Microwave-Assisted Extraction of Natural Antioxidants from the Exotic Gordonia axillaris Fruit: Optimization and Identification of Phenolic Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Experiments
2.1.1. Effect of Ethanol Concentration
2.1.2. Effect of Solvent/Material Ratio
2.1.3. Effect of Extraction Time
2.1.4. Effect of Extraction Temperature
2.1.5. Effect of Microwave Power
2.2. Results of Response Surface Methodology Experiments
2.2.1. Central Composite Rotatable Design (CCRD) and Results
2.2.2. Fitting the Model
2.2.3. Response Surfaces Analysis
2.2.4. Verification of Predicted Value
2.3. Comparison of MAE with Conventional Extraction Methods
2.4. Analysis of Phenolic Components
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrument
3.3. Sample Preparation
3.4. Extraction and Evaluation of Natural Antioxidants
3.4.1. Microwave-Assisted Extraction
3.4.2. Maceration Extraction
3.4.3. Soxhlet Extraction
3.4.4. Determination of Antioxidant Capacity
3.4.5. Determination of Total Phenolic Content
3.4.6. Determination of Total Flavonoid Content
3.4.7. Analysis of Phenolic Components
3.5. Experimental Design
3.5.1. Single-Factor Experiments
3.5.2. Response Surface Methodology
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lu, J.M.; Lin, P.H.; Yao, Q.Z.; Chen, C.Y. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Free radicals and antioxidants—Quo vadis? Trends Pharmacol. Sci. 2011, 32, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Vina, J.; Gomez-Cabrera, M.C.; Lloret, A.; Marquez, R.; Minana, J.B.; Pallardo, F.V.; Sastre, J. Free radicals in exhaustive physical exercise: Mechanism of production, and protection by antioxidants. IUBMB Life 2000, 50, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Role of free radicals in the neurodegenerative diseases-Therapeutic implications for antioxidant treatment. Drugs Aging 2001, 18, 685–716. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [PubMed]
- Song, F.L.; Gan, R.Y.; Zhang, Y.A.; Xiao, Q.; Kuang, L.; Li, H.B. Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Gan, R.Y.; Zhang, Y.A.; Xu, X.R.; Xia, E.Q.; Li, H.B. Total phenolic contents and antioxidant capacities of herbal and tea infusions. Int. J. Mol. Sci. 2011, 12, 2112–2124. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Deng, G.F.; Xu, X.R.; Zhang, Y.; Li, D.; Gan, R.Y.; Li, H.B. Phenolic compounds and bioactivities of pigmented rice. Crit. Rev. Food Sci. 2013, 53, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Li, H.B.; Xu, D.P.; Xu, X.R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Gan, R.Y.; Shah, N.P.; Wang, M.F.; Lui, W.Y.; Corke, H. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. Int. J. Food Sci. Technol. 2016, 51, 875–884. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.J.; Xu, D.P.; Zhou, T.; Zhou, Y.; Li, S.; Li, H.B. Bioactivities and health benefits of wild fruits. Int. J. Mol. Sci. 2016, 17, 1258. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.J.; Fu, C.H.; Shih, H.H. Muribasidiospora gordoniae sp. nov occurring on Gordonia axillaris in Taiwan. Bot. Stud. 2008, 49, 277–280. [Google Scholar]
- Chang, C.W.; Yang, L.L.; Yen, K.Y.; Hatano, T.; Yoshida, T.; Okuda, T. Tannins from Theaceous plants. VII. new. Gamma-pyrone glucoside, and dimeric ellagitannins from Gordonia axillaris. Chem. Pharm. Bull. 1994, 42, 1922–1923. [Google Scholar] [CrossRef]
- Power, M.; de Thompson, M.C.; Heese, H.V.; Louw, H.H.; Khan, M.B. Priorities for provision of health care services for children in the Cape Province. S. Afr. Med. J. 1991, 80, 481–486. [Google Scholar] [PubMed]
