Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,074)

Search Parameters:
Keywords = free radical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
3266 KB  
Article
A Novel Lactobacillus acidophilus Strain Isolated from a 2-Month-Old Shiba Inu: In Vitro Probiotic Evaluation Safety Assessment in Mice and Whole-Genome Sequencing Analysis
by Huiming Huang, Xiaoling Tang, Yichuan Zhang, Mengyao Chen and Min Wen
Microorganisms 2025, 13(9), 2095; https://doi.org/10.3390/microorganisms13092095 (registering DOI) - 8 Sep 2025
Abstract
Owing to their remarkable biological activities and health benefits, probiotics have gained widespread application in enhancing pet health and welfare. Host-derived probiotics are considered optimal due to their unique digestive tract environments. This study isolated Lactobacillus acidophilus L1 from the feces of a [...] Read more.
Owing to their remarkable biological activities and health benefits, probiotics have gained widespread application in enhancing pet health and welfare. Host-derived probiotics are considered optimal due to their unique digestive tract environments. This study isolated Lactobacillus acidophilus L1 from the feces of a 2-month-old Shiba Inu puppy and conducted a comprehensive evaluation of its potential as a probiotic candidate for pet health. Strain L1 demonstrated high tolerance to acidic conditions (survival rates of 90.41%, 92.90% and 98.81% at pH 2, 2.5, and 3.0, respectively) and bile salts (survival rates of 98.05%, 95.68%, and 82.21% at 0.1%, 0.2%, and 0.3% concentrations, respectively). Adhesion to Caco-2 intestinal epithelial cells reached 38.33%, with hydrophobicity of 97.81% and auto-aggregation of 32.28%. L1 also displayed pronounced antioxidant activity, with DPPH and ABTS radical scavenging rates of 71.15% and 83.20%. Both the bacterial suspension and the cell-free supernatant had potent inhibition of pathogenic bacteria, while the strain showed a non-hemolytic phenotype and remained sensitive to clinically relevant antibiotics (e.g., penicillin). On the other hand, animal experiments conducted in ICR mice (randomly divided into four groups) demonstrated that oral administration of L1 had no toxic effects on the mice and increased serum SOD and CAT levels, while reducing MDA levels. Furthermore, whole-genome sequencing revealed that L1 is 2,106,895 bp in size and contains 2098 coding sequences, two CRISPR arrays, ten genomic islands, and two prophage regions. Collectively, the in vitro and in vivo data presented here indicate that L. acidophilus L1, originally isolated from canine feces, supports further evaluation as a candidate strain for incorporation into functional pet foods. Full article
(This article belongs to the Special Issue Probiotics, Pebiotics and Pet Health)
24 pages, 2898 KB  
Article
Evaluating UV Stability of Miscanthus × giganteus Particles via Radiografting of UV Absorbers
by Roland El Hage, Dominique Lafon-Pham and Rodolphe Sonnier
Molecules 2025, 30(17), 3649; https://doi.org/10.3390/molecules30173649 - 8 Sep 2025
Abstract
Miscanthus × giganteus particles possess excellent advantages in biodegradability and sustainability. However, their susceptibility to ultraviolet (UV) degradation limits wider outdoor applications. In the present work, electron beam (e-beam) radiation-induced grafting was used for the first time to attempt covalent grafting [...] Read more.
Miscanthus × giganteus particles possess excellent advantages in biodegradability and sustainability. However, their susceptibility to ultraviolet (UV) degradation limits wider outdoor applications. In the present work, electron beam (e-beam) radiation-induced grafting was used for the first time to attempt covalent grafting of UV absorbers onto miscanthus particles to address a major challenge in natural fiber stabilization. Two UV absorbers, 2-hydroxy-4-(methacryloyloxy) benzophenone (HMB) and 2-(4-benzoyl-3-hydroxyphenoxy) ethyl acrylate (BHEA), were explored using both pre-irradiation and simultaneous approaches. Pre-irradiation grafting did not achieve useful covalent fixation of HMB or BHEA, due in part to the premature decay of radicals at elevated temperatures and with solvent use, and the lignin-based quenching of radicals. Solvent-free mutual irradiation grafting failed due to immobility of the UV absorbers, while grafting of HMB in solvent failed due to radical-scavenging behavior. Grafting of BHEA was successfully achieved under solvent-based simultaneous irradiation, reaching up to 38 wt % DG in a butanone/2.5% H2SO4 system. This condition led to the improved UV stability of miscanthus particles, in which color change was reduced significantly after 1000 h of accelerated weathering; this was mainly linked to a beneficial pre-darkening effect which was induced by the presence of the acid. This work proposes a route of grafting strategy that aims to improve the photostability of miscanthus particles, paving the way for durable bio-based materials in outdoor composite applications. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

