Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique
Abstract
:1. Introduction
2. Free Radicals and Oxidative Stress
3. Electron Paramagnetic Resonance (EPR)
4. Electron Paramagnetic Resonance (EPR) Spectroscopy Technique
5. Detection Examples of Reactive Oxygen and Nitrogen Species by EPR
6. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- Griendling, K.K.; Touyz, R.M.; Zweier, J.L.; Dikalov, S.; Chilian, W.; Chen, Y.R.; Harrison, D.G.; Bhatnagar, A. Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: A scientific statement from the American Heart Association. Circ. Res. 2016, 119, e39–e75. [Google Scholar] [CrossRef] [PubMed]
- Aprioku, J.S. Pharmacology of Free Radicals and the Impact of Reactive Oxygen Species on the Testis. J. Rep. Infert. 2013, 14, 158–172. [Google Scholar]
- Suzen, S. Antioxidant activities of synthetic indole derivatives and possible activity mechanisms. In Topics in Heterocyclic Chemistry, Bioactive Heterocycles; Khan, M.T.H., Ed.; Spinger: Berlin/Heidelberg, Germany, 2007; Volume 11, pp. 145–178. [Google Scholar]
- Suzen, S.; Saso, L. Antioxidant heterocyclic compounds in drug discovery and medicinal chemistry. Mini Rev. Med. Chem. 2013, 13, 317–318. [Google Scholar] [PubMed]
- Gurer-Orhan, H.; Karaaslan, C.; Ozcan, S.; Firuzi, O.; Tavakkoli, M.; Saso, L.; Suzen, S. Novel indole-based melatonin analogues: Evaluation of antioxidant activity and protective effect against amyloid β-induced damage. Bioorg. Med. Chem. 2016, 24, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Shaeib, F.; Banerjee, J.; Maitra, D.; Diamond, M.P.; Abu-Soud, H.M. Impact of hydrogen peroxide driven Fenton reaction on mouse oocyte quality. Free Rad. Biol. Med. 2013, 58, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Suzen, S. Evaluation of synthetic melatonin analog antioxidant compounds. In Melatonin: Therapeutic Value and Neuroprotection; Srinivasan, V., Gobbi, G., Shillcutt, S.D., Suzen, S., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2015; Chapter 21; pp. 259–269. [Google Scholar]
- Hybertson, B.M.; Gao, B.; Bose, K.S.; McCord, J.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol. Asp Med. 2011, 32, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef] [PubMed]
- Jackson, H.L.; Cardounel, A.J.; Zweier, J.L.; Lockwood, S.F. Synthesis, characterization, and direct aqueous superoxide anion scavenging of a highly water-dispersible astaxanthin-amino acid conjugate. Bioorg. Med. Chem. Lett. 2004, 14, 3985–3991. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Wilmot, C.M.; Rosen, G.M.; Demidenko, E.; Sun, J.; Joseph, J.; O’Hara, J.; Kalyanaraman, B.; Swartz, H.M. In vitro toxicity and stability of radical adducts. Free Radic. Biol. Med. 2003, 34, 1473–1481. [Google Scholar] [CrossRef]
- Schweiger, A.; Jeschke, G. Principles of Pulse Paramagnetic Resonance; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Weil, J.A.; Bolton, J.R. Electron Paramagnetic Resonance; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Cooke, J.A.; Brown, L.J. Distance measurements by continuous wave EPR spectroscopy to monitor protein folding. Methods Mol. Biol. 2011, 752, 73–96. [Google Scholar] [PubMed]
- Kalin, M.; Gromov, I.; Schweiger, A. The continuous wave electron paramagnetic resonance experiment revisited. J. Mag. Res. 2003, 160, 166–182. [Google Scholar] [CrossRef]
- Prisner, T.; Rohrer, M.; MacMillan, F. Pulsed EPR Spectroscopy: Biological Applications. Ann. Rev. Phys. Chem. 2001, 52, 279–313. [Google Scholar] [CrossRef] [PubMed]
