Phenolic and Chromatic Properties of Beibinghong Red Ice Wine during and after Vinification
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Preparation and Classification on the Basis of Their Color Quality
2.2. Identification of Phenolics and the Overall Quantitative Analysis
2.2.1. Anthocyanins
2.2.2. Phenolic Acids
2.2.3. Flavan-3-ols
2.2.4. Flavonols
2.3. Evolution of Phenolic and Chromatic Characteristics of Beibinghong Red Ice Wine during Vinification
2.4. Statistical Analysis for Key Phenolic Compounds that Affect Color Quality of Beibinghong Red Ice Wine
3. Materials and Methods
3.1. Samples and Vinification
3.2. Chemicals and Standards
3.3. Determination of Chromatic Characteristics of Wines
3.4. Extraction of Phenolic Compounds
3.5. Quantitative Analyses by HPLC-MS/MS
3.6. Identification and Quantification of Phenolic Compounds
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- García-Beneytez, E.; Revilla, E.; Cabello, F. Anthocyanin pattern of several red grape cultivars and wines made from them. Eur. Food Res. Technol. 2002, 215, 32–37. [Google Scholar] [CrossRef]
- Jin, Z.M.; He, J.J.; Bi, H.Q.; Cui, X.Y.; Duan, C.Q. Phenolic compound profiles in berry skins from nine red wine grape cultivars in Northwest China. Molecules 2009, 14, 4922–4935. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cordovés, C.; Gonzalez-SánJosé, M.L. Interpretation of color variables during the aging of red wines: Relationship with families of phenolic compounds. J. Agric. Food Chem. 1995, 43, 557–561. [Google Scholar] [CrossRef]
- Han, F.L.; Zhang, W.N.; Pan, Q.H.; Zheng, C.R.; Chen, H.Y.; Duan, C.Q. Principal component regression analysis of the relation between CIELAB color and monomeric anthocyanins in young Cabernet Sauvignon wines. Molecules 2008, 13, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.C.; Wu, B.H.; Fan, P.G.; Yang, C.X.; Duan, W.; Zheng, X.B.; Liu, C.Y.; Li, S.H. Anthocyanin composition and content in grape berry skin in Vitis. germplasm. Food Chem. 2008, 111, 837–844. [Google Scholar] [CrossRef]
- Huang, Z.L.; Wang, B.W.; Williams, P.; Pace, R.D. Identification of anthocyanins in muscadine grapes with HPLC-ESI-MS. LWT-Food Sci. Technol. 2009, 42, 819–824. [Google Scholar] [CrossRef]
- Zhao, Q.; Duan, C.Q.; Wang, J. Anthocyanins profile of grape berries of Vitis amurensis, its hybrids and their wines. Int. J. Mol. Sci. 2010, 11, 2212–2228. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.N.; Pan, Q.H.; He, F.; Wang, J.; Reeves, M.J.; Duan, C.Q. Phenolic profiles of Vitis davidii and Vitis quinquangularis species native to China. J. Agric. Food Chem. 2013, 61, 6016–6027. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef] [PubMed]
- Vidal, S.; Francis, L.; Guyot, S.; Marnet, N.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E.J. The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric. 2003, 83, 564–573. [Google Scholar] [CrossRef]
- Makris, D.P.; Kallithraka, S.; Kefalas, P. Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. J. Food Compos. Anal. 2006, 19, 396–404. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.P.; Fernández-Zurbano, P.; Ferreira, V. Contribution of nonvolatile composition to wine flavor. Food Rev. Int. 2012, 28, 389–411. [Google Scholar] [CrossRef]
- Francia-Aricha, E.; Guerra, M.T.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. New anthocyanin pigments formed after condensation with flavanols. J. Agr. Food Chem. 1997, 45, 2262–2266. [Google Scholar] [CrossRef]
- Pissarra, E.J.; Mateus, N.; Rivas-Gonzalo, J.; Santos Buelga, C.; De Freitas, V. Reaction between malvidin-3-glucoside and (+)-catechin in model solutions containing different aldehydes. J. Food Sci. 2003, 68, 476–481. [Google Scholar] [CrossRef]
- Zhang, Q.T.; Fan, S.T.; Song, R.G.; Lu, W.P. Beibinghong: A new grape cultivar for brewing ice red wine. VITIS J. Grapevine Res. 2015, 53, 115. [Google Scholar]
