Review on a Traditional Herbal Medicine, Eurycoma longifolia Jack (Tongkat Ali): Its Traditional Uses, Chemistry, Evidence-Based Pharmacology and Toxicology
Abstract
:1. Introduction
1.1. Traditional, Complementary/Alternative and Herbal Medicine
1.1.1. Traditional Medicine
1.1.2. Complementary/Alternative Medicine
1.1.3. Herbal Medicine
1.1.4. Traditional Use of Herbal Medicines
1.2. Eurycoma longifolia Jack—A Promising Herbal Medicine
1.2.1. Synonyms
1.2.2. Origin
1.2.3. Description
1.3. Genetic Diversity
2. Historical or Traditional Uses
3. Chemical Constituents
4. Analytical Methods
5. Evidenced-Based Pharmacology
5.1. Male Fertility Enhancement Effect
5.2. Antimalarial Effect
5.3. Cytotoxic and Anti-Proliferative Effect
5.4. Antimicrobial Effects
5.5. Anti-Inflammatory Effects
5.6. Anti-Anxiolytic Effect
5.7. Antidiabetic Effect
5.8. Osteoporosis Preventive Effect
5.9. Miscellaneous Effects
5.9.1. Hormonal Effects
5.9.2. Ergogenic Effects
5.9.3. Insecticidal Effects
5.9.4. Muscular Effects
5.9.5. Antiulcer Effect
5.9.6. Anti-Rheumatism Effect
6. Pharmacokinetics
6.1. Absorption
6.2. Distribution
6.3. Excretion
6.4 CYP Inhibition
6.5 Half-Life
7. Evidence-Based Toxicology
7.1. Safety and Toxicity
7.2. Precautions/Contraindications
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bodeker, G.; Ong, C.K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; World Health Organization: Geneva, Switzerland, 2005; Volume 1. [Google Scholar]
- WHO. Traditional Medicine Strategy 2002–2005; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Lancet, J. Herbal remedies and the bias against Ayurveda. Curr. Sci. 2003, 84, 1165–1166. [Google Scholar]
- Duraz, A.Y.; Khan, S.A. Knowledge, attitudes and awareness of community pharmacists towards the use of herbal medicines in muscat region. Oman Med. J. 2011, 26. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, B.; Vaidya, A.D.; Chorghade, M. Ayurveda and natural products drug discovery. Curr. Sci. Bangalore 2004, 86, 789–799. [Google Scholar]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Karim, A. Tongkat Ali (Eurycoma longifolia Jack): A review on its ethnobotany and pharmacological importance. Fitoterapia 2010, 81, 669–679. [Google Scholar] [CrossRef] [PubMed]
- AbdRahman, K.; Niiyama, K.; Azizi, R.; Appanah, S.; Iida, S. Species assembly and site preference of tree species in a primary seraya-ridge forest of Peninsular Malaysia. J. Trop. For. Sci. 2002, 14, 287–303. [Google Scholar]
- Sulaiman, B.; Jaafar, A.; Mansor, M. Some medicinal plants from Sungai Kinchin, Pahang, Malaysia. Malay. Nat. J. 1990, 43, 267. [Google Scholar]
- Chua, G.; Koh, B.; Lau, S.; Lee, S.; Mathias, M.; Turner, I.; Yong, J. The nutrient status of the plateau heath forest on Gunung Keriong, Pahang, Peninsular Malaysia. J. Trop. For. Sci. 1995, 8, 240–246. [Google Scholar]
- Chua, L.; Kamarudin, S.; Markandan, M.; Hamidah, M. A preliminary checklist of vascular plants from the Machinchang Range, Pulau Langkawi, Peninsular Malaysia. Malay. Nat. J. 2005, 57, 155–172. [Google Scholar]
- Ang, H.; Ikeda, S.; Gan, E. Evaluation of the potency activity of aphrodisiac in Eurycoma longifolia Jack. Phytother. Res. 2001, 15, 435–436. [Google Scholar] [CrossRef] [PubMed]
- Kulip, J. Medicinal plants of Sabah, Malaysia: Potential for agroforestry. JIRCAS Work. Rep. 2009, 60, 47–48. [Google Scholar]
- Adenan, M.I. Opportunities on the planting of medicinal and herbal plants in Malaysia. Planter 1999, 74, 339–342. [Google Scholar]
- Mohidin, A.; Tajudin, M.H.; YuShyun, C.; Mohtar, M.; Subramaniam, V.; Yunos, N. Sustainable production of medicinal plants through cultivation: The golden hope experience, towards modernisation of research and technology in herbal industries. In Proceedings of the Seminar on Medicinal and Aromatic Plants, Selangor Darul Ehsan, Malaysia, 24–25 July 2001; Forest Research Institute Malaysia (FRIM): Kuala Lumpur, Malaysia, 2002; pp. 22–26. [Google Scholar]
- Group, H.M.R. Compendium of Medicinal Plants used in Malaysia. Kuala Lumpur Instit. Med. Res. Malays. 2002, 345. [Google Scholar]
- Tambi, M.; Kadir, A. Eurycoma Longifolia jack: A potent adaptogen in the form of water-soluble extract with the effect of maintaining men’s health. Asian J. Androl. 2006, 8, 49–50. [Google Scholar]
- Keng, H. Orders and Families of Malayan Seed Plants; Singapore University Press: Kent Ridge, Singapore, 1978. [Google Scholar]
- Keng, H.; Keng, R.S.L. The Concise Flora of Singapore: GYMNOSPERMS and Dicotyledons; Singapore University Press: Kent Ridge, Singapore, 1990. [Google Scholar]
- Goh, S.H.; Chuah, C.; Mok, J.; Soepadmo, E. Malaysian Medicinal Plants for the Treatment of Cardiovascular Diseases; Pelanduk Publications: Petaling Jaya, Malaysia, 1995. [Google Scholar]
- Osman, A.; Jordan, B.; Lessard, P.A.; Muhammad, N.; Haron, M.R.; Riffin, N.M.; Sinskey, A.J.; Rha, C.; Housman, D.E. Genetic diversity of Eurycoma longifolia inferred from single nucleotide polymorphisms. Plant Physiol. 2003, 131, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Tnah, L.H.; Lee, C.T.; Lee, S.L.; Ng, K.K.S.; Ng, C.H.; San Hwang, S. Microsatellite markers of an important medicinal plant, Eurycoma longifolia (Simaroubaceae), for DNA profiling. Am. J. Bot. 2011, 98, e130–e132. [Google Scholar] [CrossRef] [PubMed]
- Razi, A.R.M.; Abdul-Aziz, A.; Alwee, S.S.B.S.; Aziz, R. Relationships between Malaysians Cultivars of Tongkat Ali (Eurycoma Longifolia Jack) Obtained through RAPD Analysis. Int. J. Biotechnol. Well. Ind. 2013, 2, 45–50. [Google Scholar]
- Aziz, S.; Akeng, G.; Kandasamy, K. Induction of somatic embryos from cotyledonary tissue of Tongkat Ali (Eurycoma longifolia). J. Trop. Med Plants 2000, 1, 53–59. [Google Scholar]
- Danial, M.; Keng, C.L.; Alwee, S.S.R.S.; Subramaniam, S. Seed histology of recalcitrant Eurycoma longifolia plants during germination and its beneficial attribute for hairy roots production. J. Med. Plants Res. 2005, 5, 93–98. [Google Scholar]
- Hasnida, H.; Aziah, M.; Salbiah, M.; Fadhilah, Z.; Haliza, I.; Mohamed, A.H.; Parlan, I.H.; Ibrahim, S.; Safiah Yusmah, M.; Muhammed Azmi, M. Multiplication of Shoots from in Vitro Germinated Seedlings of Eurycoma longifolia and Aquilaria malaccensis, tropical forestry research in the new millennium: Meeting demands and challenges. In Proceedings of the International Conference on Forestry and Forest Products Research (CFFPR 2001), Kuala Lumpur, Malaysia, 1–3 October 2001; Forest Research Institute Malaysia (FRIM): Kuala Lumpur, Malaysia, 2001; pp. 269–276. [Google Scholar]
- Hussein, S.; Ibrahim, R.; Kiong, A.L.P. Adventitious shoots regeneration from root and stem explants of Eurycoma longifolia Jack-an important tropical medicinal plants. Int. J. Agric. Res. 2006, 1, 183–193. [Google Scholar]