27 pages, 4764 KB  
Article
Development and Characterization of PVA/KGM-Based Bioactive Films Incorporating Natural Extracts and Thyme Oil
by Ayşenur Yeşilyurt
Polymers 2025, 17(17), 2425; https://doi.org/10.3390/polym17172425 - 8 Sep 2025
Abstract
This study focused on the development and characterization of polyvinyl alcohol (PVA)- and konjac glucomannan (KGM)-based composite films enriched with natural bioactive additives. A PK (PVA/KGM) matrix with the optimum tensile strength was selected, and five film formulations were prepared by incorporating Aronia [...] Read more.
This study focused on the development and characterization of polyvinyl alcohol (PVA)- and konjac glucomannan (KGM)-based composite films enriched with natural bioactive additives. A PK (PVA/KGM) matrix with the optimum tensile strength was selected, and five film formulations were prepared by incorporating Aronia melanocarpa extract (AME), red dragon fruit extract (DFE), and thyme essential oil (TEO). TEO was also introduced via a Pickering emulsion (PE) technique. The total phenolic content (TPC) and free radical scavenging activity (FRSA) of extracts and films were determined, where AME exhibited the highest antioxidant activity (TPC: 243 mg GAE/g; FRSA: 81.7%). The additive-free PK film displayed limited antioxidant activity (18%), while antioxidant capacity significantly improved with extract and EO incorporation. The PK-A film (AME-added) demonstrated the highest tensile strength and lowest water vapor permeability, supported by increased local crystallinity detected in XRD. Color analysis indicated dominant red-violet tones in AME films and greenish-yellow tones in DFE films. FTIR confirmed that no new chemical bonds were formed between active compounds and the polymer matrix. DSC thermograms revealed consistent melting peaks (~150 °C) for all films, while Tg varied from 37 to 73 °C depending on additive type, reflecting plasticization effects of extracts and the counterbalancing effect of essential oil. The most hydrophobic (76.8°) and opaque sample was PK-ADO, prepared via the PE technique. Overall, natural extracts improved the structural, thermal, barrier, and antioxidant properties of PK films. Full article
(This article belongs to the Special Issue Functionalized Bio-Based Polymers for Environmental Applications)
Show Figures

Figure 1

20 pages, 2449 KB  
Article
Suppressed Autoxidation, Enhanced Antioxidant Activity, and Improved Cytocompatibility of Epigallocatechin Gallate via Alginate Site-Specific Conjugation with Tunable Substitution Degree
by Nunnarpas Yongvongsoontorn, Maho Kihara, Masaya Inada, Joo Eun Chung and Motoichi Kurisawa
Int. J. Mol. Sci. 2025, 26(17), 8725; https://doi.org/10.3390/ijms26178725 (registering DOI) - 7 Sep 2025
Abstract
Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits strong antioxidant activity but suffers from poor stability due to rapid autoxidation under physiological conditions. In this study, we developed alginate–EGCG conjugates via a site-selective thiol-quinone addition reaction under mild aqueous conditions. The conjugation [...] Read more.
Epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, exhibits strong antioxidant activity but suffers from poor stability due to rapid autoxidation under physiological conditions. In this study, we developed alginate–EGCG conjugates via a site-selective thiol-quinone addition reaction under mild aqueous conditions. The conjugation preserved EGCG’s flavanic structure while enabling tunable degrees of substitution (DS). We systematically evaluated the oxidative stability, antioxidant activity, and cytocompatibility of alginate–EGCG conjugates in comparison with free EGCG and a mixture of EGCG and alginate. Alginate–EGCG conjugates significantly suppressed EGCG autoxidation, reduced hydrogen peroxide generation, and improved cytocompatibility in human renal epithelial cells, especially at a low DS. Furthermore, alginate–EGCG conjugates retained or even enhanced superoxide anion radical scavenging activity, with higher DS conjugates exhibiting greater antioxidant effects. In addition, dynamic light scattering analysis revealed DS-dependent particle formation via self-assembly. These findings demonstrate that covalent conjugation with natural polymers is an effective strategy to improve oxidative stability and biological functionality of plant-derived polyphenols, offering a promising approach for developing advanced antioxidant materials for food, cosmetic, and biomedical applications. Full article
Show Figures

