Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of Essential Oil of R. echinus
2.2. Assessment of Minimum Inhibitory Concentration of Essential Oil of R. echinus
2.3. Modulatory Effect of Essential Oil of R. echinus on Some Antifungal Drugs
2.4. Modulatory Effect of Essential Oil of R. echinus on Some Antibacterial Drugs
2.5. Fe2+ Chelation or Oxidation Potential of Essential Oil from R. echinus
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Essential Oil from Raphiodon echinus (Nees e Mart) Shauer Leaf
4.3. Analysis of Chemical Composition of the Essential Oil of Rhaphiodon echinus by Gas Chromatography Coupled with Mass Spectrometry (GC-MC)
4.4. Drugs
4.5. Strains of Bacteria and Growth Media
4.6. Strains of Fungi
4.7. Matrix Solution Preparation
4.8. Minimum Inhibitory Concentration
4.9. Modulatory Effect of Essential Oil from R. echinus on Antimicrobial Drugs
4.10. Iron Chelating Property of Essential Oil from R. echinus
4.11. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Salkovic-Petrisic, M.; Knezovic, A.; Osmanovic-Barilar, J.; Smailovic, U.; Trkulja, V.; Riederer, P.; Amit, T.; Mandel, S.; Youdim, M.B.H. Multi-target iron-chelators improve memory loss in a rat model of sporadic Alzheimer’s disease. Life Sci. 2015, 136, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Alanis, A.D.; Calzada, F.; Cervantes, J.A.; Torres, J.; Ceballos, G.M. Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J. Ethnopharmacol. 2005, 100, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzadeh, S.H.; Mashouf, R.Y.; Mortazavi, H.; Moghaddam, M.H.; Roozbahani, N.; Vahedi, M. Antibacterial and antifungal activities of Punica granatum peel extracts against oral pathogens. J. Dent. 2011, 8, 1–6. [Google Scholar]
- Barbosa Filho, V.M.; Waczuk, E.P.; Kamdem, J.P.; Abolaji, A.O.; Lacerda, S.R.; da Costa, J.G.M.; de Menezes, I.R.A.; Boligon, A.A.; Athayde, M.L.; da Rocha, J.B.T. Phytochemical constituents, antioxidant activity, cytotoxicity and osmotic fragility effects of Caju (Anacardium microcarpum). Ind. Crop. Prod. 2014, 55, 280–288. [Google Scholar] [CrossRef]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 2006, 6. [Google Scholar] [CrossRef] [PubMed]
- Veras, H.N.H.; Rodrigues, F.F.G.; Colares, A.V.; Menezes, I.R.A.; Coutinho, H.D.M.; Botelho, M.A.; Costa, J.G.M. Synergistic antibiotic activity of volatile compounds from the essential oil of Lippia sidoides and thymol. Fitoterapia 2012, 83, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.A.; Uddin, M.M.; Huda, K.N.; Das, A.; Tabassum, N.; Hossain, M.R.; Mahal, M.J.; Rahmatullah, M. Ethnomedicinal plants of two village folk medicinal practitioners in Rajshahi district, Bangladesh: Comparison of their folk medicinal uses with Ayurvedic uses. Am. Eur. J. Sustain. Agric. 2014, 8, 10–19. [Google Scholar]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, K.; Alzoreky, N.S.; Yoshihashi, T.; Nguyen, H.T.T.; Trakoontivakorn, G. Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). Jpn. Agric. Res. Q. 2013, 37, 249–252. [Google Scholar] [CrossRef]
- Rahman, S.M.A.; Abd-Ellatif, S.A.; Deraz, S.F.; Khalil, A.A. Antibacterial activity of some wild medicinal plants collected from western Mediterranean coast, Egypt: Natural alternatives for infectious disease treatment. Afr. J. Biotechnol. 2013, 10, 10733–10743. [Google Scholar]
- Barbosa-Filho, V.M.; Waczuk, E.P.; Leite, N.F.; Menezes, I.R.A.; da Costa, J.G.M.; Lacerda, S.R.; Adedara, I.A.; Coutinho, H.D.M.; Posser, T.; Kamdem, J.P. Phytocompounds and modulatory effects of Anacardium microcarpum (cajui) on antibiotic drugs used in clinical infections. Drug Des. Dev. Ther. 2015, 9, 5965–5972. [Google Scholar]