- Liu, L.Y.; Nan, L.J.; Zhao, X.H.; Wang, Z.X.; Nan, H.L.; Li, H. Effects of two training systems on sugar metabolism and related enzymes in cv. Beibinghong (Vitis amurensis Rupr.). Can. J. Plant. Sci. 2015, 95, 987–998. [Google Scholar] [CrossRef]
- Song, R.G.; Lu, W.P.; Shen, Y.J.; Jin, R.H.; Li, X.H.; Guo, Z.G.; Liu, J.K.; Lin, X.G. A new ice-red brewing grape cultivar Beibinghong. Acta. Hortic. Sin. 2008, 7, 1085. (In Chinese) [Google Scholar]
- Liu, L.Y.; Li, H. Review: Research progress in amur grape, Vitis amurensis Rupr. Can. J. Plant. Sci. 2013, 93, 565–575. [Google Scholar] [CrossRef]
- Li, Z.; Pan, Q.H.; Jin, Z.M.; Mu, L.; Duan, C.Q. Comparison on phenolic compounds in Vitis vinifera cv. Cabernet Sauvignon wines from five wine-growing regions in China. Food Chem. 2011, 125, 77–83. [Google Scholar] [CrossRef]
- Wang, H.B.; Race, E.J.; Shrikhande, A.J. Characterization of anthocyanins in grape juices by ion trap liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2003, 51, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Duan, C.Q.; Wang, J. Components of non-anthocyanin phenolic compounds in wines of Vitis amurensis and its hybrids. Afr. J. Biotechnol. 2013, 10, 14767–14777. [Google Scholar] [CrossRef]
- Figueiredo-González, M.; Cancho-Grande, B.; Simal-Gándara, J.; Teixeira, N.; Mateus, N.; de Freitas, V. The phenolic chemistry and spectrochemistry of red sweet wine-making and oak-aging. Food Chem. 2014, 152, 522–530. [Google Scholar]
- Lago-Vanzela, E.S.; Rebello, L.P.G.; Ramos, A.M.; Stringheta, P.C.; Da-Silva, R.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Chromatic characteristics and color-related phenolic composition of Brazilian young red wines made from the hybrid grape cultivar BRS Violeta (“BRS Rúbea” × “IAC 1398–21”). Food Res. Int. 2013, 54, 33–43. [Google Scholar] [CrossRef]
- Cadot, Y.; Caillé, S.; Samson, A.; Barbeau, G.; Cheynier, V. Sensory representation of typicality of Cabernet franc wines related to phenolic composition: Impact of ripening stage and maceration time. Anal. Chim. Acta 2012, 732, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, I.; Aleixandre, J.L.; García, M.J.; Lizama, V. Impact of prefermentative maceration on the phenolic and volatile compounds in Monastrell red wines. Anal. Chim. Acta 2006, 563, 109–115. [Google Scholar] [CrossRef]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar]
- Somers, T.C. The polymeric nature of wine pigments. Phytochemistry 1971, 10, 2175–2186. [Google Scholar] [CrossRef]
- Hrazdina, G.; Borzell, A.J.; Robinson, W.B. Studies on the stability of the anthocyanidin-3,5-digucosides. Am. J. Enol. Vitic. 1970, 21, 201–204. [Google Scholar]
- Mazza, G.; Brouillard, R. Color stability and structural transformations of cyanidin 3,5-diglucoside and four 3-deoxyanthocyanins in aqueous solutions. J. Agric. Food Chem. 1987, 35, 422–426. [Google Scholar] [CrossRef]
- Kim, M.; Yoon, S.H.; Jung, M.; Choe, E. Stability of meoru (Vitis coignetiea) anthocyanins under photochemically produced singlet oxygen by riboflavin. New Biotechnol. 2010, 27, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Bailón, T.; Álvarez-García, M.; Rivas-Gonzalo, J.C.; Heredia, F.J.; Santos-Buelga, C. Color and stability of pigments derived from the acetaldehyde-mediated condensation between malvidin 3-O-glucoside and (+)-catechin. J. Agric. Food Chem. 2001, 49, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Katalinić, V.; Milos, M.; Modun, D.; Musić, I.; Boban, M. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem. 2004, 86, 593–600. [Google Scholar] [CrossRef]
- Chinese Meteorological Data Network. Available online: http://data.cma.cn/site/index.html (accessed on 29 February 2016).
- Glories, Y. La couleur des vins rouges. Connaiss. de la Vigne et du Vin 1984, 18, 253–271. [Google Scholar]
- Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: The frozen wine samples are available from the authors.