Figure 1

13 pages, 1216 KB  
Article
Perovskia atriplicifolia Benth (Russian Sage), a Source of Diterpenes Exerting Antioxidant Activity in Caco-2 Cells
by Marzieh Rahmani Samani, Antonietta Cerulli, Gabriele Serreli, Maria Paola Melis, Monica Deiana, Milena Masullo and Sonia Piacente
Plants 2025, 14(17), 2795; https://doi.org/10.3390/plants14172795 - 6 Sep 2025
Viewed by 81
Abstract
Perovskia atriplicifolia Benth., a perennial aromatic plant widespread in Iran’s Sistan and Baluchestan region, is known for its essential oil composition, rich in aromatic and non-aromatic sesquiterpenes. To the best of our knowledge, limited information exists on the composition of its non-volatile extracts. [...] Read more.
Perovskia atriplicifolia Benth., a perennial aromatic plant widespread in Iran’s Sistan and Baluchestan region, is known for its essential oil composition, rich in aromatic and non-aromatic sesquiterpenes. To the best of our knowledge, limited information exists on the composition of its non-volatile extracts. Herein, the phytochemical investigation of the EtOH extract of P. atriplicifolia aerial parts was performed, guided by an analytical approach based on LC-(-)ESI/QExactive/MS/MS. This led to the identification of phenolics, flavonoids, diterpenes (mainly carnosic acid derivatives), and triterpenes. Structural elucidation was performed via NMR and HRMSMS analysis. Furthermore, considering the occurrence of diterpenes closely related to carnosic acid and carnosol, known for their antioxidant properties, the antioxidant activity of the extract (0.5–5.0 μg/mL) and selected pure compounds (0.5–25 μM; compounds 5, 7, 9, 10, 12, 16) was evaluated in Caco-2 intestinal cells, showing significant reduction in free radical levels. The quantitative results highlighted that the above cited compounds occurred in concentrations ranging from 1.73 to 520.21 mg/100 g aerial parts, with carnosol (12) exhibiting the highest concentration (520.21 mg/100 g aerial parts), followed by 1α-hydroxydemethylsalvicanol (9) (91.73 mg/100 g aerial parts) and carnosic acid (16) (88.16 mg/100 g aerial parts). Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