- Calixto Júnior, J.T.; Morais, S.M.; Martins, C.G.; Vieira, L.G.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Machado, A.J.P.; Menezes, I.R.A.; Tintino, S.R.; Coutinho, H.D.M. Phytochemical Analysis and Modulation of Antibiotic Activity by Luehea paniculata Mart. & Zucc. (Malvaceae) in Multiresistant Clinical Isolates of Candida Spp. Biomed. Res. Int. 2015, 2015, 807670. [Google Scholar] [PubMed]
- De Oliveira, R.D.R.; Maffei, C.M.; Martinez, R. Infecçäo urinária hospitalar por leveduras do gênero Candida. Rev. Assoc. Med. Bras. 2001, 47, 231–235. (In Portuguese) [Google Scholar] [CrossRef] [PubMed]
- Silva, R.F. Fungal infections in immunocompromised patients. J. Bras. Pneumol. 2010, 36, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodríguez-Baño, J. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 2014, 20, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Corey, G.R.; Kabler, H.; Mehra, P.; Gupta, S.; Overcash, J.S.; Porwal, A.; Giordano, P.; Lucasti, C.; Perez, A.; Good, S. Single-dose oritavancin in the treatment of acute bacterial skin infections. N. Engl. J. Med. 2014, 370, 2180–2190. [Google Scholar] [CrossRef] [PubMed]
- Jalan, R.; Fernandez, J.; Wiest, R.; Schnabl, B.; Moreau, R.; Angeli, P.; Stadlbauer, V.; Gustot, T.; Bernardi, M.; Canton, R. Bacterial infections in cirrhosis: A position statement based on the EASL Special Conference 2013. J. Hepatol. 2014, 60, 1310–1324. [Google Scholar] [CrossRef] [PubMed]
- Betoni, J.E.C.; Mantovani, R.P.; Barbosa, L.N.; di Stasi, L.C.; Fernandes, A., Jr. Synergism between plant extract and antimicrobial drugs used on Staphylococcus aureus diseases. Mem. Inst. Oswaldo Cruz 2006, 101, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.S.; Venkateshwaran, K.; Vanitha, J.; Saravanan, V.S.; Ganesh, M.; Vasudevan, M.; Sivakumar, T. Synergistic activity of methanolic extract of Thespesia populnea (Malvaceae) flowers with oxytetracycline. Bangladesh J. Pharmacol. 2008, 4, 13–16. [Google Scholar] [CrossRef]
- Zago, J.A.A.; Ushimaru, P.I.; Barbosa, L.N.; Fernandes, A., Jr. Sinergismo entre óleos essenciais e drogas antimicrobianas sobre linhagens de Staphylococcus aureus e Escherichia coli isoladas de casos clínicos humanos. Rev. Bras. Farmacogn. 2009, 19, 828–833. (In Portuguese) [Google Scholar] [CrossRef]
- Tintino, S.R.; de Melo Guedes, G.M.; Cunha, F.A.B.; dos Santos, K.K.A.; Matias, E.F.F.; Morais-Braga, M.F.B.; Andrade, J.C.; Souza, E.S.; Freitas, M.A.; Alencar, L.B.B.; et al. In vitro evaluation of antimicrobial activity and modulating the ethanol and hexane extracts of Costus arabicus Bulb. Biosci. J. 2013, 29, 732–738. [Google Scholar]
- Almeida, G.D.; Godoi, E.P.; Santos, E.C.; de Lima, L.R.P.; de Oliveira, M.E. Extrato aquoso de Allium sativum potencializa a ação dos antibióticos vancomicina, gentamicina e tetraciclina frente Staphylococcus aureus. Rev. Ciênc. Farm. Básica Apl. 2013, 34, 487–492. (In Portuguese) [Google Scholar]
- Silva-Bailão, M.G.; Bailão, E.F.L.C.; Lechner, B.E.; Gauthier, G.M.; Lindner, H.; Bailão, A.M.; Haas, H.; de Almeida Soares, C.M. Hydroxamate production as a high affinity iron acquisition mechanism in Paracoccidioides spp. PLoS ONE 2014, 9, e105805. [Google Scholar]
- Pandey, A.; Bringel, F.; Meyer, J.-M. Iron requirement and search for siderophores in lactic acid bacteria. Appl. Microbiol. Biotechnol. 1994, 40, 735–739. [Google Scholar] [CrossRef]
- Cairo, G.; Bernuzzi, F.; Recalcati, S. A precious metal: Iron, an essential nutrient for all cells. Genes Nutr. 2006, 1, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Arango, R.; Restrepo, A. Growth and production of iron chelants by Paracoccidioides brasiliensis mycelial and yeast forms. J. Med. Vet. Mycol. 1988, 26, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Parente, A.F.A.; Bailão, A.M.; Borges, C.L.; Parente, J.A.; Magalhães, A.D.; Ricart, C.A.O.; Soares, C.M.A. Proteomic analysis reveals that iron availability alters the metabolic status of the pathogenic fungus Paracoccidioides brasiliensis. PLoS ONE 2011, 6, e22810. [Google Scholar] [CrossRef] [PubMed]