Wine No. | Variety | Vintage | Wine Type | Color Stability |
---|---|---|---|---|
BH-IW13 | Beibinghong | 2013 | Ice wine | Unstable |
BH-IW14 | Beibinghong | 2014 | Ice wine | Unstable |
BH-DW14 | Beibinghong | 2014 | Dry red wine | Unstable |
ME-DW13 | Merlot | 2013 | Dry red wine | Stable |
CG-DW13 | Cabernet Gernischt | 2013 | Dry red wine | Stable |
MA-DW13 | Marselan | 2013 | Dry red wine | Stable |
CS-DW13 | Cabernet Sauvignon | 2013 | Dry red wine | Stable |
Color Parameters | Wine | ||||||
---|---|---|---|---|---|---|---|
BH-IW13 | BH-IW14 | BH-DW14 | ME-DW13 | CG-DW13 | MA-DW13 | CS-DW13 | |
Color Intensity (CI) | 1.98 ± 0.01 f | 1.82 ± 0.003 g | 3.36 ± 0.08 a | 2.07 ± 0.03 e | 2.89 ± 0.01 d | 3.3 ± 0.02 b | 3.19 ± 0.02 c |
Red % | 40.88 ± 0.26 e | 38.73 ± 0.06 f | 40.78 ± 0.05 e | 55.81 ± 0.4 b | 57.13 ± 0.21 a | 55.04 ± 0.21 c | 52.19 ± 0.33 d |
Hue | 1.07 ± 0.02 b | 1.12 ± 0.004 a | 1.03 ± 0.003 b | 0.61 ± 0.01 d | 0.56 ± 0.01 e | 0.59 ± 0.01 d,e | 0.68 ± 0.01 c |
Yellow % | 43.63 ± 0.36 b | 46.41 ± 0.1 a | 41.85 ± 0.07 c | 34.03 ± 0.52 e | 32.24 ± 0.12 f | 32.42 ± 0.21 f | 35.31 ± 0.5 d |
Phenolic Compounds | No. | MS/MS Information | Wine | ||||||
---|---|---|---|---|---|---|---|---|---|
BH-IW13 | BH-IW14 | BH-DW14 | ME-DW13 | CG-DW13 | MA-DW13 | CS-DW13 | |||
Malvidin-3-O-glucoside | p1 | 493 (331) | 37.71 ± 1.18 d | 10.53 ± 0.1 f | 11.16 ± 0.08 e | 63.78 ± 1.47 c | 105.98 ± 0.91 a | 80.77 ± 0.16 b | 61.77 ± 0.08 c |
Petunidin-3-O-glucoside | p2 | 479 (317) | 14.01 ± 0.63 d | 3.01 ± 0.01 g | 6.11 ± 0.01 f | 26.26 ± 0.13 b | 38.1 ± 0.04 a | 10.6 ± 0.16 e | 20.05 ± 0.14 c |
Delphinidin-3-O-glucoside | p3 | 465 (303) | 5.35 ± 0.23 d | 0.92 ± 0.04 g | 1.57 ± 0.02 f | 16.46 ± 0.19 b | 23.71 ± 0.76 a | 4 ± 0.1 e | 13.61 ± 0.5 c |
Peonidin-3-O-glucoside | p4 | 463 (301) | 1.76 ± 0.11 e | Tr | 1.34 ± 0.01 f | 14.84 ± 0.03 b | 15.7 ± 0.27 a | 3.42 ± 0.02 d | 6.32 ± 0.03 c |
Cyanidin-3-O-glucoside | p5 | 449 (287) | 0.6 ± 0.02 e | Tr | 1.26 ± 0.01 d | 4.69 ± 0.16 a | 4.3 ± 0.03 b | Tr | 1.7 ± 0.01 c |
Malvidin-3-O-acetylglucoside | p6 | 535 (331) | 5.31 ± 0.2 e | 1.1 ± 0.04 g | 2.79 ± 0.02 f | 28.05 ± 0.16 d | 46.4 ± 0.2 b | 48.54 ± 0.38 a | 30.55 ± 0.24 c |
Petunidin-3-O-acetylglucoside | p7 | 521 (317) | 2.89 ± 0.19 e | Tr | 1.21 ± 0.04 f | 15.45 ± 0.25 b | 22 ± 0.12 a | 7.08 ± 0.39 d | 10.98 ± 0.05 c |