24 pages, 4827 KB  
Article
Effects of Sweating and Drying Processes on Chemical Components, Antioxidant Activity, and Anti-Acute Liver Injury Mechanisms of Eucommia ulmoides Based on the Spectrum–Effect Relationship
by Peiyao Shi, Meng Zhang, Changxin Qian, Liangshi Lin, Qi Liu, Juan Xue and Shanshan Liang
Int. J. Mol. Sci. 2025, 26(17), 8686; https://doi.org/10.3390/ijms26178686 (registering DOI) - 5 Sep 2025
Viewed by 336
Abstract
To investigate how sweating–drying processing affects the components, antioxidant activity, and hepatoprotective mechanisms of Eucommia ulmoides (EUB) against acute liver injury (ALI), this study constructed a “processing–active components–ALI targets” network. Eight processed EUB samples were analyzed using HPLC fingerprinting, multi-assay antioxidant tests (DPPH/ABTS·+/pyrogallol), [...] Read more.
To investigate how sweating–drying processing affects the components, antioxidant activity, and hepatoprotective mechanisms of Eucommia ulmoides (EUB) against acute liver injury (ALI), this study constructed a “processing–active components–ALI targets” network. Eight processed EUB samples were analyzed using HPLC fingerprinting, multi-assay antioxidant tests (DPPH/ABTS·+/pyrogallol), network pharmacology, and molecular docking. Sweating–drying significantly altered EUB’s chemical profile, with HPLC fingerprint similarities ranging from 0.715 to 1.000, the lowest being for FG4 (40 °C dried after sweating) and FD (freeze-dried after sweating). Key components (chlorogenic acid (CA), pinoresinol diglucoside (PDG), aucubin (AU), geniposidic acid (GPA)) varied: XS (sun-dried) had the highest CA/PDG, while FG4 showed increased AU/GPA. FY (shade-dried after sweating) exhibited the strongest free radical scavenging (DPPH/ABTS·+/pyrogallol IC50 = 0.828, 0.134, 14.200 mg/mL), which correlated with CA/PDG/liriodendrin (PD) synergy. Network pharmacology identified 205 EUB-ALI intersection targets (core: TNF, PTGS2, GAPDH) and the AGE-RAGE pathway; molecular docking confirmed strong CA/PDG binding to GAPDH/PTGS2. This study clarifies how processing regulates EUB’s components and their links to antioxidant and hepatoprotective effects, providing scientific support for EUB’s clinical application against ALI. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 7808 KB  
Brief Report
Polynucleotide HPTTM-Based Hydrogels Exhibit Scavenging Activity Against Reactive Oxygen Species
by Maria Teresa Colangelo, Silvana Belletti, Stefano Guizzardi and Carlo Galli
Antioxidants 2025, 14(9), 1089; https://doi.org/10.3390/antiox14091089 - 5 Sep 2025
Viewed by 102
Abstract
This study investigates the scavenger activity of Polynucleotide High Purification Technology (PN HPTTM), alone or in combination with hyaluronic acid (PN HPTTM + HA) against oxidative stress induced by hydrogen peroxide (H2O2). Since oxidative stress is [...] Read more.
This study investigates the scavenger activity of Polynucleotide High Purification Technology (PN HPTTM), alone or in combination with hyaluronic acid (PN HPTTM + HA) against oxidative stress induced by hydrogen peroxide (H2O2). Since oxidative stress is implicated in numerous pathological conditions, identifying effective antioxidants is crucial for therapeutic development. We employed a cell-free fluorometric assay based on Calcein-AM, a fluorescence probe whose signal increases proportionally to the generation of reactive oxygen species (ROS), to evaluate the ability to neutralize ROS under varying oxidative stress conditions and determine the dose- and time-dependent effects of these compounds. PN HPTTM, HA, and PN HPTTM + HA were tested at various concentrations over multiple time points. Our results demonstrated that all tested treatments significantly lowered ROS levels compared to the untreated control. Notably, the PN HPTTM -based compounds exhibited robust scavenging activity, with PN HPTTM + HA displaying the strongest and most consistent ROS-neutralizing effect across all concentrations and time points. This enhanced performance suggests a synergistic interaction between PN HPTTM and HA, potentially due to complementary mechanisms of free radical scavenging and structural stabilization. These findings highlight the potential of PN HPTTM and PN HPTTM + HA as effective antioxidative agents, offering potential for therapeutic applications where oxidative stress is central, including wound healing and tissue regeneration. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