- Shinar, E.; Rachmilewitz, E.A. Oxidative denaturation of red blood cells in thalassemia. Semin. Hematol. 1990, 27, 70–82. [Google Scholar] [PubMed]
- Oboh, G.; Olasehinde, T.A.; Ademosun, A.O. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation. J. Oleo Sci. 2014, 63, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Menezes, F.S.; Cardoso, G.L.C.; Pereira, N.A.; Borsatto, A.S.; Kaplan, M.A.C. Phytochemical and pharmacological studies on Raphiodon echinus. Fitoterapia 1998, 69, 459–460. [Google Scholar]
- Duarte, A.E.; Waczuk, E.P.; Roversi, K.; da Silva, M.A.P.; Barros, L.M.; da Cunha, F.A.B.; de Menezes, I.R.A.; da Costa, J.G.M.; Boligon, A.A.; Ademiluyi, A.O. Polyphenolic Composition and Evaluation of Antioxidant Activity, Osmotic Fragility and Cytotoxic Effects of Raphiodon echinus (Nees & Mart.) Schauer. Molecules 2015, 21, 1–15. [Google Scholar]
- Torres, M.C.M.; Florêncio, L.C.M.; Silveira, E.R.; Pessoa, O.D.L. Chemical Composition of the Essential Oils of Raphiodon echinus (Nees & Mart.) Schauer. J. Essent. Oil Bear. Plants 2009, 12, 674–677. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- De Sousa Menezes, F.; Kaplan, M.A.C. In-mixture analysis of Triterpenes from Raphiodon Echinus. Rev. Latinoam. Quim. 2006, 34, 37. [Google Scholar]
- Costa, J.G.M.; Rodrigues, F.F.G.; Angélico, E.C.; Pereira, C.K.; de Souza, E.O.; Caldas, G.F.; Silva, M.R.; Santos, N.K.A.; Mota, M.L.; dos Santos, P.F. Composição química e avaliação da atividade antibacteriana e toxicidade do óleo essencial de Croton zehntneri (variedade estragol). Rev. Bras. Farm. 2008, 18, 583–586. (In Portuguese) [Google Scholar] [CrossRef]
- Coutinho, H.D.M.; Costa, J.G.M.; Siqueira-Júnior, J.P.; Lima, E.O. In vitro anti-staphylococcal activity of Hyptis martiusii Benth against methicillin-resistant Staphylococcus aureus: MRSA strains. Rev. Bras. Farmacogn. 2008, 18, 670–675. [Google Scholar] [CrossRef]
- Costa, J.G.; de Sousa, E.O.; Rodrigues, F.F.G.; de Lima, S.G.; Braz-Filho, R. Composição química e avaliação das atividades antibacteriana e de toxicidade dos óleos essenciais de Lantana camara L. e Lantana sp. Braz. J. Pharmacogn. 2009, 19, 721–725. (In Portuguese) [Google Scholar] [CrossRef]
- Duarte, M.C.T.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.G.; Delarmelina, C. Anti-Candida activity of Brazilian medicinal plants. J. Ethnopharmacol. 2005, 97, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Costantin, M.B.; Sartorelli, P.; Limberger, R.; Henriques, A.T.; Steppe, M.; Ferreira, M.J.P.; Ohara, M.T.; Emerenciano, V.P.; Kato, M.J. Essential Oils from Piper cernuum and Piper regnellii: Antimicrobial Activities and Analysis by GC/MS and 13C-NMR. Planta Med. 2001, 67, 771–773. [Google Scholar] [CrossRef] [PubMed]
- Cysne, J.B.; Canuto, K.M.; Pessoa, O.D.L.; Nunes, E.P.; Silveira, E.R. Leaf essential oils of four Piper species from the State of Ceará-Northeast of Brazil. J. Braz. Chem. Soc. 2005, 16, 1378–1381. [Google Scholar] [CrossRef]
- Nicolson, K.; Evans, G.; O’Toole, P.W. Potentiation of methicillin activity against methicillin-resistant Staphylococcus aureus by diterpenes. FEMS Microbiol. Lett. 1999, 179, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Rajyaguru, J.M.; Muszynski, M.J. Sensitization of Burkholderia cepacia to antibiotics by cationic drugs. J. Antimicrob. Chemother. 1998, 41, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; De Bont, J.A.; Poolman, B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 1994, 269, 8022–8028. [Google Scholar] [PubMed]
