Optimization of the Ultrasound-Assisted Extraction of Phenolic Compounds from Brosimum alicastrum Leaves and the Evaluation of Their Radical-Scavenging Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Response Surface Methodology for Optimization of UAE
2.2. Response Surface Analysis of TPC
2.3. Response Surface Analysis of TMA
2.4. Response Surface Analysis of Radical-Scavenging Activities
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials
3.3. Ultrasound-Assisted Extraction
3.4. Total Phenolic Content (TPC)
3.5. Total Monomeric Anthocyanin (TMA)
3.6. Radical Scavenger Capacity (DPPH and ABTS Assays)
3.7. Experimental Design for Optimization and Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lambert, J.D.; Arnason, J.T. Ramon and maya ruins: An ecological, not an economic, relation. Science 1982, 216, 298–299. [Google Scholar] [CrossRef] [PubMed]
- Puleston, D.E. The role of ramón in Maya subsistence. In Maya Subsistence: Studies in Memory of Dennis E. Puleston; Academic Press: New York, NY, USA, 1982; pp. 353–366. [Google Scholar]
- Martínez-Martínez, R.; López-Ortiz, S.; Ortega-Cerrilla, M.E.; Soriano-Robles, R.; Herrera-Haro, J.G.; López-Collado, J.; Ortega-Jiménez, E. Preference, consumption and weight gain of sheep supplemented with multinutritional blocks made with fodder tree leaves. Livest. Sci. 2012, 149, 185–189. [Google Scholar] [CrossRef]
- Hsu, C.; Fang, S.; Yen, G. Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food Funct. 2013, 4, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, Y.; Gao, Y.; Xu, Q.; Ju, X.; Wang, L. Identification and anti-tumour activities of phenolic compounds isolated from defatted adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed meal. J. Funct. Foods 2016, 26, 394–405. [Google Scholar] [CrossRef]
- Ferreira, I.; Martins, N.; Barros, L. Phenolic compounds and Its bioavailability: In vitro bioactive compounds or health promoters? Adv. Food Nutr. Res. 2017, 82, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Bordoloi, M.; Bordoloi, P.K.; Dutta, P.P.; Singh, V.; Nath, S.; Narzary, B.; Bhuyan, P.D.; Rao, P.G.; Barua, I.C. Studies on some edible herbs: Antioxidant activity, phenolic content, mineral content and antifungal properties. J. Funct. Foods 2016, 23, 220–229. [Google Scholar] [CrossRef]
- Gan, R.; Lui, W.; Wu, K.; Chan, C.; Dai, S.; Sui, Z.; Corke, H. Bioactive Compounds and Bioactivities of Germinated Edible Seeds and Sprouts: An Updated Review. Trends Food Sci. Technol. 2016, 59, 1–14. [Google Scholar] [CrossRef]
- Heleno, S.A.; Diz, P.; Prieto, M.; Barros, L.; Rodrigues, A.; Barreiro, M.F.; Ferreira, I.C. Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chem. 2016, 197, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Tech. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Z.; Zheng, B.; Lo, Y.M. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrason. Sonochem. 2013, 20, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Sharmila, G.; Nikitha, V.; Ilaiyarasi, S.; Dhivya, K.; Rajasekar, V.; Kumar, N.M.; Muthukumaran, K.; Muthukumaran, C. Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2016, 84, 13–21. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology. Pharm. Biol. 2016, 54, 2176–2187. [Google Scholar] [CrossRef] [PubMed]
- Davidov-Pardo, G.; Arozarena, I.; Marín-Arroyo, M.R. Stability of polyphenolic extracts from grape seeds after thermal treatments. Eur. Food Res. Technol. 2011, 232, 211–220. [Google Scholar] [CrossRef]
- Akowuah, G.; Mariam, A.; Chin, J. The effect of extraction temperature on total phenols and antioxidant activity of Gynura procumbens leaf. Pharmacogn. Mag. 2009, 5, 81–85. [Google Scholar]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT-Food Sci. Technol. 2017, 79, 178–189. [Google Scholar] [CrossRef]