- Rigby, S.E.J.; Evans, M.C.W.; Heathcote, P. Electron nuclear double resonance (ENDOR) spectroscopy of radicals in photosystem I and related Type 1 photosynthetic reaction centres. Biochim. Biophys. Acta Bioenerg. 2001, 1507, 247–259. [Google Scholar] [CrossRef]
- Kohno, M. Applications of Electron Spin Resonance Spectrometry for Reactive Oxygen Species and Reactive Nitrogen Species Research. J. Clin. Biochem. Nutr. 2010, 47, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zavoisky, E. Spin-magnetic resonance in paramagnetics. Fizicheskiĭ Zhurnal. 1945, 9, 211–245. [Google Scholar]
- Khan, N.; Swartz, H. Measurements in vivo of parameters pertinent to ROS/RNS using EPR spectroscopy. Mol. Cell. Biochem. 2002, 234–235, 341–357. [Google Scholar] [CrossRef] [PubMed]
- Egashira, T.; Takayama, F. Free radicals and oxidative stress: Targeted ESR measurement of free radicals. Nihon Yakurigaku Zasshi. 2002, 120, 229–236. [Google Scholar] [CrossRef]
- Reszka, K.J.; Bilski, P.; Chignell, C.F. EPR and spin-trapping investigation of nitric oxide (NO) from UV irradiated nitrite anions in alkaline aqueous solutions. J. Am. Chem. Soc. 1996, 118, 8719–8720. [Google Scholar] [CrossRef]
- Eaton, S.S.; Eaton, G.R. Chapter One—Rapid-Scan EPR of Nitroxide Spin Labels and Semiquinones. Methods Enzym. 2015, 563, 3–21. [Google Scholar] [PubMed]
- Quine, R.W.; Czechowski, T.; Eaton, G.R. A Linear Magnetic Field Scan Driver. Concept. Magn. Reson. Part B Magn. Reson. Eng. 2009, 35B, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Quine, R.W.; Rinard, G.A.; Eaton, S.S.; Eaton, G.R. Quantitative rapid scan EPR spectroscopy at 258 MHz. J. Magn. Reson. 2010, 205, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Tseitlin, M.; Czechowski, T.; Quine, R.W.; Eaton, S.S.; Eaton, G.R. Background removal procedure for rapid scan EPR. J. Magn. Reson. 2009, 196, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, E.; Mahmoud, A.M.; Khalifa, A.M.; Ali, S.S. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: The underutilized research window on muscle ageing. J. Physiol. 2016, 594, 4591–4613. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.R.; Chen, C.L.; Yeh, A.; Liu, X.; Zweier, J.L. Direct and Indirect Roles of Cytochrome bin the Mediation of Superoxide Generation and NO Catabolism by Mitochondrial Succinate-Cytochrome c Reductase. J. Biol. Chem. 2006, 281, 13159–13168. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.; Porasuphatana, S.; Tsai, P.; Budzichowski, T.; Rosen, G.M. Spin trapping nitric oxide from neuronal nitric oxide synthase: A look at several iron-dithiocarbamate complexes. Free Radic. Res. 2005, 39, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Varadharaj, S.; Watkins, T.; Cardounel, A.J.; Garcia, J.G.N.; Zweier, J.L.; Kuppusamy, P.; Natarajan, V.; Parinandi, N.L. Vitamin C-Induced Loss of Redox-Dependent Viability in Lung Microvascular Endothelial Cells. Antioxid. Redox. Signal. 2005, 7, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.K.; Thomas, M.P.; Smith, S.; Madhani, M.; Rogers, S.C.; James, P.E. In Vivo EPR Spectroscopy: Biomedical and Potential diaGnostic Applications. Faraday Discuss. 2004, 126, 103–117, discussion 169–183. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.U.; Liu, Y.; Nash, K.M.; Zweier, J.L.; Rockenbauer, A.; Villamena, F.A. Fast Reactivity of Cyclic Nitrone-Calix(4)Pyrrole Conjugate with Superoxide Radical Anion: Theoretical and Experimental Studies. J. Am. Chem. Soc. 2010, 132, 17157–17173. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Afanas’ev, I.B.; Kleschyov, A.L.; Harrison, D.G. Detection of superoxide in vascular tissue. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1761–1768. [Google Scholar] [CrossRef]