- Barros, F.J.; Costa, R.J.O.; Cesário, F.R.A.S.; Rodrigues, L.B.; da Costa, J.G.M.; Coutinho, H.D.M.; Galvao, H.B.F.; de Menezes, I.R.A. Activity of essential oils of Piper aduncum anf and Cinnamomum zeylanicum by evaluating osmotic and morphologic fragility of erythrocytes. Eur. J. Integr. Med. 2016. [Google Scholar] [CrossRef]
- Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and antifungal properties of essential oil components. J. Essent. Oil Res. 1989, 1, 119–128. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [PubMed]
- Conner, D.; Beuchat, L.R. Effects of essential oils from plants on growth of food spoilage yeasts. J. Food Sci. 1984, 49, 429–434. [Google Scholar] [CrossRef]
- Krebs, N.F. Dietary zinc and iron sources, physical growth and cognitive development of breastfed infants. J. Nutr. 2000, 130, 358S–360S. [Google Scholar] [PubMed]
- Andrews, N.C. Forging a field: The golden age of iron biology. Blood 2008, 112, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Marques, O.; da Silva, B.M.; Porto, G.; Lopes, C. Iron homeostasis in breast cancer. Cancer Lett. 2014, 347, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dusek, P.; Roos, P.M.; Litwin, T.; Schneider, S.A.; Flaten, T.P.; Aaseth, J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J. Trace Elem. Med. Biol. 2015, 31, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Budimir, A. Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharm. 2011, 61, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.Y.Y.; Kitts, D.D. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 2006, 97, 505–515. [Google Scholar] [CrossRef]
- Corbin, B.D.; Seeley, E.H.; Raab, A.; Feldmann, J.; Miller, M.R.; Torres, V.J.; Anderson, K.L.; Dattilo, B.M.; Dunman, P.M.; Gerads, R. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 2008, 319, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.S.; Battistin, A.; Pauletti, G.; Rota, L.; Serafini, L.A. Antioxidant properties of essential oils from Mentha species evidenced by electrochemical methods. Rev. Bras. Plantas Med. 2009, 11, 372–382. [Google Scholar]
- Viuda-Martos, M.; Ruiz Navajas, Y.; Sánchez Zapata, E.; Fernández-López, J.; Pérez-Álvarez, J.A. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr. J. 2010, 25, 13–19. [Google Scholar] [CrossRef]
- Boligon, A.A.; Feltrin, A.C.; Athayde, M.L. Determination of chemical composition, antioxidant and antimicrobial properties of Guzuma ulmifolia essential oil. Am. J. Essent. Oil. Nat. Prod. 2013, 1, 23–27. [Google Scholar]
- M7-A10: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2015.
- Javadpour, M.M.; Juban, M.M.; Lo, W.-C.J.; Bishop, S.M.; Alberty, J.B.; Cowell, S.M.; Becker, C.L.; McLaughlin, M.L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem. 1996, 39, 3107–3113. [Google Scholar] [CrossRef] [PubMed]
- Morais-Braga, M.F.B.; Souza, T.M.; Santos, K.K.A.; Guedes, G.M.M.; Andrade, J.C.; Tintino, S.R.; Costa, J.G.M.; Menezes, I.R.A.; Saraiva, A.Á.F.; Coutinho, H.D.M. Atividade antibacteriana, antifúngica e moduladora da atividade antimicrobiana de frações obtidas de Lygodium venustum SW. Bol. Latinoam. Caribe Plant. Med. Aromat. 2013, 12, 38–43. (In Portuguese) [Google Scholar]
- Kamdem, J.P.; Adeniran, A.; Boligon, A.A.; Klimaczewski, C.V.; Elekofehinti, O.O.; Hassan, W.; Ibrahim, M.; Waczuk, E.P.; Meinerz, D.F.; Athayde, M.L. Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: Its potential role in neuroprotection. Ind. Crop. Prod. 2013, 51, 26–34. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the essential oil are available from the authors.