Delphinidin-3-O-acetylglucoside | p8 | 507 (303) | 0.89 ± 0.03 e | Tr | Tr | 7.23 ± 0.25 b | 10.02 ± 0.24 a | 2 ± 0.02 d | 5.36 ± 0.11 c |
Peonidin-3-O-acetylglucoside | p9 | 505 (301) | Tr * | Tr | Tr | 6.38 ± 0.13 b | 7.32 ± 0.16 a | 2.45 ± 0.1 d | 3.28 ± 0.03 c |
Cyanidin-3-O-acetylglucoside | p10 | 491 (287) | 0.54 ± 0.01 c | Tr | Tr | 2.85 ± 0.04 a | 2.89 ± 0.02 a | Tr | 1.11 ± 0.01 b |
Malvidin-3-O-coumaroylglucoside | p11 | 639 (331) | 1.93 ± 0.02 e | Tr | 0.61 ± 0.01 f | 11.05 ± 0.05 d | 25.64 ± 0.03 a | 18.99 ± 0.31 b | 13.63 ± 0.09 c |
Petunidin-3-O-coumaroylglucoside | p12 | 625 (317) | 0.44 ± 0.02 e | Tr | Tr | 4.16 ± 0.24 b | 8.12 ± 0.16 a | 2.05 ± 0.08 d | 2.78 ± 0.02 c |
Delphinidin-3-O-coumaroylglucoside | p13 | 611 (303) | Tr | Tr | Tr | 2.07 ± 0.01 b | 3.54 ± 0.02 a | 0.77 ± 0.01 d | 1.44 ± 0.04 c |
Peonidin-3-O-coumaroylglucoside | p14 | 609 (301) | Tr | Tr | Tr | 3.7 ± 0.04 b | 5.56 ± 0.01 a | 1.55 ± 0.05 d | 2.02 ± 0.01 c |
Cyanidin-3-O-coumaroylglucoside | p15 | 595 (287) | Tr | Tr | Tr | 1.46 ± 0.01 b | 1.65 ± 0.02 a | Tr | Tr |
Malvidin-3,5-O-diglucoside | p16 | 655 (331) | 74.21 ± 1.03 c | 83.86 ± 0.4 b | 94.98 ± 1.67 a | Nd | Nd | Nd | Nd |
Petunidin-3,5-O-diglucoside | p17 | 641 (317) | 5.47 ± 0.39 b | 3.88 ± 0.08 c | 12.63 ± 0.35 a | Nd | Nd | Nd | Nd |
Delphinidin-3,5-O-diglucoside | p18 | 627 (303) | 2.33 ± 0.22 b | 1.31 ± 0.02 c | 2.43 ± 0.08 a | Nd | Nd | Nd | Nd |
Peonidin-3,5-O-diglucoside | p19 | 625 (301) | 12.25 ± 0.33 b | 4.48 ± 0.1 c | 18.17 ± 0.22 a | Nd | Nd | Nd | Nd |
Cyanidin-3,5-O-diglucoside | p20 | 611 (287) | 2.63 ± 0.14 b | 0.96 ± 0.02 c | 6.14 ± 0.18 a | Nd | Nd | Nd | Nd |
Pelargonidin-3,5-O-diglucoside | p21 | 595 (271) | Nd ** | Nd | Tr | Nd | Nd | Nd | Nd |
Anthocyanin content | 168.32 | 110.05 | 160 | 208.43 | 320.93 | 182.22 | 174.6 | ||
Anthocyanin proportion (%) | 93.03 | 92.06 | 59.29 | 29.81 | 37.67 | 28.77 | 23.76 | ||
2-hydroxybenzoic acid | p22 | 137 (93) | Tr | Tr | 0.84 ± 0.01 a | 0.28 ± 0.02 c | 0.48 ± 0.06 b | Tr | Tr |
Gallic acid | p23 | 169 (125) | 0.84 ± 0.09 f | Tr | 40.09 ± 0.18 e | 57.66 ± 0.47 c | 75.56 ± 0.59 a | 46.02 ± 0.15 d | 62.81 ± 0.04 b |
Protocatechuic acid | p24 | 153 (109) | 5.24 ± 0.25 c | 8 ± 0.63 b | 12.16 ± 0.01 a | 1.67 ± 0.03 e | 2.18 ± 0.03 d | 0.7 ± 0.02 f | 0.99 ± 0.04 f |
Vanillic acid | p25 | 167 (152) | 2.37 ± 0.18 e | Nd | 2.47 ± 0.05 e | 3.71 ± 0.12 c | 4.55 ± 0.04 b | 3.1 ± 0.04 d | 5.17 ± 0.06 a |
