promising tool for drug development. J. Chromatogr. A 2016, 1437, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Mou, Z.L.; Qi, X.N.; Liu, R.L.; Zhang, J.; Zhang, Z.Q. Three-dimensional cell bioreactor coupled with high performance liquid chromatography-mass spectrometry for the affinity screening of bioactive components from herb medicine. J. Chromatogr. A 2012, 1243, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Song, H.P.; Zhang, H.; Fu, Y.; Mo, H.Y.; Zhang, M.; Chen, J.; Li, P. Screening for selective inhibitors of xanthine oxidase from Flos Chrysanthemum using ultrafiltration LC-MS combined with enzyme channel blocking. J. Chromatogr. B 2014, 961, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Mo, H.Y.; Gao, W.; Hong, J.Y.; Lu, J.; Li, P.; Chen, J. Affinity selection-based two-dimensional chromatography coupled with high-performance liquid chromatography-mass spectrometry for discovering xanthine oxidase inhibitors from Radix Salviae Miltiorrhizae. Anal. Bioanal. Chem. 2014, 406, 4987–4995. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.Z.; Liu, X.G.; Gao, W.; Dong, X.; Fanali, S.; Li, P.; Yang, H. A strategy for screening antioxidants in Ginkgo biloba extract by comprehensive two-dimensional ultra high performance liquid chromatography. J. Chromatogr. A 2015, 1422, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.M.; Bolton, J.L.; van Breemen, R.B. Screening botanical extracts for quinoid metabolites. Chem. Res. Toxicol. 2001, 14, 1546–1551. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Chen, S.N.; Yao, P.; Nikolic, D.; van Breemen, R.B.; Bolton, J.L.; Fong, H.H.; Farnsworth, N.R.; Pauli, G.F. Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis. J. Nat. Prod. 2006, 69, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Eggler, A.L.; Dietz, B.M.; Mesecar, A.D.; Bolton, J.L.; Pezzuto, J.M.; van Breemen, R.B. Screening method for the discovery of potential cancer chemoprevention agents based on mass spectrometric detection of alkylated Keap1. Anal. Chem. 2005, 77, 6407–6414. [Google Scholar] [CrossRef] [PubMed]
- van Breemen, R.B.; Tao, Y.; Li, W. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia 2011, 82, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Jermihov, K.; Nam, S.J.; Sturdy, M.; Maloney, K.; Qiu, X.; Chadwick, L.R.; Main, M.; Chen, S.N.; Mesecar, A.D.; et al. Screening natural products for inhibitors of quinone reductase-2 using ultrafiltration LC-MS. Anal. Chem. 2011, 83, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Shi, S.; Liu, L.; Yang, H.; Su, W.; Chen, X. Separation and purification of bovine serum albumin binders from Fructus polygoni orientalis using off-line two-dimensional complexation high-speed counter-current chromatography target-guided by ligand fishing. J. Chromatogr. A 2013, 1304, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Qinga, L.S.; Xue, Y.; Zheng, Y.; Xiong, J.; Liao, X.; Ding, L.S.; Li, B.G.; Liu, Y.M. Ligand fishing from Dioscorea nipponica extract using human serum albumin functionalized magnetic nanoparticles. J. Chromatogr. A 2010, 1217, 4663–4668. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Ren, X.; Ding, L.; Xie, J. Ligand Fishing from Rheum palmatum Extract Using Human Serum Albumin Functionalized Magnetic Nanoparticles. Chin. J. Appl. Environ. Biol. 2013, 1, 164–167. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, S.; Guo, J.; You, Q.; Feng, D. On-line surface plasmon resonance-high performance liquid chromatography-tandem mass spectrometry for analysis of human serum albumin binders from Radix Astragali. J. Chromatogr. A 2013, 1293, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Zhang, Y.; Shi, S.; Peng, S. Simultaneous ligand fishing and identification of human serum albumin binders from Eucommia ulmoides bark using surface plasmon resonance-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2013, 940, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of alpha-glucosidase inhibitors from Mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. BMC 2013, 27, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Xiao, C.; Chen, D.; Xiao, Y.; Mei, Z. Rapid screening and identification of alpha-amylase inhibitors from Garcinia xanthochymus using enzyme-immobilized magnetic nanoparticles coupled with HPLC and MS. J. Chromatogr. B 2014, 960, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, S.; Chen, X.; Peng, M. Functionalized magnetic nanoparticles coupled with mass spectrometry for screening and identification of cyclooxygenase-1 inhibitors from natural products. J. Chromatogr. B 2014, 960, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Shi, S.; Li, S.; Yang, T. Magnetic ligand fishing combination with high-performance liquid chromatography-diode array detector-mass spectrometry to screen and characterize cyclooxygenase-2 inhibitors from Green tea. J. Chromatogr. B 2014, 973, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Lourenco Vanzolini, K.; Jiang, Z.; Zhang, X.; Vieira, L.C.; Correa, A.G.; Cardoso, C.L.; Cass, Q.B.; Moaddel, R. Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: A new tool for plant extract ligand screening. Talanta 2013, 116, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shi, S.; Chen, X.; Peng, M. Analysis of tyrosinase binders from Glycyrrhiza uralensis root: Evaluation and comparison of tyrosinase immobilized magnetic fishing-HPLC and reverse ultrafiltration-HPLC. J. Chromatogr. B 2013, 932, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, J.; Chen, Y.; Mei, Z.; Xiao, Y. Screening of inhibitors of glycogen synthase kinase-3beta from traditional Chinese medicines using enzyme-immobilized magnetic beads combined with high-performance liquid chromatography. J. Chromatogr. A 2015, 1425, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Wubshet, S.G.; Brighente, I.M.; Moaddel, R.; Staerk, D. Magnetic Ligand Fishing as a Targeting Tool for HPLC-HRMS-SPE-NMR: Alpha-Glucosidase Inhibitory Ligands and Alkylresorcinol Glycosides from Eugenia catharinae. J. Nat. Prod. 2015, 78, 2657–2665. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Yang, H.; Cui, M.; Wan, C.; Liu, S. High-performance liquid chromatography-electrospray ionization-mass spectrometry ligand fishing assay: A method for screening triplex DNA binders from natural plant extracts. Anal. Chem. 2012, 84, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, X.; Jing, H.; Miao, Y.; Zhao, L.; Han, Y.; Cui, C. Research on drug-receptor interactions and prediction of drug activity via oriented immobilized receptor capillary electrophoresis. Electrophoresis 2015, 36, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, Q.; Bian, L.; Zheng, X.; Zheng, J.; Zhang, Y.; Li, Z. Using immobilized G-protein coupled receptors to screen bioactive traditional Chinese medicine compounds with multiple targets. J. Pharm. Biomed. Anal. 2012, 70, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Ravichandran, S.; Spelman, K.; Fugmann, S.D.; Moaddel, R. The identification of a novel SIRT6 modulator from Trigonella foenum-graecum using ligand fishing with protein coated magnetic beads. J. Chromatogr. B 2014, 968, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Chen, Z.; Zhang, Y.; Wang, Y.; Cheng, Y. Immobilized magnetic beads based multi-target affinity selection coupled with high performance liquid chromatography-mass spectrometry for screening anti-diabetic compounds from a Chinese medicine “Tang-Zhi-Qing”. J. Pharm. Biomed. Anal. 2013, 78–79, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Mark, D.; Haeberle, S.; Roth, G.; von Stetten, F.; Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem. Soc. Rev. 2010, 39, 1153–1182. [Google Scholar] [CrossRef] [PubMed]
- Strohmeier, O.; Keller, M.; Schwemmer, F.; Zehnle, S.; Mark, D.; von Stetten, F.; Zengerle, R.; Paust, N. Centrifugal microfluidic platforms: Advanced unit operations and applications. Chem. Soc. Rev. 2015, 44, 6187–6229. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.P.; Lau, P.M.; Kwok, H.C.; Wu, S.Y.; Gao, M.; Cheung, A.K.; Chen, Q.; Wang, G.; Kwan, Y.W.; Wong, C.K.; et al. Allergen screening bioassays: Recent developments in lab-on-a-chip and lab-on-a-disc systems. Bioanalysis 2014, 6, 2005–2018. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Not Available.
No. | Herb | Target | Method | Active Compounds | Reference |
---|---|---|---|---|---|
1 | Eugenia catharinae | α‑Glucosidase | Enzyme coated magnetic beads | 5-(2-Oxopentyl)resorcinol 4-O-β-d-glucopyranoside, 5-propylresorcinol 4-O-β-d-glucopyranoside, 5-pentylresorcinol 4-O-[α-d-apiofuranosyl-(1→6)]-β-d-glucopyranoside, 5-pentylresorcinol 4-O-β-d-glucopyranoside, 4-hydroxy-3-O-methyl-5-pentylresorcinol 1-O-β-d-glucopyranoside, 3-O-methyl-5-pentylresorcinol 1-O-[β-d-glucopyranosyl-(1→6)]-β-d-glucopyranoside | [62] |
2 | Morus alba | α-Glucosidase | Enzyme coated magnetic beads | Isoquercitrin, astragalin | [55] |