- Wang, C.C.; Chen, L.G.; Yang, L.L. Camelliin B induced apoptosis in HeLa cell line. Toxicology 2001, 168, 231–240. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, J.; Gan, R.; Zhou, T.; Xu, D.; Li, H. Optimization of ultrasound-assisted extraction of antioxidants from the mung bean coat. Molecules 2017, 22, 638. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.B. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017, 217, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Li, A.N.; Li, S.; Li, Y.; Xu, D.P.; Li, H.B. Optimization of ultrasound-assisted extraction of natural antioxidants from the Osmanthus fragrans flower. Molecules 2016, 21, 218. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ding, J.; Ren, N.Q. Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. TrAC-Trend Anal. Chem. 2016, 75, 197–208. [Google Scholar] [CrossRef]
- Sahin, S.; Samli, R.; Tan, A.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef] [PubMed]
- Perino-Issartier, S.; Abert-Vian, M.; Chemat, F. Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol. 2011, 4, 1020–1028. [Google Scholar] [CrossRef]
- Mihiretu, G.T.; Brodin, M.; Chimphango, A.F.; Oyaas, K.; Hoff, B.H.; Gorgens, J.F. Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials—A biorefinery approach. Bioresour. Technol. 2017, 241, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Florez, N.; Conde, E.; Dominguez, H. Microwave assisted water extraction of plant compounds. J. Chem. Technol. Biot. 2015, 90, 590–607. [Google Scholar] [CrossRef]
- Fang, X.S.; Wang, J.H.; Zhou, H.Y.; Jiang, X.K.; Zhu, L.X.; Gao, X. Microwave-assisted extraction with water for fast extraction and simultaneous RP-HPLC determination of phenolic acids in Radix Salviae Miltiorrhizae. J. Sep. Sci. 2009, 32, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.H.; Shan, H.; Song, J.Y.; Lu, H.T. Separation and purification of ombuoside from Gynostemma pentaphyllum by microwave-assisted extraction coupled with high-speed counter-current chromatography. J. Chromatogr. Sci. 2017, 55, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.J.; Zhu, D.; Zhang, W.; Huai, W.B.; Wang, K.; Huang, X.W.; Zhou, L.; Fan, H.J. Microwave-assisted aqueous two-phase extraction coupled with high performance liquid chromatography for simultaneous extraction and determination of four flavonoids in Crotalaria sessiliflora L. Ind. Crop Prod. 2017, 95, 632–642. [Google Scholar] [CrossRef]
- Katekhaye, S.D.; Laddha, K.S. Microwave-assisted extraction and RP-HPLC quantification of bergapten from Pithecellobium dulce. Indian J. Pharm. Sci. 2016, 78, 673–679. [Google Scholar] [CrossRef]
- Xia, E.Q.; Cui, B.; Xu, X.R.; Song, Y.; Ai, X.X.; Li, H.B. Microwave-assisted extraction of oxymatrine from Sophora flavescens. Molecules 2011, 16, 7391–7400. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.Q.; Wang, B.W.; Xu, X.R.; Zhu, L.; Song, Y.; Li, H.B. Microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait. Int. J. Mol. Sci. 2011, 12, 5319–5329. [Google Scholar] [CrossRef] [PubMed]
- Kala, H.K.; Mehta, R.; Sen, K.K.; Tandey, R.; Mandal, V. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. TrAC-Trend. Anal. Chem. 2016, 85, 140–152. [Google Scholar] [CrossRef]
- Ameer, K.; Bae, S.W.; Jo, Y.; Lee, H.G.; Ameer, A.; Kwon, J.H. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. Food Chem. 2017, 229, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Sinha, K.; Chowdhury, S.; Das Saha, P.; Datta, S. Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response surface methodology (RSM) and artificial neural network (ANN). Ind. Crop Prod. 2013, 41, 165–171. [Google Scholar] [CrossRef]