- Hussein, S.; Ibrahim, R.; Kiong, A.L.P.; Daud, S.K. Micropropagation of Eurycoma longifolia Jack via formation of somatic embryogenesis. Asian J. Plant Sci. 2005, 4, 472–485. [Google Scholar]
- Mahmood, M.; Normi, R.; Subramaniam, S. Optimization of Suitable Auxin Application in a Recalcitrant Woody Forest Plant of Eurycoma Longifolia (Tongkat Ali) for Callus Inducation. Afr. J. Biotechnol. 2010, 9, 8417–8428. [Google Scholar]
- Siregar, L.; Keng, C. In vitro shoot organogenesis of Eurycoma longifolia. Planter 2002, 78, 289–300. [Google Scholar]
- Sobri, H.; Marziah, M.; Azizol, A.; YuShyun, C.; Mohtar, M.; Subramaniam, V.; Yunos, N. Tissue Culture of Tongkat Ali (Eurycoma longifolia) for Mass Production, towards modernisation of research and technology in herbal industries. In Proceedings of the Seminar on Medicinal and Aromatic Plants, Selangor Darul Ehsan, Malaysia, 24–25 July 2001; Forest Research Institute Malaysia (FRIM): Selangor Darul Ehsan, Malaysia, 2002; pp. 18–21. [Google Scholar]
- Ling, A.P.K.; Phua, G.A.T.; Tee, C.S.; Hussein, S. Optimization of protoplast isolation protocols from callus of Eurycoma longifolia. J. Med. Plants Res. 2010, 4, 1778–1785. [Google Scholar]
- Lulu, T.; Park, S.Y.; Ibrahim, R.; Paek, K.Y. Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifolia in balloon-type bubble bioreactor system. J. Biosci. Bioeng. 2015, 119, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Jamal, J.A. Malay traditional medicine. Tech. Monit. 2006, 1, 37–49. [Google Scholar]
- Jiwajinda, S.; Santisopasri, V.; Murakami, A.; Hirai, N.; Ohigashi, H. Quassinoids from Eurycoma longifolia as plant growth inhibitors. Phytochemistry 2001, 58, 959–962. [Google Scholar] [CrossRef]
- Kuo, P.C.; Damu, A.G.; Lee, K.H.; Wu, T.S. Cytotoxic and antimalarial constituents from the roots of Eurycoma longifolia. Biorg. Med. Chem. 2004, 12, 537–544. [Google Scholar] [CrossRef]
- Hussein, S.; Ibrahim, R.; LingPick, K. A summary of reported chemical constituents and medicinal uses of Eurycoma longifolia. J. Trop. Med. Plants 2007, 8, 103–110. [Google Scholar]
- Chan, K.; Lee, S.; Sam, T.; Han, B. A quassinoid glycoside from the roots of Eurycoma longifolia. Phytochemistry 1989, 28, 2857–2859. [Google Scholar] [CrossRef]
- Darise, M.; Kohda, H.; Mizutani, K.; Tanaka, O. Eurycomanone and eurycomanol, quassinoids from the roots of Eurycoma longifolia. Phytochemistry 1982, 21, 2091–2093. [Google Scholar] [CrossRef]
- Fiaschetti, G.; Grotzer, M.; Shalaby, T.; Castelletti, D.; Arcaro, A. Quassinoids: From traditional drugs to new cancer therapeutics. Curr. Med. Chem. 2010, 18, 316–328. [Google Scholar] [CrossRef]
- Grieco, P.A.; Morre, D.M. Mode of action of the anticancer quassinoids—Inhibition of the plasma membrane NADH oxidase. Life Sci. 1998, 63, 595–604. [Google Scholar]
- Miyake, K.; Tezuka, Y.; Awale, S.; Li, F.; Kadota, S. Quassinoids from Eurycoma longifolia. J. Nat. Prod. 2009, 72, 2135–2140. [Google Scholar] [CrossRef] [PubMed]
- Mahfudh, N.; Pihie, A.H.L. Eurycomanone induces apoptosis through the up-regulation of p53 in human cervical carcinoma cells. J. Cancer Mol. 2008, 4, 109–115. [Google Scholar]
- Ang, H.H.; Hitotsuyanagi, Y.; Takeya, K. Eurycolactones A–C, novel quassinoids from Eurycoma longifolia. Tetrahedron Lett. 2000, 41, 6849–6853. [Google Scholar] [CrossRef]
- Tran, T.V.A.; Malainer, C.; Schwaiger, S.; Atanasov, A.G.; Heiss, E.H.; Dirsch, V.M.; Stuppner, H. NF-κB Inhibitors from Eurycoma longifolia. J. Nat. Prod. 2014, 77, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Athimulam, A.; Kumaresan, S.; Foo, D.C.Y.; Sarmidi, M.R.; Aziz, R. Modelling and Optimization of Eurycoma longifolia Water Extract Production. Food Bioprod. Process. 2006, 84, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Chua, L.S.; Amin, N.A.M.; Neo, J.C.H.; Lee, T.H.; Lee, C.T.; Sarmidi, M.R.; Aziz, R.A. LC-MS/MS-based metabolites of Eurycoma longifolia (Tongkat Ali) in Malaysia (Perak and Pahang). J. Chromatogr. B 2011, 879, 3909–3919. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Lee, S.; Sam, T.; Tan, S.; Noguchi, H.; Sankawa, U. 13β,18-dihydroeurycomanol, a quassinoid from Eurycoma longifolia. Phytochemistry 1991, 30, 3138–3141. [Google Scholar] [CrossRef]
- Chan, K.; Iitaka, Y.; Noguchi, H.; Sugiyama, H.; Saito, I.; Sankawa, U. 6α-Hydroxyeurycomalactone, a quassinoid from Eurycoma longifolia. Phytochemistry 1992, 31, 4295–4298. [Google Scholar] [CrossRef]
- Tada, H.; Yasuda, F.; Otani, K.; Doteuchi, M.; Ishihara, Y.; Shiro, M. New antiulcer quassinoids from Eurycoma longifolia. Eur. J. Med. Chem. 1991, 26, 345–349. [Google Scholar] [CrossRef]
- Park, S.; Nhiem, N.X.; Van Kiem, P.; Van Minh, C.; Tai, B.H.; Kim, N.; Yoo, H.H.; Song, J.H.; Ko, H.J.; Kim, S.H. Five new quassinoids and cytotoxic constituents from the roots of Eurycoma longifolia. Bioorg. Med. Chem. Lett. 2014, 24, 3835–3840. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Li, X.; Han, L.; Zhang, L.; An, W.; Li, X. Four new quassinoids from the roots of Eurycoma longifolia Jack. Fitoterapia 2014, 92, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, H.; Kishi, E.; Morita, H.; Takeya, K.; Iitaka, Y. Eurylene, a new squalene-type triterpene from Eurycoma longifolia. Tetrahedron Lett. 1991, 32, 1803–1804. [Google Scholar] [CrossRef]
- Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Iitaka, Y. Squalene derivatives from Eurycoma longifolia. Phytochemistry 1993, 34, 765–771. [Google Scholar] [CrossRef]
- Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H. Biphenylneolignans from wood of Eurycoma longifolia. Phytochemistry 1992, 31, 3993–3995. [Google Scholar] [CrossRef]
- Mitsunaga, K.; Koike, K.; Tanaka, T.; Ohkawa, Y.; Kobayashi, Y.; Sawaguchi, T.; Ohmoto, T. Canthin-6-one alkaloids from Eurycoma longifolia. Phytochemistry 1994, 35, 799–802. [Google Scholar] [CrossRef]
- Choo, C.Y.; Chan, K.L. High performance liquid chromatography analysis of canthinone alkaloids from Eurycoma longifolia. Planta Med. 2002, 68, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Choo, C.Y.; Morita, H.; Itokawa, H. High performance liquid chromatography in phytochemical analysis of Eurycoma longifolia. Planta Med. 1998, 64, 741–745. [Google Scholar] [CrossRef] [PubMed]
- Udani, J.K.; George, A.A.; Musthapa, M.; Pakdaman, M.N.; Abas, A. Effects of a proprietary freeze-dried water extract of Eurycoma longifolia (Physta) and Polygonum minus on sexual performance and well-being in men: A randomized, double-blind, placebo-controlled study. Evid. Based Complement. Altern. Med. 2014. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; O'Neill, M.J.; Phillipson, J.D.; Warhurst, D.C. Plants as Sources of Antimalarial Drugs. Part 31 Eurycoma longifolia. Planta Med. 1986, 52, 105–107. [Google Scholar] [CrossRef]