- Mason, T.J.; Peters, D. Practical Sonochemistry: Power Ultrasound Uses and Applications; Woodhead Publishing: Cambridge, UK, 2002; ISBN 978-1-898563-83-7. [Google Scholar]
- Capote, F.P.; de Castro, M.L. Techniques and Instrumentation in Analytical Chemistry. In Analytical Applications of Ultrasound; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 13 978-0-444-52825-4. [Google Scholar]
- Belwal, T.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S.; Pande, V. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chem. 2016, 207, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.; Hussain, A.I.; Chatha, S.A.; Khosa, M.K.; Kamal, G.M.; Kamal, M.A.; Zhang, X.; Liu, M. Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi J. Biol. Sci. 2016, 23, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Yingngam, B.; Monschein, M.; Brantner, A. Ultrasound-assisted extraction of phenolic compounds from Cratoxylum formosum ssp. formosum leaves using central composite design and evaluation of its protective ability against H2O2-induced cell death. Asian Pac. J. Trop. Med. 2014, 7, S497–S505. [Google Scholar] [CrossRef]
- Vajić, U.; Grujić-Milanović, J.; Živković, J.; Šavikin, K.; Gođevac, D.; Miloradović, Z.; Bugarski, B.; Mihailović-Stanojević, N. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crops Prod. 2015, 74, 912–917. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Xu, Y.; Burton, S.; Kim, C.; Sismour, E. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci. Nutr. 2016, 4, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.; Chung, S.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Comp. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Wrolstad, R.E. Color and Pigment Analyses in Fruit Products; Station Bulletin 624; Agricultural Experiment Station, Oregon State University: Corvallis, OR, USA, 1993; p. 17. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Tachakittirungrod, S.; Okonogi, S.; Chowwanapoonpohn, S. Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chem. 2007, 103, 381–388. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Draper, N. Response Surface Methodology: Process and Product Optimization Using Designed Experiments: Raymond H Myers and DC Montgomery; Wiley: New York, NY, USA, 1995; p. 714. ISBN 0471581003. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Run | Block | X1 | X2 | X3 | Y1 | Y2 | Y3 | Y4 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Amplitude (%) | Time (min) | T° (±0.5 oC) | TPC (mg GAE/g) | TMA (mg CyE)/100 g | ABTS (μmol TE/g) | DPPH (μmol TE/g) | |||||
1 | 1 | −1 | 40 | −1 | 10 | 0 | 30 | 35.67 | 3.76 | 27.57 | 31.04 |
2 | 1 | 1 | 80 | −1 | 30 | 0 | 30 | 41.71 | 6.16 | 30.48 | 41.22 |
3 | 1 | −1 | 40 | 1 | 30 | 0 | 30 | 41.82 | 7.41 | 31.47 | 42.66 |
4 | 1 | 1 | 80 | 1 | 30 | 0 | 30 | 42.86 | 6.99 | 35.06 | 45.54 |
5 | 1 | −1 | 40 | 0 | 20 | −1 | 28 | 39.03 | 5.22 | 29.74 | 38.01 |
6 | 1 | 1 | 80 | 0 | 20 | −1 | 28 | 44.52 | 13.99 | 36.51 | 65.74 |
7 | 1 | −1 | 40 | 0 | 20 | 1 | 32 | 42.65 | 8.14 | 33.59 | 43.60 |
8 | 1 | 1 | 80 | 0 | 20 | 1 | 32 | 40.82 | 5.53 | 29.95 | 39.12 |
9 | 1 | 0 | 60 | −1 | 10 | −1 | 28 | 34.85 | 3.44 | 22.96 | 25.44 |
10 | 1 | 0 | 60 | 1 | 30 | −1 | 28 | 34.30 | 2.09 | 21.56 | 17.24 |
11 | 1 | 0 | 60 | −1 | 10 | 1 | 32 | 33.97 | 1.88 | 19.50 | 14.23 |
12 | 1 | 0 | 60 | 1 | 30 | 1 | 32 | 37.82 | 4.70 | 26.54 | 36.99 |
13 | 1 | 0 | 60 | 0 | 20 | 0 | 30 | 36.68 | 3.24 | 25.86 | 31.66 |
14 | 1 | 0 | 60 | 0 | 20 | 0 | 30 | 38.79 | 4.80 | 27.86 | 38.60 |
15 | 1 | 0 | 60 | 0 | 20 | 0 | 30 | 36.71 | 3.97 | 26.24 | 32.95 |
1 | 2 | −1 | 40 | −1 | 10 | 0 | 30 | 36.13 | 4.35 | 27.88 | 35.92 |
2 | 2 | 1 | 80 | −1 | 30 | 0 | 30 | 41.73 | 10.14 | 32.28 | 42.71 |