3 | Garcinia xanthochymus | α-amylase | Enzyme coated magnetic nanoparticles | GB2a glucoside, GB2a, fukugetin | [56] |
4 | Turmeric | Cyclooxygenase-1 (COX-1) | Enzyme coated magnetic nanoparticles | Curcumin, demethoxycurcumin, bisdemethoxycurcumin, 1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)-(1E,6E)-1,6-heptadiene-3,5-dione | [57] |
5 | Green tea | Cyclooxygenase-2 (COX-2) | Enzyme coated magnetic nanoparticles | (−)-Epigallocatechin-3-(3”-O-methyl)-gallate, (−)-epicatechin-3-(3”-O-methyl)-gallate | [58] |
6 | Radix Salviae Miltiorrhizae | Xanthine oxidase | Affinity selection-based 2D chromatography coupled with LC-MS | Salvianolic acid C, Salvianolic acid A | [43] |
7 | Melodinustenuicaudatus | Acetylcholinesterase (AChE) | ICERsand enzymes coated to magnetic beads | An active compound from fraction 1 | [59] |
8 | Euonymus fortunei and G. xanthochymus | GSK-3β | Magnetic beads | Fukugetin | [61] |
9 | Dioscorea nipponica | HSA | HSAfunctionalized magnetic nanoparticles | Dioscin, gracillin, pseudo-protodioscin | [51] |
10 | Radix Astragali | HSA | SPR-HPLC-MS/MS | 11 Isofalvonoids and 9 astragalosides | [53] |
11 | Eucommia ulmoides | HSA | SPR-HPLC-MS/MS | 4 Iridoids, 11 lignans, 3 flavonoids, 4 phenolic acids | [54] |
12 | Fructus polygoni orientalis | BSA | off-line2D complexation HSCCC | 3,5,7-Trihydroxychromone, taxifolin, N-cis-paprazine, N-cis-feruloyltyramine, N-trans-paprazine, N-trans-feruloyltyramine, an unidentified compound | [50] |
13 | Phellodendronchinense Schneid cortexes | Triplex DNA | triplex DNA immobilized agarose beads | Berberine, palmatine | [63] |
14 | Radix Paeoniae Rubra | β2-AR | β2-AR immobilized CE | Extract of B18-19-② | [64] |
15 | Miltiorrhiza and Coptis chinensis | alpha1-adrenoceptor (α1A-AR) and beta2-adrenoceptor (β2-AR) | immobilized on the surface of macroporous silica gel | Berberine, palmatine, jatrorrhizine | [65] |
16 | Fenugreek seed extract | SIRT6 | SIRT6 coated magnetic beads | Quercetin, vitexin | [20] |
17 | Trigonella foenum-graecum | SIRT6 | SIRT6 coated magnetic beads | Orientin and 17 other compounds | [66] |
18 | Glycyrrhiza uralensis root | Tyrosinase | Enzyme immobilized magnetic fishing coupled with HPLC-DAD-MS/MS | Liquiritinapioside, neolicuroside, liquiritigenin, licorice saponin G2, chrysoeriol, dihydrodaidzein, formononetin, glycyrrhisoflavanone, glycyrrhizic acid, licoarylcoumarin, pratensein | [60] |
19 | Mulberry leaves | Tyrosinase | Ultrafiltration LC-MS | Quercetin-3-O-(6-O-malonyl)-β-d-glucopyranoside and kaempferol-3-O-(6-O-malonyl)-β-d-glucopyranoside | [13] |
20 | Lotus leaf | Lipase | Hollow fibers | Quercetin-3-O-β-d-arabinopyranosyl-(1→2)-β-d-galactopyranoside, quercetin-3-O-β-d-glucuronide, kaempferol-3-O-β-d-glucuronide | [28] |
21 | Magnoliae cortex | Lipase | Lipase-adsorbed nanotube combined with HPLC-MS analysis | Magnotriol A, magnaldehyde B | [27] |
22 | Tang-Zhi-Qing | Maltase, invertase, lipase | Magnetic beads based multi-target affinity selection-mass spectrometry | 2,3,4,6-Tetra-O-galloyl-d-glucose, 1,2,3,4-tetra-O-galloyl-d-glucose, 1,2,3,4,6-penta-O-galloyl-d-glucose, quercetin-3-O-β-d-glucuronide, quercetin-3-O-β-d-glucoside | [67] |
23 | Radix Angelicae Dahuricae, Rhizomza Seu Radix Notopterygii, Radix Glehniae, and Fructus Cnidii | L-calcium channel receptors | vascular smooth muscle cell membrane affinity chromatography | Imperatorin and osthole | [29] |
24 | Radix sophorae flavescentis | Epidermal growth factor receptor (EGFR) | A(431)/cell membrane chromatography-HPLC/MS | Oxymatrine and matrine | [30] |
25 | Radix Polygalae | Neuronal cells | PC12 cell membrane chromatography-UHPLC-(Q)TOF-MS | Onjisaponin B | [31] |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, R.; Liu, H.; Liu, N.; Wang, Y. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules 2016, 21, 1516. https://doi.org/10.3390/molecules21111516
Zhuo R, Liu H, Liu N, Wang Y. Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules. 2016; 21(11):1516. https://doi.org/10.3390/molecules21111516
Chicago/Turabian StyleZhuo, Rongjie, Hao Liu, Ningning Liu, and Yi Wang. 2016. "Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products" Molecules 21, no. 11: 1516. https://doi.org/10.3390/molecules21111516
APA StyleZhuo, R., Liu, H., Liu, N., & Wang, Y. (2016). Ligand Fishing: A Remarkable Strategy for Discovering Bioactive Compounds from Complex Mixture of Natural Products. Molecules, 21(11), 1516. https://doi.org/10.3390/molecules21111516