Syringic acid | p26 | 301 (229) | Nd | 0.97 ± 0.01 e | Nd | 2.7 ± 0.01 d | 3.42 ± 0.03 c | 6.41 ± 0.03 b | 8.44 ± 0.01 a |
4-hydroxycinnamic acid | p27 | 163 (119) | 0.26 ± 0.02 e | Nd | 4.35 ± 0.02 b | 1.48 ± 0.02 d | 5.45 ± 0.01 a | 3.19 ± 0.06 c | 1.41 ± 0.06 d |
Caffeic acid | p28 | 179 (135) | 3.3 ± 0.19 d | Tr | 6.97 ± 0.03 a | Tr | 2.88 ± 0.02 e | 11.2 ± 0.1 b | 4.59 ± 0.58 c |
Gentisic acid | p29 | 153 (108) | Nd | Nd | Tr | Nd | Tr | Nd | Nd |
Ferulic acid | p30 | 193 (134) | Tr | Nd | 0.24 ± 0.03 d | 0.27 ± 0.03 c | 0.33 ± 0.01 bc | 0.45 ± 0.01 a | 0.33 ± 0.01 bc |
Phenolic acids content | 12.01 | 8.97 | 67.12 | 67.77 | 94.85 | 71.07 | 83.74 | ||
Phenolic acids proportion (%) | 6.64 | 7.5 | 24.87 | 9.69 | 11.13 | 11.22 | 11.4 | ||
(+)-Catechin | p31 | 289 (123) | Nd | Nd | 6.5 ± 0.1 e | 81.83 ± 0.84 c | 75.7 ± 0.19 d | 90.02 ± 0.22 b | 114.26 ± 0.1 a |
(−)-Epicatechin | p32 | 289 (123) | Nd | Nd | 7.82 ± 0.19 e | 116.39 ± 0.9 b | 95.44 ± 0.04 d | 107.98 ± 0.2 c | 137.77 ± 0.2 a |
Gallocatechin | p33 | 305 (125) | Nd | Nd | 0.26 ± 0.01 e | 24.8 ± 0.44 b | 30.01 ± 0.09 a | 9.89 ± 0.02 d | 13.3 ± 0.03 c |
Epigallocatechin | p34 | 305 (125) | Nd | Nd | Tr | Nd | Nd | 0.45 ± 0.01 a | Nd |
Procyanin B1 | p35 | 577 (407) | Tr | Nd | 2.13 ± 0.04 e | 46.13 ± 0.33 b | 47.18 ± 0.02 a | 42.14 ± 0.31 d | 44.63 ± 0.14 c |
Procyanin B2 | p36 | 577 (407) | Tr | Nd | 0.91 ± 0.11 e | 22.7 ± 0.06 d | 24.46 ± 0.01 c | 26.33 ± 0.35 b | 32.18 ± 0.02 a |
Procyanin C1 | p37 | 865 (407) | Nd | Nd | Nd | 13.98 ± 0.34 c | 13 ± 0.03 d | 15.9 ± 0.2 b | 19.48 ± 0.04 a |
Flavan-3-ols content | Nd | Nd | 17.63 | 305.83 | 285.79 | 292.71 | 361.62 | ||
Flavan-3-ols proportion (%) | Nd | Nd | 6.53 | 43.75 | 33.55 | 46.21 | 49.21 | ||
Kaempferol | p38 | 285 (117) | Nd | Nd | Nd | 5.56 ± 0.29 b | 8.86 ± 0.14 a | 0.69 ± 0.03 d | 1.18 ± 0.03 c |
Quercetin | p39 | 301 (151) | Nd | Nd | 3.66 ± 0.06 e | 45.77 ± 0.23 b | 73.75 ± 0.34 a | 11.08 ± 0.04 d | 15.45 ± 0.15 c |
Dihydrokaempferol | p40 | 287 (259) | Nd | Tr | 0.97 ± 0.02 c | 1.37 ± 0.03 a | 1.23 ± 0.04 b | 0.69 ± 0.02 e | 0.83 ± 0.02 d |
Dihydroquercetin | p41 | 303 (125) | Nd | Tr | 3.41 ± 0.03 a | 1.94 ± 0.15 c | 2.28 ± 0.02 b | 1.01 ± 0.01 d | 1.17 ± 0.03 d |
Isorhamnetin | p42 | 315 (300) | Nd | Nd | Tr | 5.47 ± 0.16 b | 10.16 ± 0.16 a | 2.19 ± 0.04 d | 3.15 ± 0.01 c |
Myricetin | p43 | 317 (151) | Nd | Nd | 0.94 ± 0.01 e | 3.52 ± 0.2 b | 8.66 ± 0.05 a | 2.11 ± 0.02 d | 2.47 ± 0.02 c |