29 pages, 1200 KB  
Review
Microbiota-Derived Tryptophan Metabolite Indole-3-Propionic Acid-Emerging Role in Neuroprotection
by Maja Owe-Larsson, Dominik Drobek, Paulina Iwaniak, Renata Kloc, Ewa M. Urbanska and Mirosława Chwil
Molecules 2025, 30(17), 3628; https://doi.org/10.3390/molecules30173628 - 5 Sep 2025
Viewed by 252
Abstract
In recent years, gut–brain axis signaling has been recognized as an essential factor modifying behavior, mood, cognition, and cellular viability under physiological and pathological conditions. Consequently, the intestinal microbiome has become a potential therapeutic target in neurological and psychiatric disorders. The microbiota-derived metabolite [...] Read more.
In recent years, gut–brain axis signaling has been recognized as an essential factor modifying behavior, mood, cognition, and cellular viability under physiological and pathological conditions. Consequently, the intestinal microbiome has become a potential therapeutic target in neurological and psychiatric disorders. The microbiota-derived metabolite of tryptophan (Trp), indole-3-propionic acid (IPA), was discovered to target a number of molecular processes and to impact brain function. In this review, we outline the key mechanisms by which IPA may affect neuronal activity and survival and provide an update on the evidence supporting the neuroprotective action of the compound in various experimental paradigms. Accumulating data indicates that IPA is a free radical scavenger, a ligand of aryl hydrocarbon receptors (AhR) and pregnane X receptors (PXR), and an anti-inflammatory molecule. IPA decreases the synthesis of the proinflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumor necrosis factor-α (TNF-α), and other cytokines, reduces the generation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome, and enhances the synthesis of neurotrophic factors. Furthermore, produced in the gut, or administered orally, IPA boosts the central levels of kynurenic acid (KYNA), a neuroprotective metabolite of Trp. IPA reduces the release of proinflammatory molecules in the gut, breaking the gut–inflammation–brain vicious cycle, which otherwise leads to neuronal loss. Moreover, as a molecule that easily enters central compartment, IPA may directly impact brain function and cellular survival. Overall, the gathered data confirms neuroprotective features of IPA, and supports its potential use in high-risk populations, in order to delay the onset and ameliorate the course of neurodegenerative disorders and cognitive impairment. Clinical trials evaluating IPA as a promising therapeutic add-on, able to slow down the progress of neurodegenerative disorders such as Alzheimer’s or Parkinson’s disease and to limit the morphological and behavioral consequences of ischemic stroke, are urgently needed. Full article
(This article belongs to the Special Issue Natural Products and Microbiology in Human Health)
Show Figures

Figure 1

15 pages, 1737 KB  
Article
Comparative Thermal and Supramolecular Hydrothermal Synthesis of g-C3N4 Toward Efficient Photocatalytic Degradation of Gallic Acid
by Fernando Cantor Pérez, Julia Liliana Rodríguez Santillán, Ricardo Santillán Peréz, Iliana Fuentes Camargo, Issis C. Romero Ibarra, Jesús I. Guzmán Castañeda, Jorge L. Vazquez-Arce, Hugo Tiznado and Hugo Martínez Gutiérrez
Catalysts 2025, 15(9), 858; https://doi.org/10.3390/catal15090858 - 5 Sep 2025
Viewed by 192
Abstract
Gallic acid (GA), a polyphenol extensively used in the food, wine, and pharmaceutical industries, is known for its inhibitory effects on soil microbial activity. Photocatalytic degradation offers an environmentally friendly solution for GA removal from water. In this work, graphitic carbon nitride (g-C [...] Read more.
Gallic acid (GA), a polyphenol extensively used in the food, wine, and pharmaceutical industries, is known for its inhibitory effects on soil microbial activity. Photocatalytic degradation offers an environmentally friendly solution for GA removal from water. In this work, graphitic carbon nitride (g-C3N4) photocatalysts were synthesized by two methods: thermal exfoliation (CN-E) and supramolecular assembly via hydrothermal processing (HCN-II). Structural analyses by XRD, FTIR, and XPS confirmed the formation of the g-C3N4 framework, while SEM revealed that CN-E consisted of folded and curled nanosheets, whereas HCN-II displayed a polyhedral–nanosheet hybrid architecture with internal channels. Both materials achieved approximately 80% GA degradation within 180 min under visible-light irradiation, yet HCN-II exhibited a superior apparent rate constant (k = 0.01156 min−1) compared with CN-E. Radical trapping experiments demonstrated that O2 and h+ were the primary reactive oxygen species involved, with OH• making a minor contribution. The enhanced performance of HCN-II is attributed to its higher surface area, improved light harvesting, and efficient charge separation derived from supramolecular assembly. These findings highlight the potential of engineered g-C3N4 nanostructures as efficient, metal-free photocatalysts for the degradation of recalcitrant organic pollutants in water treatment applications. Full article
Show Figures