- Cai, H.; Dikalov, S.; Griendling, K.K.; Harrison, D.G. Detection of reactive oxygen species and nitric oxide in vascular cells and tissues: Comparison of sensitivity and specificity. Methods Mol. Med. 2007, 139, 293–311. [Google Scholar]
- Rodriguez-Rodriguez, R.; Simonsen, U. Science Publishers Measurement of Nitric Oxide and Reactive Oxygen Species in the Vascular Wall. Curr. Anal. Chem. 2012, 8, 485–494. [Google Scholar] [CrossRef]
- Dohi, K.; Satoh, K.; Nakamachi, T.; Ohtaki, H.; Yofu, S.; Nakamura, S.; Shioda, S.; Aruga, T. Novel free radical monitoring in patients with neurological emergency diseases. Acta Neurochir. Suppl. 2010, 106, 315–319. [Google Scholar] [PubMed]
- Mitchell, D.G.; Rosen, G.M.; Tseitlin, M.; Symmes, B.; Eaton, S.S.; Eaton, G.R. Use of Rapid-Scan EPR to Improve Detection Sensitivity for Spin-Trapped Radicals. Biophys. J. 2013, 105, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.T.; Joseph, J.; Zhang, H.; Karoui, H.; Kalyanaraman, B. Synthesis and biochemical applications of a solid cyclic nitrone spin trap: A relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radical Biol. Med. 2001, 31, 599–606. [Google Scholar] [CrossRef]
- Ranguelova, K.; Mason, R.P. The fidelity of spin trapping with DMPO in biological systems. Magn. Reson. Chem. 2011, 49, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Li, M.D.; Albright, T.R.; Hanway, P.J.; Liu, M.; Lan, X.; Li, S.; Peterson, J.; Winter, A.H.; Phillips, D.L. Direct Spectroscopic Detection and EPR Investigation of a Ground State Triplet Phenyl Oxenium Ion. J. Am. Chem. Soc. 2015, 137, 10391–10398. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Yonamoto, Y. In Situ EPR Detection of Reactive Oxygen Species in Adherent Cells Using Polylysine-Coated Glass Plate. Appl. Magn. Reson. 2015, 46, 977–986. [Google Scholar] [CrossRef]
- Loibl, S.; von Minckwitz, G.; Weber, S.; Sinn, H.P.; Schini-Kerth, V.B.; Lobysheva, I.; Nepveu, F.; Wolf, G.; Strebhardt, K.; Kaufmann, M. Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer 2002, 95, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Alzawahra, W.F.; Talukder, M.A.; Liu, X.; Samouilov, A.; Zweier, J.L. Heme proteins mediate the conversion of nitrite to nitric oxide in the vascular wall. Am. J. Phys. Heart Circ. Phys. 2008, 295, H499–H508. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.I.; Okajo, A.; Nagata, K.; Degraff, W.G.; Nyui, M.; Ueno, M.; Nakanishi, I.; Ozawa, T.; Mitchell, J.B.; Krishna, M.C.; et al. Detection of Free Radical Reactions in an Aqueous Sample Induced by Low Linear-Energy-Transfer Irradiation. Biol. Pharm. Bull. 2009, 32, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, B.; Nash, K.M.; Velayutham, M.; Villamena, F.A. Detection of Nitric Oxide and Superoxide Radical Anion by Electron Paramagnetic Resonance Spectroscopy from Cells using Spin Traps. J. Vis. Exp. 2012, 66, 2810–2821. [Google Scholar] [CrossRef] [PubMed]