- Kardono, L.B.; Angerhofer, C.K.; Tsauri, S.; Padmawinata, K.; Pezzuto, J.M.; Kinghorn, A.D. Cytotoxic and antimalarial constituents of the roots of Eurycoma longifolia. J. Nat. Prod. 1991, 54, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Low, B.S.; Teh, C.H.; Yuen, K.H.; Chan, K.L. Physico-chemical effects of the major quassinoids in a standardized Eurycoma longifolia extract (Fr 2) on the bioavailability and pharmacokinetic properties, and their implications for oral antimalarial activity. Nat. Prod. Commun. 2011, 6, 337–341. [Google Scholar] [PubMed]
- Wernsdorfer, W.H.; Ismail, S.; Chan, K.L.; Congpuong, K.; Wernsdorfer, G. Activity of Eurycoma longifolia root extract against Plasmodium falciparum in vitro. Wien. Klinische Wochenschr. 2009, 121, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Ang, H.H.; Chan, K.L.; Mak, J.W. Effect of 7-day daily replacement of culture medium containing Eurycoma longifolia Jack constituents on the Malaysian Plasmodium falciparum isolates. J. Ethnopharmacol. 1995, 49, 171–175. [Google Scholar] [CrossRef]
- Low, B.S.; Ng, B.H.; Choy, W.P.; Yuen, K.H.; Chan, K.L. Bioavailability and pharmacokinetic studies of eurycomanone from Eurycoma longifolia. Planta Med. 2005, 71, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Ang, H.H.; Chan, K.L.; Mak, J.W. In vitro antimalarial activity of quassinoids from Eurycoma longifolia against Malaysian chloroquine-resistant Plasmodium falciparum isolates. Planta Med. J. Med. Plant Res. 1995, 61, 177–177. [Google Scholar] [CrossRef] [PubMed]
- Darise, M.; Kohda, H.; Mizutani, K.; Tanaka, O. Revision of configuration of the 12-hydroxyl group of eurycomanone and eurycomanol, quassinoids from Eurycoma longifolia. Phytochemistry 1983, 22. [Google Scholar] [CrossRef]
- Wong, P.F.; Cheong, W.F.; Shu, M.H.; Teh, C.H.; Chan, K.L.; AbuBakar, S. Eurycomanone suppresses expression of lung cancer cell tumor markers, prohibitin, annexin 1 and endoplasmic reticulum protein 28. Phytomedicine 2012, 19, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, H.; Qin, X.-R.; Morita, H.; Takeya, K. C18 and C19 quassinoids from Eurycoma longifolia. J. Nat. Prod. 1993, 56, 1766–1771. [Google Scholar] [CrossRef]
- Ang, H.; Lee, K. Effect of Eurycoma longifolia Jack on orientation activities in middle-aged male rats. Fundam. Clin. Pharmacol. 2002, 16, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Bedir, E.; Abou-Gazar, H.; Ngwendson, J.N.; Khan, I.A. Eurycomaoside: A new quassinoid-type glycoside from the roots of Eurycoma longifolia. Chem. Pharm. Bull. 2003, 51, 1301–1303. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Iitaka, Y. Highly oxygenated quassinoids from Eurycoma longifolia. Phytochemistry 1993, 33, 691–696. [Google Scholar] [CrossRef]
- Jiwajinda, S.; Santisopasri, V.; Murakami, A.; Kawanaka, M.; Kawanaka, H.; Gasquet, M.; Eilas, R.; Balansard, G.; Ohigashi, H. In vitro anti-tumor promoting and anti-parasitic activities of the quassinoids from Eurycoma longifolia, a medicinal plant in Southeast Asia. J. Ethnopharmacol. 2002, 82, 55–58. [Google Scholar] [CrossRef]
- Ang, H.H.; Hitotsuyanagi, Y.; Fukaya, H.; Takeya, K. Quassinoids from Eurycoma longifolia. Phytochemistry 2002, 59, 833–837. [Google Scholar] [CrossRef]
- Itokawa, H.; Kishi, E.; Morita, H.; Takeya, K. Cytotoxic quassinoids and tirucallane-type triterpenes from the woods of Eurycoma longifolia. Chem. Pharm. Bull. 1992, 40, 1053–1055. [Google Scholar] [CrossRef]
- Kuo, P.C.; Shi, L.S.; Damu, A.G.; Su, C.R.; Huang, C.H.; Ke, C.H.; Wu, J.B.; Lin, A.J.; Bastow, K.F.; Lee, K.H. Cytotoxic and antimalarial β-carboline alkaloids from the roots of Eurycoma longifolia. J. Nat. Prod. 2003, 66, 1324–1327. [Google Scholar] [CrossRef] [PubMed]
- Miyake, K.; Tezuka, Y.; Awale, S.; Li, F.; Kadota, S. Canthin-6-one alkaloids and a tirucallanoid from Eurycoma longifolia and their cytotoxic activity against a human HT-1080 fibrosarcoma cell line. Nat. Prod. Commun. 2010, 5, 17–22. [Google Scholar] [PubMed]
- Lin, L.C.; Peng, C.Y.; Wang, H.S.; Lee, K.W.; Wang, P.S. Reinvestigation of the chemical constituents of Eurycoma longifolia. Chin. Pharm. J. 2001, 53, 97–106. [Google Scholar]
- Souza-Almeida, E.S.; Niero, R.; Clasen, B.K.; Balogun, S.O.; Oliveira-Martins, D.T. Pharmacological mechanisms underlying the anti-ulcer activity of methanol extract and canthin-6-one of Simaba ferruginea A. St-Hil. in animal models. J. Ethnopharmacol. 2011, 134, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Donkwe, S.M.M.; Happi, E.N.; Wansi, J.D.; Lenta, B.N.; Devkota, K.P.; Neumann, B.; Stammler, H.-G.; Sewald, N. Oxidative Burst Inhibitory and Cytotoxic Activity of Constituents of the Fruits of Odyendyea gabonensis. Planta Med. 2012, 78, 1949–1956. [Google Scholar]
- Jiang, M.X.; Zhou, Y.J. Canthin-6-one alkaloids from Picrasma quassioides and their cytotoxic activity. J. Asian Nat. Prod. Res. 2008, 10, 1009–1012. [Google Scholar] [CrossRef] [PubMed]
- Varghese, C.; Ambrose, C.; Jin, S.; Lim, Y.; Keisaban, T. Antioxidant and anti-inflammatory activity of Eurycoma longifolia Jack. A traditional medicinal plant in Malaysia. Int. J. Pharm. Sci. Nanotechnol. 2013, 5, 1875–1878. [Google Scholar]
- Morimoto, Y.; Iwai, T.; Yoshimura, T.; Kinoshita, T. Diastereoselective two-directional synthesis and cation transport ability of the central tristetrahydrofuranyl unit of meso polyether glabrescol as naturally occurring podand. Bioorg. Med. Chem. Lett. 1998, 8, 2005–2010. [Google Scholar] [CrossRef]
- Hioki, H.; Yoshio, S.; Motosue, M.; Oshita, Y.; Nakamura, Y.; Mishima, D.; Fukuyama, Y.; Kodama, M.; Ueda, K.; Katsu, T. Enantioselective Total Synthesis of Eurylene, 14-Deacetyl Eurylene, and Their 11-Epimers: The Relation between Ionophoric Nature and Cytotoxicity. Org. Lett. 2004, 6, 961–964. [Google Scholar] [CrossRef] [PubMed]
- Oei-Koch, A.; Kraus, L. Inhaltsstoffe von Eurycoma longifolia Jack. I. Sterols, saponine. Plant Med 1978. [Google Scholar] [CrossRef]
- Teh, C.H.; Abdulghani, M.; Morita, H.; Shiro, M.; Hussin, A.H.; Chan, K.L. Comparative X-Ray and Conformational Analysis of a New Crystal of 13α,21-Dihydroeurycomanone with Eurycomanone from Eurycoma longifolia and Their Anti-Estrogenic Activity Using the Uterotrophic Assay. Planta Med. 2011, 77, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Siregar, L.A.M.; Keng, C.L.; Lim, B.P. Effects of medium constituents on growth and canthinone accumulation in cell suspension cultures of Eurycoma longifolia Jack. HAYATI J. Biosci. 2009, 16, 69–77. [Google Scholar] [CrossRef]