- Lefsih, K.; Giacomazza, D.; Dahmoune, F.; Mangione, M.R.; Bulone, D.; Biagio, P.; Passantino, R.; Costa, M.A.; Guarrasi, V.; Madani, K.; et al. Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization. Food Chem. 2017, 221, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Yanik, D.K. Alternative to traditional olive pomace oil extraction systems: Microwave-assisted solvent extraction of oil from wet olive pomace. LWT-Food Sci. Technol. 2017, 77, 45–51. [Google Scholar] [CrossRef]
- Bhan, M.; Satija, S.; Garg, C.; Dureja, H.; Garg, M. Optimization of ionic liquid-based microwave assisted extraction of a diterpenoid lactone-andrographolide from Andrographis paniculata by response surface methodology. J. Mol. Liq. 2017, 229, 161–166. [Google Scholar] [CrossRef]
- Chen, C.; Shao, Y.; Tao, Y.D.; Wen, H.X. Optimization of dynamic microwave-assisted extraction of Armillaria polysaccharides using RSM, and their biological activity. LWT-Food Sci. Technol. 2015, 64, 1263–1269. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barrosoa, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind. Crop Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef]
- Dailey, A.; Vuong, Q. Optimization of aqueous extraction conditions for recovery of phenolic content and antioxidant properties from Macadamia (Macadamia tetraphylla) skin waste. Antioxidants 2015, 4, 699–718. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.Y.; Song, H.Y.; Cao, X.L.; Shen, Q.H.; Han, D.D.; Zhong, F.L.; Hu, H.B.; Yang, Y.J. Simultaneous extraction and purification of polysaccharides from Gentiana scabra Bunge by microwave-assisted ethanol-salt aqueous two-phase system. Ind. Crop Prod. 2017, 102, 75–87. [Google Scholar] [CrossRef]
- Varadharajan, V.; Shanmugam, S.; Ramaswamy, A. Model generation and process optimization of microwave-assisted aqueous extraction of anthocyanins from grape juice waste. J. Food Process Eng. 2017, 40. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, B.; Huang, Q.; Fu, X.; Liu, R.H. Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: Characterization and hypoglycemic activity. Ind. Crop Prod. 2017, 100, 1–11. [Google Scholar] [CrossRef]
- Tang, X.Y.; Zhu, D.; Huai, W.B.; Zhang, W.; Fu, C.J.; Xie, X.J.; Quan, S.S.; Fan, H.J. Simultaneous extraction and separation of flavonoids and alkaloids from Crotalaria sessiliflora L. by microwave-assisted cloud-point extraction. Sep. Purif. Technol. 2017, 175, 266–273. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.; Rahmat, A.; Swamy, M.K. Optimization of microwave-assisted extraction of zerumbone from Zingiber zerumbet L. rhizome and evaluation of antiproliferative activity of optimized extracts. Chem. Cent. J. 2017, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Li, C.; Zhang, Z.Q.; Zhao, Q.; Zhu, Y.D.; Su, Z.; Chen, Y.Z. Microwave-assisted extraction of silkworm pupal oil and evaluation of its fatty acid composition, physicochemical properties and antioxidant activities. Food Chem. 2017, 231, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Fu, C. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem. 2005, 92, 701–706. [Google Scholar]
- Teo, C.C.; Chong, W.; Ho, Y.S. Development and application of microwave-assisted extraction technique in biological sample preparation for small molecule analysis. Metabolomics 2013, 9, 1109–1128. [Google Scholar] [CrossRef]
- Fernandez-Pastor, I.; Fernandez-Hernandez, A.; Perez-Criado, S.; Rivas, F.; Martinez, A.; Garcia-Granados, A.; Parra, A. Microwave-assisted extraction versus Soxhlet extraction to determine triterpene acids in olive skins. J. Sep. Sci. 2017, 40, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Routray, W.; Orsat, V. MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind. Crop Prod. 2014, 58, 36–45. [Google Scholar] [CrossRef]