- Beziere, N.; Hardy, M.; Poulhes, F.; Karoui, H.; Tordo, P.; Ouari, O.; Frapart, Y.M.; Rockenbauer, A.; Boucher, J.L.; Mansuy, D.; et al. Metabolic stability of superoxide adducts derived from newly developed cyclic nitrone spin traps. Free Radic. Biol. Med. 2014, 67, 150–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, K.; Hardy, M.; Poulhes, F.; Karoui, H.; Tordo, P.; Ouari, O.; Peyrot, F. Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps. Free Rad. Biol. Med. 2014, 71, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Bobko, A.A.; Khramtsov, V.V. Redox properties of the nitronyl nitroxide antioxidants studied via their reactions with nitroxyl and ferrocyanide. Free Radic. Res. 2015, 49, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Peyrot, F.; Grillon, C.; Vergely, C.; Rochette, L.; Ducrocq, C. Pharmacokinetics of 1-nitrosomelatonin and detection by EPR using iron dithiocarbamate complex in mice. Biochem. J. 2005, 387, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, B.; Pompon, D.; Ducrocq, C. Nitrosation of melatonin by nitric oxide and peroxynitrite. J. Pineal Res. 2000, 29, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Feelisch, M.; Rassaf, T.; Mnaimneh, S.; Singh, N.; Bryan, N.S.; Jourd’heuil, D.; Kelm, M. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: Implications for the fate of NO in vivo. FASEB J. 2002, 16, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Mordvintcev, P.; Mülsch, A.; Busse, R.; Vanin, A. On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Anal. Biochem. 1991, 199, 142–146. [Google Scholar] [CrossRef]
- Hogg, N. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy. Free Radic. Biol. Med. 2010, 49, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Komarov, A.; Mattson, D.; Jones, M.M.; Singh, P.K.; Lai, C.S. In vivo spin trapping of nitric oxide in mice. Biochem. Biophys. Res. Commun. 1993, 195, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Kleschyov, A.L.; Wenzel, P.; Munzel, T. Electron paramagnetic resonance (EPR) spin trapping of biological nitric oxide. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 851, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Ericsson, M.; Lindgren, M.; Gustafsson, H. A High Precision Method for Quantitative Measurements of Reactive Oxygen Species in Frozen Biopsies. PLoS ONE 2014, 9, e90964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrakic-Sposta, S.; Gussoni, M.; Montorsi, M.; Porcelli, S.; Vezzoli, A. A Quantitative Method to Monitor Reactive Oxygen Species Production by Electron Paramagnetic Resonance in Physiological and Pathological Conditions. Oxid. Med. Cell Longev. 2014, 2014, 306179. [Google Scholar] [CrossRef] [PubMed]
- Villamena, F.A.; Zweier, J.L. Detection of reactive oxygen and nitrogen species by EPR spin trapping. Antioxid. Redox. Signal. 2004, 6, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Shulaev, V.; Oliver, D.J. Metabolic and Proteomic Markers for Oxidative Stress. New Tools for Reactive Oxygen Species Research. Plant Phys. 2006, 141, 367–372. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzen, S.; Gurer-Orhan, H.; Saso, L. Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique. Molecules 2017, 22, 181. https://doi.org/10.3390/molecules22010181
Suzen S, Gurer-Orhan H, Saso L. Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique. Molecules. 2017; 22(1):181. https://doi.org/10.3390/molecules22010181
Chicago/Turabian StyleSuzen, Sibel, Hande Gurer-Orhan, and Luciano Saso. 2017. "Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique" Molecules 22, no. 1: 181. https://doi.org/10.3390/molecules22010181
APA StyleSuzen, S., Gurer-Orhan, H., & Saso, L. (2017). Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique. Molecules, 22(1), 181. https://doi.org/10.3390/molecules22010181