Kaempferol-3-O-glucoside | p44 | 447 (255) | Nd | Nd | Tr | Tr | Tr | 0.62 ± 0.02 b | 1.06 ± 0.04 a |
Kaempferol-3-O-galactoside | p45 | 447 (255) | Nd | Nd | Tr | 0.65 ± 0.05 a | 0.37 ± 0.02 b | Tr | Tr |
Quercetin-3-O-glucoside | p46 | 463 (300) | Tr | Nd | 0.19 ± 0.02 d | 10.31 ± 0.38 b | Tr | 8.81 ± 0.03 c | 12.57 ± 0.02 a |
Quercetin-3-O-galactoside | p47 | 463 (300) | 0.36 ± 0.02 f | Nd | 0.9 ± 0.02 e | 4.03 ± 0.06 a | 3.75 ± 0.02 b | 2.1 ± 0.03 d | 2.8 ± 0.04 c |
Quercetin-3-O-glucuronide | p48 | 477 (301) | 0.24 ± 0.02 f | Nd | 8.74 ± 0.01 e | 15.29 ± 0.3 c | 17.28 ± 0.12 a | 14.01 ± 0.05 d | 15.98 ± 0.03 b |
Isorhamnetin-3-O-glucoside | p49 | 477 (314) | Nd | Nd | Tr | 4.6 ± 0.33 b | 1.79 ± 0.01 d | 3.16 ± 0.53 c | 6.19 ± 0.02 a |
Myricetin-3-O-glucoside | p50 | 479 (316) | Tr | Nd | 5.35 ± 0.04 d | 14.55 ± 0.05 c | 14.46 ± 0.03 c | 26.6 ± 0.34 b | 33.07 ± 0.06 a |
Myricetin-3-O-galactoside | p51 | 479 (316) | Nd | Nd | Tr | 1.75 ± 0.07 d | 3.25 ± 0.04 b | 2.18 ± 0.01 c | 3.75 ±0.08 a |
Syringetin | p52 | 345 (315) | Nd | Nd | Tr | Tr | Tr | 0.38 ± 0.01 b | 0.53 ± 0.02 a |
Syringetin-3-O-glucoside | p53 | 507 (344) | Nd | 0.52 ± 0.04 e | 0.96 ± 0.01 f | 3.17 ± 0.05 d | 4.26 ± 0.02 c | 11.32 ± 0.05 b | 14.13 ± 0.04 a |
Syringetin-3-O-galactoside | p54 | 507 (344) | Nd | Nd | Tr | Tr | 0.23 ± 0.01 c | 0.44 ± 0.01 b | 0.55 ± 0.04 a |
Flavonols content | 0.6 | 0.52 | 25.12 | 117.08 | 150.33 | 87.39 | 114.88 | ||
Flavonols proportion (%) | 0.33 | 0.44 | 9.3 | 16.75 | 17.65 | 13.8 | 15.63 | ||
Total polyphenol | 180.93 | 119.54 | 269.86 | 699.11 | 851.9 | 633.39 | 734.84 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.-C.; Li, S.-Y.; He, F.; Yuan, Z.-Y.; Liu, T.; Reeves, M.J.; Duan, C.-Q. Phenolic and Chromatic Properties of Beibinghong Red Ice Wine during and after Vinification. Molecules 2016, 21, 431. https://doi.org/10.3390/molecules21040431
Li J-C, Li S-Y, He F, Yuan Z-Y, Liu T, Reeves MJ, Duan C-Q. Phenolic and Chromatic Properties of Beibinghong Red Ice Wine during and after Vinification. Molecules. 2016; 21(4):431. https://doi.org/10.3390/molecules21040431
Chicago/Turabian StyleLi, Jin-Chen, Si-Yu Li, Fei He, Zheng-Yi Yuan, Tao Liu, Malcolm J. Reeves, and Chang-Qing Duan. 2016. "Phenolic and Chromatic Properties of Beibinghong Red Ice Wine during and after Vinification" Molecules 21, no. 4: 431. https://doi.org/10.3390/molecules21040431