3 | 2 | −1 | 40 | 1 | 30 | 0 | 30 | 42.31 | 10.51 | 37.56 | 50.03 |
4 | 2 | 1 | 80 | 1 | 30 | 0 | 30 | 44.36 | 10.09 | 35.34 | 51.42 |
5 | 2 | −1 | 40 | 0 | 20 | −1 | 28 | 39.58 | 5.51 | 31.81 | 45.28 |
6 | 2 | 1 | 80 | 0 | 20 | −1 | 28 | 45.18 | 15.17 | 36.93 | 67.27 |
7 | 2 | −1 | 40 | 0 | 20 | 1 | 32 | 43.06 | 10.50 | 38.79 | 44.13 |
8 | 2 | 1 | 80 | 0 | 20 | 1 | 32 | 41.75 | 6.27 | 31.42 | 39.58 |
9 | 2 | 0 | 60 | −1 | 10 | −1 | 28 | 35.39 | 5.07 | 23.23 | 28.48 |
10 | 2 | 0 | 60 | 1 | 30 | −1 | 28 | 34.33 | 2.09 | 26.29 | 20.29 |
11 | 2 | 0 | 60 | −1 | 10 | 1 | 32 | 34.11 | 2.47 | 21.04 | 17.28 |
12 | 2 | 0 | 60 | 1 | 30 | 1 | 32 | 37.91 | 6.02 | 26.97 | 39.01 |
13 | 2 | 0 | 60 | 0 | 20 | 0 | 30 | 36.93 | 3.68 | 25.98 | 36.50 |
14 | 2 | 0 | 60 | 0 | 20 | 0 | 30 | 39.47 | 5.10 | 30.53 | 38.88 |
15 | 2 | 0 | 60 | 0 | 20 | 0 | 30 | 38.48 | 4.56 | 26.88 | 33.16 |
TPC (mg GAE/g) | TMA (mg CyE/100 g) | ABTS(μmol TE/g) | DPPH (μmol TE/g) | |||||
---|---|---|---|---|---|---|---|---|
MS | p-Value | MS | p-Value | MS | p-Value | MS | p-Value | |
Model | 36.3320 | 0.0000 | 32.0361 | 0.0000 | 75.6777 | 0.0000 | 429.957 | 0.0000 |
Linear | ||||||||
X1 Amplitude | 32.1503 | 0.0104 * | 22.416 | 0.0008 ** | 5.7264 | 0.1397 | 239.85 | 0.0026 ** |
X2 Time | 30.6911 | 0.0011 ** | 9.9792 | 0.0162 * | 80.356 | 0.0000 ** | 279.59 | 0.0014 ** |
X3 Temperature | 1.5012 | 0.3109 | 3.1125 | 0.1570 | 0.0956 | 0.8443 | 71.497 | 0.0746 |
Quadratic | ||||||||
X1 Amplitude | 174.427 | 0.0000 ** | 134.188 | 0.0000 ** | 418.97 | 0.0000 ** | 1688.89 | 0.0000 ** |
X2 Time | 26.0715 | 0.0149 * | 8.2767 | 0.0266 * | 48.044 | 0.0003 ** | 454.96 | 0.0001 ** |
X3 Temperature | 2.9281 | 0.2416 | 0.6913 | 0.4958 | 9.9678 | 0.0562 | 48.956 | 0.1351 |
Interaction | ||||||||
X1X2 | 9.1465 | 0.0722 * | 10.1941 | 0.0153 * | 4.4310 | 0.1910 | 20.140 | 0.3293 |
X1X3 | 25.3343 | 0.0156 * | 79.767 | 0.0000 ** | 65.538 | 0.0000 ** | 431.44 | 0.0002 ** |
X2X3 | 10.7341 | 0.0582 * | 14.341 | 0.0051 ** | 16.005 | 0.0185 * | 463.33 | 0.0001 ** |
Lack of Fit (LOF) | 0.7945 | 0.8463 | 1.6661 | 0.1518 | 2.1285 | 0.7814 | 22.536 | 0.2538 |
Pure error | 1.5523 | 0.5629 | 3.4676 | 10.943 | ||||
R2 (RSU) | 0.9478 | 0.9172 | 0.9392 | 0.9116 | ||||
Adj R2 (RSU) | 0.9203 | 0.8737 | 0.9072 | 0.8652 |
Mean | SD | TPC | TMA | ABTS | |
---|---|---|---|---|---|
TPC | 39.09 | 3.46 | 1.000 | ||
TMA | 6.09 | 3.37 | 0.891 * | 1.000 | |
ABTS | 29.26 | 5.10 | 0.933 * | 0.868 * | 1.000 |
DPPH | 37.80 | 12.20 | 0.910 * | 0.913 * | 0.890 * |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gullian Klanian, M.; Terrats Preciat, M. Optimization of the Ultrasound-Assisted Extraction of Phenolic Compounds from Brosimum alicastrum Leaves and the Evaluation of Their Radical-Scavenging Activity. Molecules 2017, 22, 1286. https://doi.org/10.3390/molecules22081286
Gullian Klanian M, Terrats Preciat M. Optimization of the Ultrasound-Assisted Extraction of Phenolic Compounds from Brosimum alicastrum Leaves and the Evaluation of Their Radical-Scavenging Activity. Molecules. 2017; 22(8):1286. https://doi.org/10.3390/molecules22081286
Chicago/Turabian StyleGullian Klanian, Mariel, and Montserrat Terrats Preciat. 2017. "Optimization of the Ultrasound-Assisted Extraction of Phenolic Compounds from Brosimum alicastrum Leaves and the Evaluation of Their Radical-Scavenging Activity" Molecules 22, no. 8: 1286. https://doi.org/10.3390/molecules22081286
APA StyleGullian Klanian, M., & Terrats Preciat, M. (2017). Optimization of the Ultrasound-Assisted Extraction of Phenolic Compounds from Brosimum alicastrum Leaves and the Evaluation of Their Radical-Scavenging Activity. Molecules, 22(8), 1286. https://doi.org/10.3390/molecules22081286