Figure 1

16 pages, 2773 KB  
Article
Anti-Interference Fe-N-C/PMS System: Synergistic Radical-Nonradical Pathways Enabled by sp2 Carbon and Metal-N Coordination
by Qiongqiong He, Xuewen Wu, Ping Ma, Zhaoyang Song, Xiaoqi Wu, Ruize Gao and Zhenyong Miao
Catalysts 2025, 15(9), 850; https://doi.org/10.3390/catal15090850 - 3 Sep 2025
Viewed by 304
Abstract
Phenol is a refractory organic pollutant that is difficult to degrade in wastewater treatment, and efficiently and stably degrading phenol presents a significant challenge. In this study, iron-doped humic acid-based nitrogen–carbon materials were prepared to activate peroxymonosulfate (PMS) for the degradation of phenol. [...] Read more.
Phenol is a refractory organic pollutant that is difficult to degrade in wastewater treatment, and efficiently and stably degrading phenol presents a significant challenge. In this study, iron-doped humic acid-based nitrogen–carbon materials were prepared to activate peroxymonosulfate (PMS) for the degradation of phenol. The Fe-N-C/PMS system achieved a phenol degradation rate of 99.71%, which follows a first-order kinetic model, with the reaction rate constant of 0.1419 min−1. The phenol degradation rate remained above 92% in inorganic anions (Cl, SO42−, HCO3) and humic acid and the system maintained a 100% phenol removal rate over a wide pH range (3–9). The iron in the catalyst predominantly exists in the forms of Fe0 and Fe3C, and Fe0, Fe2+/Fe3+ are the main active sites that promote PMS activation during the reaction. Additionally, Fe-N-C has a large specific surface area (1041.36 m2/g). Quenching experiments and electron spin resonance (ESR) spectroscopy detected the active free radicals in the Fe-N-C/PMS system: SO4•−, •OH, O2•−, and 1O2. The mechanism for phenol degradation was discussed, involving radical pathways (SO4•−, •OH, O2•−) and the non-radical pathway (1O2), in the Fe-N-C/PMS system activated by Fe0, Fe2+/Fe3+, sp2 hybridized carbon, C-O/C-N, C=O, and graphitic nitrogen active sites. This study provides new insights into the synthesis of efficient carbon-based catalysts for phenol degradation and water remediation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

21 pages, 4757 KB  
Article
Multifunctional Activity of Syzygium aromaticum Extracts Against Candida albicans: Free Radicals, Membrane Permeabilization and Cdr1p Localization
by Daria Derkacz, Liliana Cebula and Anna Krasowska
Int. J. Mol. Sci. 2025, 26(17), 8571; https://doi.org/10.3390/ijms26178571 - 3 Sep 2025
Viewed by 208
Abstract
Eugenol is a compound with promising antimicrobial properties. The rising phenomenon of multidrug resistance of Candida albicans is driving researchers to search for new, alternative therapeutics that would synergize with conventional antifungal drugs. The aim of the present study is to investigate how [...] Read more.
Eugenol is a compound with promising antimicrobial properties. The rising phenomenon of multidrug resistance of Candida albicans is driving researchers to search for new, alternative therapeutics that would synergize with conventional antifungal drugs. The aim of the present study is to investigate how eugenol and eugenol-based extracts impair C. albicans growth by generation of reactive oxygen species (ROS) and plasma membrane (PM) disruption. The methods that we applied involve structural analysis of eugenol extracts by HPLC, ATR-FTIR, and polyphenol detection. Additionally, determination of ROS level in C. albicans was performed using microscopic and flow cytometry studies and analysis of PM integrity (PI-staining, observation of PM transporter—Cdr1p—localization) and fluidity (fluorometric study). The results indicate that eugenol impacts fungal growth, and this corresponds with increased ROS levels and diminished PM fluidity in the C. albicans WT strain. C. albicans strains deprived of ergosterol (erg11Δ/Δ) exhibited lowered ROS level and no change in PM fluidity in response to the tested eugenol extracts, but they affected its growth and caused PM permeabilization and Cdr1p delocalization. These conclusions indicate that mode of action of eugenol can be related to disruption of PM structure by both ergosterol-dependent and -independent mechanisms. Ergosterol can play a crucial role in maintaining the PM integrity during treatment with lower concentrations of eugenol. Full article
Show Figures