- Mahmud Siregar, L.A.; Peng-Lim, B.; Lai-Keng, C. Effect of cell source and pH of culture medium on the production of canthin-6-one alkaloids from the cell cultures of Tongkat Ali (Eurycoma longifolia Jack). J. Plant Biotechnol. 2004, 6, 125–130. [Google Scholar]
- Maziah, M.; Rosli, N. The Production of 9-methoxycanthin-6-one from Callus Cultures of (Eurycoma longifolia Jack) Tongkat Ali. In Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants; (Methods in Molecular Biology) Saxena, P.K., Jain, S.M., Eds.; Humana Press: New York, NY, USA, 2009; Volume 547, pp. 359–369. [Google Scholar]
- Kuo, P.C.; Damu, A.G.; Wu, T.S. Characterization of the water soluble fraction from the root extract of Eurycoma longifolia. Chin. Pharm. J. 2003, 55, 257–265. [Google Scholar]
- Asiah, O.; Nurhanan, M.; Mohd Ilham, A. Determination of bioactive peptide (4.3 kDa) as an aphrodisiac marker in six Malaysian plants. J. Trop. For. Sci. 2007, 19, 61–63. [Google Scholar]
- Lugnataweepon, I.; Pleuktivorapongkul, A.; Sirithunyalug, J.; Leesawat, P.; Charumanee, S.; Yotsawimonwat, S. Effects of herbal powder composition on flow and compaction properties. In Proceedings of the Kasetsart University Annual Conference, Kasetsart, Thailand, 1–4 February 2011; Kasetsart University: Bangkok, Thailand, 2011; Volume 1, pp. 113–120. [Google Scholar]
- Rauh, M.; Groschl, M.; Rascher, W. Simultaneous quantification of ghrelin and desacyl-ghrelin by liquid chromatography-tandem mass spectrometry in plasma, serum, and cell supernatants. Clin. Chem. 2007, 53, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Tareke, E.; Bowyer, J.F.; Doerge, D.R. Quantification of rat brain neurotransmitters and metabolites using liquid chromatography/electrospray tandem mass spectrometry and comparison with liquid chromatography/electrochemical detection. Rapid Commun. Mass Spectrom. 2007, 21, 3898–3904. [Google Scholar] [CrossRef] [PubMed]
- Biesaga, M.; Pyrzynska, K. Liquid chromatography/tandem mass spectrometry studies of the phenolic compounds in honey. J. Chromatogr. 2009, 1216, 6620–6626. [Google Scholar] [CrossRef] [PubMed]
- Canabate-Diaz, B.; Segura Carretero, A.; Fernandez-Gutierrez, A.; Belmonte Vega, A.; Garrido Frenich, A.; Martínez Vidal, J.; Duran Martos, J. Separation and determination of sterols in olive oil by HPLC-MS. Food Chem. 2007, 102, 593–598. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef]
- Guo, Z.; Vangapandu, S.; Sindelar, R.; Walker, L.; Sindelar, R. Biologically active quassinoids and their chemistry: Potential leads for drug design. Curr. Med. Chem. 2005, 12, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Curcino Vieira, I.J.; Braz-Felho, R. Quassinoids: Structural diversity, biological activity and synthetic studies. Stud. Nat. Prod. Chem. 2006, 33, 433–492. [Google Scholar]
- Tan, S.; Yuen, K.H.; Chan, K.L. HPLC analysis of plasma 9-methoxycanthin-6-one from Eurycoma longifolia and its application in a bioavailability/pharmacokinetic study. Planta Med. 2002, 68, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Teh, C.H.; Murugaiyah, V.; Chan, K.L. Developing a validated liquid chromatography-mass spectrometric method for the simultaneous analysis of five bioactive quassinoid markers for the standardization of manufactured batches of Eurycoma longifolia Jack extract as antimalarial medicaments. J. Chromatogr. 2011, 1218, 1861–1877. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Jang, M.; Kim, I.S.; Kim, S.H.; Yoo, H.H. Simultaneous quantitation of six major quassinoids in Tongkat Ali dietary supplements by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2015, 38, 2260–2266. [Google Scholar] [CrossRef] [PubMed]
- Said, M.M.; Gibbons, S.; Moffat, A.C.; Zloh, M. Rapid detection of sildenafil analogue in Eurycoma longifolia products using a new two-tier procedure of the near infrared (NIR) spectra database. Food Chem. 2014, 158, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Sharlip, I.D.; Jarow, J.P.; Belker, A.M.; Lipshultz, L.I.; Sigman, M.; Thomas, A.J.; Schlegel, P.N.; Howards, S.S.; Nehra, A.; Damewood, M.D. Best practice policies for male infertility. Fertil. Steril. 2002, 77, 873–882. [Google Scholar] [CrossRef]
- Brugh, V.M., III; Lipshultz, L.I. Male factor infertility: Evaluation and management. Med. Clin. N. Am. 2004, 88, 367–385. [Google Scholar] [CrossRef]
- Hirsh, A. Male subfertility. BMJ 2003, 327, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, A.; Bano, F.; Singh, R.; Singh, R.; Siddiqui, M.; Hasan, M. Seminal plasma superoxide dismutase and catalase activities in infertile men. Med. Sci. Res. 1999, 27, 201–203. [Google Scholar]
- Cooper, T.G.; Noonan, E.; Von Eckardstein, S.; Auger, J.; Baker, H.G.; Behre, H.M.; Haugen, T.B.; Kruger, T.; Wang, C.; Mbizvo, M.T. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 2010, 16, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Bano, F.; Singh, R.; Singh, R.; Siddiqui, M.; Mahdi, A. Seminal plasma lipid peroxide levels in infertile men. J. Endocrinol. Reprod. 1999, 3, 20–28. [Google Scholar]
- Sikka, S.C. Relative impact of oxidative stress on male reproductive function. Curr. Med. Chem. 2001, 8, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Low, B.S.; Das, P.K.; Chan, K.L. Standardized quassinoid-rich Eurycoma longifolia extract improved spermatogenesis and fertility in male rats via the hypothalamic-pituitary-gonadal axis. J. Ethnopharmacol. 2013, 145, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Low, B.S.; Choi, S.B.; Wahab, H.A.; Das, P.K.; Chan, K.L. Eurycomanone, the major quassinoid in Eurycoma longifolia root extract increases spermatogenesis by inhibiting the activity of phosphodiesterase and aromatase in steroidogenesis. J. Ethnopharmacol. 2013, 149, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Phang, W.M.; Mu, A.K.W.; Chan, C.K.; Low, B.S.; Sasidharan, S.; Chan, K.L. Decreased expression of alpha-2-HS glycoprotein in the sera of rats treated with Eurycoma longifolia extract. Front. Pharmacol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.B.; Wan Mohammad, W.M.Z.; George, A.; Nik Hussain, N.H.; Musthapa Kamal, Z.M.; Liske, E. Randomized clinical trial on the Use of PHYSTA freeze-dried water extract of Eurycoma longifolia for the improvement of quality of life and sexual well-being in Men. Evid. Based Complement. Altern. Med. 2012. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Low, B.S.; Teh, C.H.; Das, P.K. The effect of Eurycoma longifolia on sperm quality of male rats. Nat. Prod. Commun. 2009, 4, 1331–1336. [Google Scholar] [PubMed]