Compounds | RI a | RI b | Essential Oil (%) |
---|---|---|---|
α-Pinene | 940 | 939 | 0.85 |
α-Camphene | 951 | 953 | 4.09 |
β-Pinene | 985 | 980 | 0.05 |
α-Phellandrene | 1007 | 1005 | 2.11 |
α-Terpinene | 1019 | 1019 | 0.28 |
p-Cymene | 1032 | 1029 | 3.02 |
1,8-Cineole | 1031 | 1033 | 1.19 |
γ-Terpinene | 1060 | 1061 | 0.18 |
Methyl benzoate | 1091 | 1091 | 0.92 |
α-Terpineol | 1185 | 1189 | 3.76 |
Isoborneol | 1156 | 1156 | 1.49 |
Geraniol | 1258 | 1255 | 0.36 |
Thymol | 1291 | 1290 | 3.21 |
γ-Elemene | 1342 | 1339 | 2.87 |
Geranyl acetate | 1387 | 1383 | 1.43 |
Dodecanal | 1411 | 1407 | 0.65 |
β-Caryophyllene | 1419 | 1418 | 23.07 |
Geranyl propionate | 1476 | 1475 | 0.24 |
Germacrene D | 1481 | 1480 | 3.16 |
Bicyclogermacrene | 1495 | 1494 | 28.13 |
Germacrene A | 1500 | 1503 | 1.76 |
β-Curcumene | 1513 | 1512 | 0.08 |
Spathulenol | 1577 | 1576 | 5.12 |
Caryophyllene oxide | 1581 | 1579 | 5.40 |
Globulol | 1584 | 1583 | 1.39 |
α-Cadinol | 1653 | 1653 | 0.82 |
Caryophyllene acetate | 1702 | 1700 | 3.61 |
Total identified (%) | 99.24 |
Bacteria | Source | Resistance Profile |
---|---|---|
Escherichia coli 27 | Surgical Wound | Ast, Ami, Amox, Ca, Cfc, Cf, Caz, Cip, Clo, Im, Can, Szt, Tet, Tob |
Staphylococcus aureus 358 | Surgical Wound | Oxa, Gen, Tob, Ami, Can, Neo, Para, But, Sis, Net |
Pseudomonas aeruginosa 03 | Catheter tip | Cpm, Ctz, Im, Cip, Ptz, Lev, Mer, Ami |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, A.E.; De Menezes, I.R.A.; Bezerra Morais Braga, M.F.; Leite, N.F.; Barros, L.M.; Waczuk, E.P.; Pessoa da Silva, M.A.; Boligon, A.; Teixeira Rocha, J.B.; Souza, D.O.; et al. Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs. Molecules 2016, 21, 743. https://doi.org/10.3390/molecules21060743
Duarte AE, De Menezes IRA, Bezerra Morais Braga MF, Leite NF, Barros LM, Waczuk EP, Pessoa da Silva MA, Boligon A, Teixeira Rocha JB, Souza DO, et al. Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs. Molecules. 2016; 21(6):743. https://doi.org/10.3390/molecules21060743
Chicago/Turabian StyleDuarte, Antonia Eliene, Irwin Rose Alencar De Menezes, Maria Flaviana Bezerra Morais Braga, Nadghia Figueiredo Leite, Luiz Marivando Barros, Emily Pansera Waczuk, Maria Arlene Pessoa da Silva, Aline Boligon, João Batista Teixeira Rocha, Diogo Onofre Souza, and et al. 2016. "Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs" Molecules 21, no. 6: 743. https://doi.org/10.3390/molecules21060743
APA StyleDuarte, A. E., De Menezes, I. R. A., Bezerra Morais Braga, M. F., Leite, N. F., Barros, L. M., Waczuk, E. P., Pessoa da Silva, M. A., Boligon, A., Teixeira Rocha, J. B., Souza, D. O., Kamdem, J. P., Melo Coutinho, H. D., & Escobar Burger, M. (2016). Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs. Molecules, 21(6), 743. https://doi.org/10.3390/molecules21060743