Figure 1

16 pages, 1732 KB  
Article
Electrochemical Measures for Determining the Total Antioxidant Capacity of Açaí Pulp (Euterpe oleracea) at a Glassy Carbon Electrode
by Tabata N. Feijoó, Luis D. Loor-Urgilés, Danyelle M. de Araújo, Elisama V. dos Santos, Marília Oliveira Fonseca Goulart and Carlos A. Martínez-Huitle
Antioxidants 2025, 14(9), 1082; https://doi.org/10.3390/antiox14091082 - 3 Sep 2025
Viewed by 338
Abstract
Antioxidants, such as flavonoids, are influential secondary metabolites that play a significant role in regulating human health. Açaí, known for its potent antioxidant properties, has gained popularity in the nutritional field. However, there is a need for accurate methods to quantify its antioxidant [...] Read more.
Antioxidants, such as flavonoids, are influential secondary metabolites that play a significant role in regulating human health. Açaí, known for its potent antioxidant properties, has gained popularity in the nutritional field. However, there is a need for accurate methods to quantify its antioxidant capacity. Therefore, the goal of this investigation was to determine the total antioxidant capacity of frozen açaí pulp by applying the concept of the electrochemical quantitative index (EQI) using the cyclic voltammetry technique. The electrochemical response of ethanolic extracts obtained by a nonconventional ultrasound bath was investigated in the anodic region. The results clearly showed redox behavior at +0.37 V and +0.27 V (vs. Ag/AgCl) for the anodic and cathodic peaks, respectively, when evaluated by cyclic voltammetry at a glassy carbon (GC) electrode. By investigating a constant ethanolic extract concentration (0.2%) and analyzing the scan rate and supporting electrolyte effects, it was determined that the frozen açaí pulp extract presented an EQI of about 2.3 µA/V. Similarly, the concept of the EQI was extended to the use of the differential pulse voltammetry profile of a 0.2% ethanolic açaí extract on different supporting electrolytes, which showed that some experimental conditions needed improvement. Still, maintaining pH with a buffer solution in the anodic region is crucial to ensure reproducibility. The antioxidant capacity was also determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay to compare the electrochemical results. The Folin–Ciocalteu colorimetric test was applied to determine the total phenolic content of the extract. Full article
(This article belongs to the Special Issue The Electrochemical Tentacles of Oxidative Stress)
Show Figures

Graphical abstract

17 pages, 2832 KB  
Article
Revealing Antioxidant Activity of Cellooligosaccharides and Xylooligosaccharides from Banana Leaves, Pseudostem and Guava Seed Cake
by Carolina Froes Forsan, Danieli Fernanda Canaver Marin and Michel Brienzo
AppliedChem 2025, 5(3), 21; https://doi.org/10.3390/appliedchem5030021 - 3 Sep 2025
Viewed by 180
Abstract
Free radicals are molecules generated during some biochemical processes, and in excess, they can cause various diseases; therefore, their production needs to be controlled in humans. One approach to achieving this is through the consumption of substances with antioxidant capacity, which are capable [...] Read more.
Free radicals are molecules generated during some biochemical processes, and in excess, they can cause various diseases; therefore, their production needs to be controlled in humans. One approach to achieving this is through the consumption of substances with antioxidant capacity, which are capable of neutralizing free radicals. This study evaluated the antioxidant activity of cellooligosaccharides (COS) and xylooligosaccharides (XOS) solutions, extracted from banana leaf and pseudostem, and guava seed cake, unfiltered and filtered using a Sep-pak filter. Additionally, the antioxidant activity of their monomers, including commercial glucose, xylose, and cellobiose, was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay. Antioxidant activity was observed in the unfiltered COS and XOS solutions, with maximum DPPH radical reduction of 48.3% and 84.2%, respectively. In filtered COS and XOS solutions, the reduction did not exceed 0.5%. It can be concluded that the antioxidant activity is due to the presence of compounds dissolved in the oligosaccharide solutions, such as lignin, extractives and carboxylic acids, which were qualified by the Folin–Ciocalteu method, nuclear magnetic resonance, and scanning spectrophotometry. Full article
Show Figures