- Ang, H.; Ngai, T. Aphrodisiac evaluation in non-copulator male rats after chronic administration of Eurycoma longifolia Jack. Fundam. Clin. Pharmacol. 2001, 15, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.K.; Mohamad, W.M.Z.W.; Ooi, F.K.; Ismail, S.B.; Abdullah, M.R.; George, A. Supplementation of Eurycoma longifolia Jack Extract for 6 Weeks Does Not Affect Urinary Testosterone: Epitestosterone Ratio, Liver and Renal Functions in Male Recreational Athletes. Int. J. Prev. Med. 2014, 5, 728–733. [Google Scholar] [PubMed]
- Ang, H.; Ngai, T.; Tan, T. Effects of Eurycoma longifolia Jack on sexual qualities in middle aged male rats. Phytomedicine 2003, 10, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Wahab, N.A.; Mokhtar, N.M.; Halim, W.N.H.A.; Das, S. The effect of Eurycoma longifolia Jack on spermatogenesis in estrogen-treated rats. Clinics 2010, 65, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Tambi, M.; Imran, M.K. Eurycoma longifolia Jack in managing idiopathic male infertility. Asian J. Androl. 2010, 12, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, N.; Solomon, M.; Fortuin, K.; Henkel, R. Effect of Eurycoma longifolia Jack (Tongkat ali) extract on human spermatozoa in vitro. Andrologia 2012, 44, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Noor, M.M.; Nor, A.H.S.M.; Hassan, L.C. The effect of Eurycoma longifolia Jack (Tongkat Ali) on sexual behaviour and sperm quality in rats. Malays. J. Pharm. Sci. 2004, 2, 53–60. [Google Scholar]
- Mohd Effendy, N.; Mohamed, N.; Muhammad, N.; Naina Mohamad, I.; Shuid, A.N. Eurycoma longifolia: Medicinal plant in the prevention and treatment of male osteoporosis due to androgen deficiency. Evid. Based Complement. Altern. Med. 2012. [CrossRef] [PubMed]
- Solomon, M.; Erasmus, N.; Henkel, R. In vivo effects of Eurycoma longifolia Jack (Tongkat Ali) extract on reproductive functions in the rat. Andrologia 2014, 46, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Tambi, M.; Imran, M.; Henkel, R. Standardised water-soluble extract of Eurycoma longifolia, Tongkat ali, as testosterone booster for managing men with late-onset hypogonadism? Andrologia 2012, 44, 226–230. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Henkel, R. Phytoandrogenic properties of Eurycoma longifolia as natural alternative to testosterone replacement therapy. Andrologia 2014, 46, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, P.; Zavatti, M.; Montanari, C.; Baraldi, M. Influence of Eurycoma longifolia on the copulatory activity of sexually sluggish and impotent male rats. J. Ethnopharmacol. 2009, 126, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Ang, H.H.; Sim, M.K. Eurycoma longifolia increases sexual motivation in sexually naive male rats. Arch. Pharm. Res. 1998, 21, 779–781. [Google Scholar] [CrossRef] [PubMed]
- Qinna, N.; Taha, H.; Matalka, K.; Badwan, A. A new herbal combination, Etana, for enhancing erectile function: An efficacy and safety study in animals. Int. J. Impot. Res. 2009, 21, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Frydrychova, S.; Opletal, L.; Macakova, K.; Lustykova, A.; Rozkot, M.; Lipensky, J. Effects of herbal preparation on libido and semen quality in boars. Reprod. Domest. Anim. 2011, 46, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Kotirum, S.; Ismail, S.B.; Chaiyakunapruk, N. Efficacy of Tongkat Ali (Eurycoma longifolia) on erectile function improvement: Systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2015, 23, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Henkel, R.R.; Wang, R.; Bassett, S.H.; Chen, T.; Liu, N.; Zhu, Y.; Tambi, M.I. Tongkat Ali as a potential herbal supplement for physically active male and female seniors—A pilot study. Phytother. Res. 2014, 28, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Nadjm, B.; Behrens, R.H. Malaria: An Update for Physicians. Infect. Dis. Clin. North Am. 2012, 26, 243–259. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. “World Malaria Report: 2012. Geneva: WHO, 2012”. Fecha Consult. 2015, 23, 247. [Google Scholar]
- Taylor, W.R.; Hanson, J.; Turner, G.D.; White, N.J.; Dondorp, A.M. Respiratory Manifestations of Malaria Lung in Malaria. Chest J. 2012, 142, 492–505. [Google Scholar] [CrossRef] [PubMed]
- MAR, M.R.; Noor Rain, A.; Zhari, I.; Zakiah, I. Effect of Eurycoma longifolia extract on the Glutathione level in Plasmodium falciparum infected erythrocytes in vitro. Trop. Biomed. 2005, 22, 155–163. [Google Scholar]
- Cancer Statistics? Cancer Research UK. Available online: http://www.cancerresearchuk.org/health-professional/cancer-statistics (accessed on 3 March 2016).
- Rubinstein, L.; Shoemaker, R.; Paull, K.; Simon, R.; Tosini, S.; Skehan, P.; Scudiero, D.; Monks, A.; Boyd, M. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst. 1990, 82, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.; Chang, F.R.; Wang, H.K.; Park, Y.K.; Ikegaki, M.; Kilgore, N.; Lee, K.H. Anti-AIDS agents. 48. 1 Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J. Nat. Prod. 2001, 64, 1278–1281. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Tanaka, O. New quassinoids from the roots of Eurycoma longifolia. Chem. Lett. 1990, 44, 749–752. [Google Scholar] [CrossRef]
- Mahfudh, N. Eurycomanone exert antiproliferative activity via apoptosis in hela cells. In Proceedings of the International Conference on Mathematics and Natural sciences (ICMNS), Bandung, Indonesia, 29–30 November 2006.
- Tong, K.L.; Chan, K.L.; AbuBakar, S.; Low, B.S.; Ma, H.Q.; Wong, P.F. The In Vitro and In Vivo Anti-Cancer Activities of a Standardized Quassinoids Composition from Eurycoma longifolia on LNCaP Human Prostate Cancer Cells. PLoS ONE 2015, 10, e121752. [Google Scholar] [CrossRef] [PubMed]
- Hajjouli, S.; Chateauvieux, S.; Teiten, M.H.; Orlikova, B.; Schumacher, M.; Dicato, M.; Choo, C.Y.; Diederich, M. Eurycomanone and Eurycomanol from Eurycoma longifolia Jack as Regulators of Signaling Pathways Involved in Proliferation, Cell Death and Inflammation. Molecules 2014, 19, 14649–14666. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, K.; Toume, K.; Arai, M.A.; Koyano, T.; Kowithayakorn, T.; Mizoguchi, T.; Itoh, M.; Ishibashi, M. 9-Hydroxycanthin-6-one, a β-Carboline Alkaloid from Eurycoma longifolia, Is the First Wnt Signal Inhibitor through Activation of Glycogen Synthase Kinase 3β without Depending on Casein Kinase 1α. J. Nat. Prod. 2015, 78, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Pear, W.S.; Miller, J.P.; Xu, L.; Pui, J.C.; Soffer, B.; Quackenbush, R.C.; Pendergast, A.M.; Bronson, R.; Aster, J.C.; Scott, M.L. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998, 92, 3780–3792. [Google Scholar] [PubMed]
- O’Brien, S.; Berman, E.; Devetten, M.; Network, N.C.C. NCCN Clinical Practice Guidelines in Oncology: Chronic Myelogenous Leukemia. Version 2. 2010. Available online: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp (accessed on 3 March 2016).
- Kim, D.W.; Goh, Y.T.; Hsiao, H.H.; Caguioa, P.B.; Kim, D.; Kim, W.S.; Saikia, T.; Agrawal, S.; Roy, A.; Dai, D. Clinical profile of dasatinib in Asian and non-Asian patients with chronic myeloid leukemia. Int. J. Hematol. 2009, 89, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Druker, B.J. STI571 (Gleevec™) as a paradigm for cancer therapy. Trends Mol. Med. 2002, 8, S14–S18. [Google Scholar] [CrossRef]
- Deininger, M.W.; Goldman, J.M.; Melo, J.V. The molecular biology of chronic myeloid leukemia. Blood 2000, 96, 3343–3356. [Google Scholar] [PubMed]
- Al-Salahi, O.S.A.; Ji, D.; Majid, A.M.S.A.; Kit-Lam, C.; Abdullah, W.Z.; Zaki, A.; Din, S.K.K.J.; Yusoff, N.M.; Majid, A.S.A. Anti-tumor activity of Eurycoma longifolia root extracts against K-562 cell line: In vitro and in vivo study. PLoS ONE 2014, 9, e83818. [Google Scholar] [CrossRef]
- Tee, T.T.; Cheah, Y.H.; Hawariah, L.P.A. F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells. Anticancer Res. 2007, 27, 3425–3430. [Google Scholar] [PubMed]
- Tee, T.T.; Azimahtol, H.L.P. Induction of apoptosis by Eurycoma longifolia Jack extracts. Anticancer Res. 2005, 25, 2205–2213. [Google Scholar] [PubMed]
- Chung, A.S.; Ferrara, N. Developmental and pathological angiogenesis. Annu. Rev. Cell. Dev. Biol. 2011, 27, 563–584. [Google Scholar] [CrossRef] [PubMed]
- Herbert, S.P.; Stainier, D.Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Boil. 2011, 12, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Duda, D.G.; Xu, L.; Munn, L.L.; Boucher, Y.; Fukumura, D.; Jain, R.K. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 2011, 91, 1071–1121. [Google Scholar] [CrossRef] [PubMed]
- Frater, J.L.; Kay, N.E.; Goolsby, C.L.; Crawford, S.E.; Dewald, G.W.; Peterson, L.C. Dysregulated angiogenesis in B-chronic lymphocytic leukemia: Morphologic, immunohistochemical, and flow cytometric evidence. Diagn. Pathol. 2008, 3. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, C.; Quesada, A.R.; Medina, M.A. Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene. PLoS ONE 2011, 6, e23407. [Google Scholar] [CrossRef]
- Al-Salahi, O.S.A.; Kit-Lam, C.; Majid, A.M.S.A.; Al-Suede, F.S.R.; Mohammed Saghir, S.A.; Abdullah, W.Z.; Ahamed, M.B.K.; Yusoff, N.M. Anti-angiogenic quassinoid-rich fraction from Eurycoma longifolia modulates endothelial cell function. Microvasc. Res. 2013, 90, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Al-Salahi, O.S.A.; Zaki, A.H.; Chan, K.L.; Shah, A.M.; Al-Hassan, F.; Abdullah, W.Z.; Yusoff, N.M. In vitro Anti-proliferative and Apoptotic Activities of Eurycoma longifolia Jack (Simaroubaceae) on HL-60 Cell Line. Trop. J. Pharm. Res. 2013, 12, 57–61. [Google Scholar] [CrossRef]
- Nurhanan, M.; Hawariah, L.; Ilham, A.M.; Shukri, M. Cytotoxic effects of the root extracts of Eurycoma longifolia Jack. Phytother. Res. 2005, 19, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Razak, M.F.A.; Aidoo, K.E.; Candlish, A.G. Mutagenic and cytotoxic properties of three herbal plants from Southeast Asia. Trop. Biomed. 2007, 24, 49–59. [Google Scholar]
- Farouk, A.E.; Benafri, A. Antibacterial activity of Eurycoma longifolia Jack. A Malaysian medicinal plant. Saudi Med. J. 2007, 28, 1422–1424. [Google Scholar] [PubMed]
- Farouk, A.; Nawi, M.; Hassan, S. Antibacterial peptides from Euycoma longifolia (Tongkat Ali) and Labisia pumila (Kacip Fatimah) leaves in Malaysia. Sci. Brun 2008, 9, 55–63. [Google Scholar]
- Kong, C.; Yehye, W.A.; Rahman, N.A.; Tan, M.W.; Nathan, S. Discovery of potential anti-infectives against Staphylococcus aureus using a Caenorhabditis elegans infection model. BMC Complement. Altern. Med. 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Hai Dang, N.; Choo, Y.Y.; Tien Dat, N.; Hoai Nam, N.; Van Minh, C.; Lee, J.H. 7-Methoxy-(9H-β-Carbolin-1-il)-(E)-1-Propenoic Acid, a β-Carboline Alkaloid From Eurycoma longifolia, Exhibits Anti-Inflammatory Effects by Activating the Nrf2/Heme Oxygenase-1 Pathway. J. Cell. Biochem. 2015, 117, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Ang, H.H.; Cheang, H.S. Studies on the anxiolytic activity of Eurycoma longifolia Jack roots in mice. Jpn. J. Pharmacol. 1999, 79, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Talbott, S.M.; Talbott, J.A.; George, A.; Pugh, M. Effect of Tongkat Ali on stress hormones and psychological mood state in moderately stressed. J. Int. Soc. Sports Nutr. 2013, 10. [Google Scholar] [CrossRef] [PubMed]
- Husen, R.; Pihie, A.H.L.; Nallappan, M. Screening for antihyperglycaemic activity in several local herbs of Malaysia. J. Ethnopharmacol. 2004, 95, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Lahrita, L.; Kato, E.; Kawabata, J. Uncovering potential of Indonesian medicinal plants on glucose uptake enhancement and lipid suppression in 3T3-L1 adipocytes. J. Ethnopharmacol. 2015, 168, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.K. Male Osteoporosis. Drugs Aging 2005, 22, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J.; Atkinson, E.J.; O'Connor, M.K.; O'Fallon, W.M.; Riggs, B.L. Bone density and fracture risk in men. J. Bone Miner. Res. 1998, 13, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.J.; Chrischilles, E.A.; Cooper, C.; Lane, A.W.; Riggs, B.L. How many women have osteoporosis? J. Bone Miner. Res. 2005, 20, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.; Johnell, O.; Oden, A.; Sernbo, I.; Redlund-Johnell, I.; Dawson, A.; De Laet, C.; Jonsson, B. Long-term risk of osteoporotic fracture in Malmö. Osteoporos. Int. 2000, 11, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Shuid, A.N.; Abu Bakar, M.F.; Abdul Shukor, T.A.; Muhammad, N.; Mohamed, N.; Soelaiman, I.N. The anti-osteoporotic effect of Eurycoma longifolia in aged orchidectomised rat model. Aging Male 2011, 14, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Saad, J. Biochemical Effect of Eurycoma longifolia Jack on the Sexual Behavior, Fertility, Sex Hormone, and Glycolysis. Ph.D. Thesis, University of Malaysia, Kuala Lumpur, Malaysia, 1993. [Google Scholar]