Figure 1

24 pages, 1864 KB  
Review
Multiple Applications of Nanomaterials in the Diagnosis and Treatment of Hemorrhagic Stroke
by Boyao Yuan, Taotao Jiang, Jingjing Han, Ting Zheng and Manxia Wang
Biomolecules 2025, 15(9), 1272; https://doi.org/10.3390/biom15091272 - 3 Sep 2025
Viewed by 322
Abstract
Hemorrhagic stroke is a severe cerebrovascular disease with a high rate of disability and mortality. Its complex pathological mechanisms, such as blood–brain barrier damage, neuroinflammation, and oxidative stress, along with the restrictive nature of the blood–brain barrier, have restricted the clinical therapeutic effects [...] Read more.
Hemorrhagic stroke is a severe cerebrovascular disease with a high rate of disability and mortality. Its complex pathological mechanisms, such as blood–brain barrier damage, neuroinflammation, and oxidative stress, along with the restrictive nature of the blood–brain barrier, have restricted the clinical therapeutic effects of drugs. Nanotechnology, with its advantages of targeting ability, biocompatibility, and multifunctionality, has provided a new approach for the precise diagnosis and treatment of hemorrhagic stroke. In terms of diagnosis, imaging technology enhanced by magnetic nanoparticles can achieve real-time bedside monitoring of hematoma dynamics and cerebral perfusion, significantly improving the timeliness compared with traditional imaging methods. In the field of treatment, the nanodrug delivery system can remarkably improve the bioavailability and brain targeting of clinical drugs and herbal medicines by enhancing drug solubility, crossing the blood–brain barrier, and responsive and targeting drug release. Multifunctional inorganic nanomaterials, such as cerium oxide nanoparticles, graphene, and perfluorooctyl octyl ether nanoparticles, can alleviate brain edema and neuronal damage through antioxidant and anti-inflammatory effects, and the scavenging of free radicals. Moreover, gene delivery mediated by nanocarriers and stem cell transplantation protection strategies have provided innovative solutions for regulating molecular pathways and promoting nerve repair. Although nanotechnology has shown great potential in the diagnosis and treatment of hemorrhagic stroke, its clinical translation still faces challenges such as the evaluation of biosafety, standardization of formulations, and verification of long-term efficacy. In the future, it is necessary to further optimize material design and combine multimodal treatment strategies to promote a substantial breakthrough in this field from basic research to clinical application. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

18 pages, 556 KB  
Review
Pea-Derived Antioxidant Peptides: Applications, Bioactivities, and Mechanisms in Oxidative Stress Management
by Yiming Gan, Ni Xie and Deju Zhang
Chemistry 2025, 7(5), 141; https://doi.org/10.3390/chemistry7050141 - 2 Sep 2025
Viewed by 301
Abstract
Chronic injuries and diseases related to oxidative stress are major global concerns as they impose a great medical burden and lead to serious public health issues. Antioxidant peptides derived from pea protein can serve as potent antioxidants and food additives, contributing to address [...] Read more.
Chronic injuries and diseases related to oxidative stress are major global concerns as they impose a great medical burden and lead to serious public health issues. Antioxidant peptides derived from pea protein can serve as potent antioxidants and food additives, contributing to address the challenges posed by oxidative stress. This review will focus on the antioxidant effects of pea peptides demonstrated in various in vitro chemical, cellular, and in vivo antioxidant models. Additionally, this review also summarizes the regulatory role of pea peptides on the Nrf2 (NF-E2-related factor 2)/Kelch-like ECH-associated protein 1 (Keap1) pathway, aiming to elucidate their antioxidant mechanisms. Our review found that pea peptides with smaller molecular weights (<1 kDa) obtained through enzymatic hydrolysis or fermentation and/or those containing amino acids such as Glu, Asp, Gly, Pro, and Leu tend to exhibit higher antioxidant activity. These pea peptides exert their antioxidant effects by scavenging free radicals, chelating pro-oxidative transition metals, reducing hydrogen peroxide, inactivating reactive oxygen species, enhancing the expression of antioxidant enzymes, and reducing the accumulation of lipid peroxides. Our study provides a theoretical foundation for the development of pea resources and the processing of pea-related functional foods. Full article
Show Figures

Figure 1

Back to TopTop