- Hooi Hoon, A.; Cheang, H.S.; Yusof, A.P.M. Effects of Eurycoma longifolia Jack (Tongkat Ali) on the initiation of sexual performance of inexperienced castrated male rats. Exp. Anim. 2000, 49, 35–38. [Google Scholar]
- Moreira, S.G., Jr.; Brannigan, R.E.; Spitz, A.; Orejuela, F.J.; Lipshultz, L.I.; Kim, E.D. Side-effect profile of sildenafil citrate (Viagra) in clinical practice. Urology 2000, 56, 474–476. [Google Scholar] [CrossRef]
- Sahelian, R. Natural Sex Boosters: Supplements That Enhance Stamina, Sensation, and Sexuality for Men and Women; Square One Publishers, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M. Free Radicals in Biology and Medicine; Oxford university press Oxford: Croydon, UK, 1999; Volume 3. [Google Scholar]
- Wauquier, F.; Leotoing, L.; Coxam, V.; Guicheux, J.; Wittrant, Y. Oxidative stress in bone remodelling and disease. Trends Mol. Med. 2009, 15, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Saadiah Abdul Razak, H.; Shuid, A.N.; Naina Mohamed, I. Combined effects of Eurycoma longifolia and testosterone on androgen-deficient osteoporosis in a male rat model. Evid. Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef]
- Shuid, A.N.; El-arabi, E.; Effendy, N.M.; Razak, H.S.A.; Muhammad, N.; Mohamed, N.; Soelaiman, I.N. Eurycoma longifolia upregulates osteoprotegerin gene expression in androgen-deficient osteoporosis rat model. BMC Complement. Altern. Med. 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Abdulghani, M.; Hussin, A.H.; Sulaiman, S.A.; Chan, K.L. The ameliorative effects of Eurycoma longifolia Jack on testosterone-induced reproductive disorders in female rats. Reprod. Biol. 2012, 12, 247–255. [Google Scholar] [CrossRef]
- Muhamad, A.S.; Keong, C.C.; Kiew, O.F.; Abdullah, M.R. Eurycoma longifolia Jack: Medicinal properties and its effect on endurance exercise performance. Asian J. Exerc. Sports Sc. 2009, 6, 39–43. [Google Scholar]
- Ulbricht, C.; Conquer, J.; Flanagan, K.; Isaac, R.; Rusie, E.; Windsor, R.C. An Evidence-Based Systematic Review of Tongkat Ali (Eurycoma longifolia) by the Natural Standard Research Collaboration. J. Diet. Suppl. 2013, 10, 54–83. [Google Scholar] [CrossRef] [PubMed]
- Jantan, I.; Zaki, Z.; Ahmad, A.; Ahmad, R. Evaluation of smoke from mosquito coils containing Malaysian plants against Aedes aegypti. Fitoterapia 1999, 70, 237–243. [Google Scholar] [CrossRef]
- Girish, S.; Kumar, S.; Aminudin, N. Tongkat Ali (Eurycoma longifolia): A possible therapeutic candidate against Blastocystis sp. Parasites Vectors 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- Ang, H.H.; Cheang, H.S. Effects of Eurycoma longifolia Jack on laevator ani muscle in both uncastrated and Testosterone-Stimulated castrated intact male rats. Arch. Pharmacal Res. 2001, 24, 437–440. [Google Scholar] [CrossRef]
- Qodriyah, H.; Asmadi, A. Eurycoma longifolia in Radix (TM) for the Treatment of Ethanol-induced Gastric Lesion in Rats. Pak. J. Biol. Sci. 2013, 16. [Google Scholar] [CrossRef]
- Bich, D.; Chung, D.; Chuong, B.; Dong, N.; Dam, D.; Hien, P.; Lo, V.; Mai, P.; Man, P.; Nhu, D. The medicinal plants and animals in Vietnam. Hanoi Sci. Technol. Publ. House Hanoi 2004, 1, 224. [Google Scholar]
- Chan, K.L.; Low, B.S.; San Ho, D.S. Polar Organic Extract of Eurycoma longifolia. U.S. Patent 20100221370 A1, 2 September 2010. [Google Scholar]
- Pan, Y.; Tiong, K.H.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W.; Ong, C.E. Effect of eurycomanone on cytochrome P450 isoforms CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2E1 and CYP3A4 in vitro. J. Nat. Med. 2014, 68, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Kim, I.S.; Rehman, S.U.; Choe, K.; Yoo, H.H. In Vitro Evaluation of the Effects of Eurycoma longifolia Extract on CYP-Mediated Drug Metabolism. Evid. Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef]
- Satayavivad, J.; Noppamas, S.; Aimon, S.; Yodhathai, T. Toxicological and antimalaria activity of Eurycoma longifolia Jack extracts in mice. Thai J. Phytopharm. 1998, 5, 14–27. [Google Scholar]
- Shuid, A.; Siang, L.; Chin, T.; Muhammad, N.; Mohamed, N.; Soelaiman, I. Acute and Subacute Toxicity Studies of Eurycoma longifolia in Male Rats. Int. J. Pharm. 2011, 7, 641–646. [Google Scholar] [CrossRef]
- Choudhary, Y.K.; Bommu, P.; Ming, Y.K.; Zulkawi, N.B. Acute, sub-acute, and subchronic 90-days toxicity of Eurycoma longifolia aqueous extract (Physta) in wistar rats. Int. J. Pharm. Pharm. Sci. 2012, 4, 232–238. [Google Scholar]
- Bhasin, S.; Cunningham, G.R.; Hayes, F.J.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Montori, V.M. Testosterone therapy in men with androgen deficiency syndromes: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2010, 95, 2536–2559. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Liao, J.W.; Liao, P.L.; Huang, W.K.; Tse, L.S.; Lin, C.H.; Kang, J.J.; Cheng, Y.W. Evaluation of Acute 13-Week Subchronic Toxicity and Genotoxicity of the Powdered Root of Tongkat Ali (Eurycoma longifolia Jack). Evid. Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Hamoud, H.; Qamar, U. Effect of long-term use of Eurycoma longifolia Jack on the pancreas in rats. Histol. Assess. 2013, 2, 22–25. [Google Scholar]
- Low, B.S.; Das, P.K.; Chan, K.L. Acute, Reproductive Toxicity and Two-generation Teratology Studies of a Standardized Quassinoid-rich Extract of Eurycoma longifolia Jack in Sprague-Dawley Rats. Phytother. Res. 2014, 28, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Guidance for Industry, Estimating the Maximum Safe Starting Dose in Initial Critical Trials for Therapeutics in Adult Healthy Volunteers. Available online: http://www.fda.gov/downloads/Drugs/.../Guidances/UCM078932.pdf (accessed on 3 March 2016).
- Salman, S.; Amrah, S.; Wahab, M.; Ismail, Z.; Ismail, R.; Yuen, K.; Gan, S. Modification of propranolol’s bioavailability by Eurycoma longifolia water-based extract. J. Clin. Pharm. Ther. 2010, 35, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Jellin, J.M.; Batz, F.; Hitchens, K. Natural Medicines Comprehensive Database; Therapeutic Research Faculty: Stockton, CA, USA, 2016. [Google Scholar]
- Bramwell, D. How many plant species are there? Plant Talk 2002, 28, 32–34. [Google Scholar]
- Verpoorte, R.; van der Heijden, R.; Memelink, J. Engineering the plant cell factory for secondary metabolite production. Transgenic Res. 2000, 9, 323–343. [Google Scholar] [CrossRef] [PubMed]
- Wolfender, J.L.; Ndjoko, K.; Hostettmann, K. Liquid chromatography with ultraviolet absorbance-mass spectrometric detection and with nuclear magnetic resonance spectrometry: A powerful combination for the on-line structural investigation of plant metabolites. J. Chromatogr. 2003, 1000, 437–455. [Google Scholar] [CrossRef]
- Vuorela, P.; Leinonen, M.; Saikku, P.; Tammela, P.; Wennberg, T.; Vuorela, H. Natural products in the process of finding new drug candidates. Curr. Med. Chem. 2004, 11, 1375–1389. [Google Scholar] [CrossRef]
Chemical Compounds Isolated | Plant Parts | Pharmacological Effects | References (Isolation & Pharmacological Effects) |
---|---|---|---|
Eurycomanone (C20) 13α,21-Dihydroeurycomanone 13α(21)-Epoxyeurycomanone 13β-Methyl,21-dihydroeurycomanone 12-Acetyl-13,21-dihydoeurycomanone 15-Acetyl-13α(21)-epoxyeurycomanone 12,15-Diacetyl-13α(21)-epoxyeurycomanone 1β,12α,15β-Triacetyleurycomanone | Roots | Increased testosterone production Improved spermatogenesis Expression Suppression of lung cancer cell tumor markers, prohibitin, annexin 1 and endoplasmic reticulum protein 28 Cytotoxicity against human lung cancer (A-549), and human breast cancer (MCF-7) cell lines Antimalarial against P. falciparum NF-κB inhibitor Anti-estrogenic activity | [36,39,45,51,58,59,60,61,62,63,64,65,66,67,68] |
Eurycomanol (C20) Eurycomanol-2-O-β-d-glucoside 13β,18-Dihydroeurycomanol 13β,21-Dihydroxyeurycomanol | Roots | Antimalarial against P. falciparum | [36,39,48,52,58,59,60,64,66,67] |
5α,14β,15β-Trihydroxyklaineanone 11-Dehydroklaineanone 12-epi-11-Dehydroklaineanone 14,15β-Dihydroxyklaineanone 15β-Hydroxyklaineanone 15β-Acetyl-14-hydroxyklaineanone | Leaves, Roots | Cytotoxicity against human lung cancer (A-549), and human breast cancer (MCF- 7) cell lines NF-κB inhibitor | [35,36,45,48,51,58,69] |
Laurycolactones A and B (C18) | Roots | Cytotoxicity against human HT1080 | [42,69] |
Eurycomalactone (C19) 6α-Hydroxyeurycomalactone 7α-Hydroxyeurycomalactone 5,6-Dehydroeurycomalactone Eurycomadilactone (C20) 5-iso-Eurycomadilactone 13-epi- Eurycomadilactone | Roots | Cytotoxicity against human lung cancer (A-549), breast cancer (MCF- 7) and gastric cancer (MGC-803) cell lines Cytotoxicity against human HT1080 cells Antimalarial against P. falciparum | [36,45,49,51,58,59,61,69,70] |
Eurycomalides A and B (C19) Eurycomalide C Eurycomalide D Eurycomalide E | Roots | Cytotoxicity against human lung cancer (A-549), and human breast cancer (MCF-7) cell lines NF-κB inhibitor | [36,42,45] |
Eurycomaoside | Roots | ENR | [71] |
Longilactone (C19) 6-Dehydroxylongilactone 11-Dehydroklaineanone | Leaves, Roots | Cytotoxicity against human HT1080 Cytotoxicity against human lung cancer (A-549), and human breast cancer (MCF-7) cell lines Compounds possess anti-tumor promoting, antischistosomal and plasmodicidal activities NF-κB inhibitor | [36,42,45,58,69,72,73] |
Eurycolactone A(C20) Eurycolactone B(C18) Eurycolactone D (C18) Eurycolactones E, F (C19) | Roots | Cytotoxicity against human HT1080 NF-κB inhibitor | [42,44,45,51,74] |
Eurylactones A and B (C18) Eurylactones E, F and G (C19) | ENR | [51,69,75] | |
Canthin-6-one alkaloids 9-Methoxycanthin-6-one 9-Hydroxycanthin-6-one 9-Methoxycanthin-6-one-N-oxide 9-Hydroxycanthin-6-one-N-oxide 1-Hydroxy-9-methoxycanthin-6-one 5-Hydroxymethyl-9-methoxycanthin-6- 10-Hydroxycanthin-6-one 10-Hydroxy-9-methoxycanthin-6-one 10-Hydroxy-11-methoxycanthin-6-one 11-Hydroxy-10-methoxycanthin-6-one 4,9-Dimethoxycanthin-6-one 5,9-Dimethoxycanthin-6-one 9,10-Dimethoxycanthin-6-one 9-Methoxy-3-methylcanthin-5,6-dione | Plant (bark, Stem and Roots) | Oxidative burst inhibitory, and cytotoxic activity Cytotoxicity against human lung cancer (A-549), and human breast cancer (MCF-7) cell lines Antimalarial against P. falciparum Anti-ulcer activity NF-κB inhibitor Active cytotoxicity against human cancer cell types (breast, colon, fibrosarcoma, lung, melanoma, KB) and murine lymphocytic leukemia (P-388) | [36,45,62,69,76,77,78,79,80,81] |
β-Carboline alkaloids 7-Hydroxy-β-carboline-1-propionic acid 1-Methoxymethyl-β-carboline n -pPentyl β-carboline-1-propionate β-Cararboline-1-propionic acid β-7-Methoxycarboline-1-propionic acid | Roots | Antimalarial against P. falciparum Anti-inflammatory effect via NF-κB inhibition | [56,61,76,82] |
Biphenyl neolignans 2-Hydroxy-3,2-dimethoxy-4-(2,3-epoxy-1-hydroxypropyl)-5-(3-hydroxy-1-propenyl)-biphenyl 2-Hydroxy-3,2,6-trimethoxy-4-(2,3-epoxy-1-hydroxypropyl)-5-(3-hydroxy-1-propenyl)-biphenyl | Stem | ENR | [47,55] |
Squalene-type triterpenes Eurylene 14-Deacetyleurylene Longilene peroxide Teurilene | Stem | Cytotoxicity Cytotoxic activity against KB cells | [54,83,84] |
Phytosterols (Campesterol, stigmasterol, sitosterol) Saponins | Plant | ENR | [85] |
Pasakbumin-A, -B, -C, -D (C20) | Roots | Anti-ulcer Cytotoxicity against human lung cancer (A-549) and human breast cancer (MCF-7) cell lines | [36,50] |
Tirucallane-type triterpenes (Niloticin, dihydroniloticin, piscidinol A, bourjotinolone A, 3-episapelin A, melianone, and hispidone) | Stem | Anti-cancer activity against ovarian leukemia and renal cell lines | [69] |
Tirucallane-type triterpenoid 23,24,25-Trihydroxytirucall-7-en-3,6-dione | Stem | ENR | [77] |
Oxasqualenoid | Stem | ENR | [77] |
Anthraquinones and anthraquinone glucosides | Roots | ENR | [78] |
Glycoprotein | Plant | ENR | [86] |
In cell suspension cultures, two canthin-6-one alkaloids 9-Hydroxycanthin-6-one 9-Methoxycanthin-6-one | Plant | Antimalarial against P. falciparum | [76,87,88,89] |
Predominant amino acids Alanine, proline, arginine, and serine | Plant (Roots) | ENR | [90] |
A 4.3kDa bioactive peptide | Roots | ENR | [91] |
Starch (about 39%) | Roots | ENR | [92] |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, S.U.; Choe, K.; Yoo, H.H. Review on a Traditional Herbal Medicine, Eurycoma longifolia Jack (Tongkat Ali): Its Traditional Uses, Chemistry, Evidence-Based Pharmacology and Toxicology. Molecules 2016, 21, 331. https://doi.org/10.3390/molecules21030331
Rehman SU, Choe K, Yoo HH. Review on a Traditional Herbal Medicine, Eurycoma longifolia Jack (Tongkat Ali): Its Traditional Uses, Chemistry, Evidence-Based Pharmacology and Toxicology. Molecules. 2016; 21(3):331. https://doi.org/10.3390/molecules21030331
Chicago/Turabian StyleRehman, Shaheed Ur, Kevin Choe, and Hye Hyun Yoo. 2016. "Review on a Traditional Herbal Medicine, Eurycoma longifolia Jack (Tongkat Ali): Its Traditional Uses, Chemistry, Evidence-Based Pharmacology and Toxicology" Molecules 21, no. 3: 331. https://doi.org/10.3390/molecules21030331
APA StyleRehman, S. U., Choe, K., & Yoo, H. H. (2016). Review on a Traditional Herbal Medicine, Eurycoma longifolia Jack (Tongkat Ali): Its Traditional Uses, Chemistry, Evidence-Based Pharmacology and Toxicology. Molecules, 21(3), 331. https://doi.org/10.3390/molecules21030331