- Deng, G.F.; Xu, D.P.; Li, S.; Li, H.B. Optimization of ultrasound-assisted extraction of natural antioxidants from sugar apple (Annona squamosa L.) peel using response surface methodology. Molecules 2015, 20, 20448–20459. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, S.; Li, H.B.; Deng, G.F.; Ling, W.H.; Wu, S.; Xu, X.R.; Chen, F. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Foods 2013, 5, 1298–1309. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Z.G.; Yang, J.Q.; Zhou, Y.; Meng, L.H.; Wang, H.; Li, C.L. Low concentration of quercetin antagonizes the invasion and angiogenesis of human glioblastoma U251 cells. OncoTargets Ther. 2017, 10, 4023–4028. [Google Scholar] [CrossRef] [PubMed]
- Aglan, H.A.; Ahmed, H.H.; El-Toumy, S.A.; Mahmoud, N.S. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study. Tumor Biol. 2017, 39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Pan, T.W. HPLC determination of chlorogenic acid in Verbena officinalis L. extract and its in vitro antibacterial activity. Biomed. Res.-India 2017, 28, 3996–4001. [Google Scholar]
- Park, W.H. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels. Oncol. Rep. 2017, 37, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.K.; Rashid, R.; Fatima, N.; Mahmood, S.; Mir, S.; Khan, S.; Jabeen, N.; Murtaza, G. Pharmacological activities of protocatechuic acid. Acta Pol. Pharm. 2015, 72, 643–650. [Google Scholar] [PubMed]
- Habtemariam, S.; Lentini, G. The therapeutic potential of rutin for diabetes: An update. Mini-Rev. Med. Chem. 2015, 15, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.B. Extraction of natural antioxidants from the Thelephora ganbajun mushroom by an ultrasound-assisted extraction technique and evaluation of antiproliferative activity of the extract against human cancer cells. Int. J. Mol. Sci. 2016, 17, 1664. [Google Scholar] [CrossRef] [PubMed]
- Kalia, K.; Sharma, K.; Singh, H.P.; Singh, B. Effects of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RP-HPLC? J. Agric. Food Chem. 2008, 56, 10129–10134. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Xu, D.P.; Lin, S.J.; Li, Y.; Zheng, J.; Zhou, Y.; Zhang, J.J.; Li, H.B. Ultrasound-assisted extraction and identification of natural antioxidants from the fruit of Melastoma sanguineum Sims. Molecules 2017, 22, 306. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Run | X1 (Ethanol Concentration, %) | X2 (Solvent/Material Ratio, mL/g) | X3 (Extraction Time, min) | Y (TEAC Value, µmol Trolox/g DW) | |
---|---|---|---|---|---|
Actual Value | Predicted Value | ||||
1 | 56.82 | 20.00 | 75.00 | 110.06 | 124.18 |
2 | 40.00 | 20.00 | 75.00 | 196.88 | 179.29 |
3 | 30.00 | 10.00 | 90.00 | 95.46 | 90.30 |
4 | 50.00 | 10.00 | 90.00 | 94.47 | 77.98 |
5 | 40.00 | 20.00 | 75.00 | 150.63 | 179.29 |
6 | 40.00 | 20.00 | 75.00 | 162.84 | 179.29 |
7 | 40.00 | 36.82 | 75.00 | 183.81 | 187.90 |
8 | 50.00 | 30.00 | 60.00 | 171.90 | 165.03 |
9 | 40.00 | 20.00 | 100.23 | 113.47 | 128.99 |
10 | 40.00 | 20.00 | 49.77 | 150.92 | 152.42 |
11 | 30.00 | 30.00 | 90.00 | 176.86 | 168.81 |
12 | 50.00 | 30.00 | 90.00 | 165.73 | 159.57 |
13 | 30.00 | 30.00 | 60.00 | 183.28 | 187.73 |
14 | 30.00 | 10.00 | 60.00 | 118.59 | 112.71 |
15 | 40.00 | 20.00 | 75.00 | 192.67 | 179.29 |
16 | 23.18 | 20.00 | 75.00 | 150.72 | 153.63 |
17 | 50.00 | 10.00 | 60.00 | 90.91 | 86.93 |
18 | 40.00 | 3.18 | 75.00 | 43.27 | 56.21 |
19 | 40.00 | 20.00 | 75.00 | 185.82 | 179.29 |
20 | 40.00 | 20.00 | 75.00 | 189.81 | 179.29 |
Source | Sum of Squares | df | Mean Square | F Value | p Value | Significant |
---|---|---|---|---|---|---|
Model | 32,462.64 | 9 | 3606.96 | 12.49 | 0.0002 | significant |
X1 (Ethanol concentration) | 1046.75 | 1 | 1046.75 | 3.63 | 0.0861 | |
X2 (Solvent/material ratio) | 20,933.85 | 1 | 20,933.85 | 72.50 | <0.0001 | |
X3 (Time) | 662.86 | 1 | 662.86 | 2.30 | 0.1607 | |
X1X2 | 4.75 | 1 | 4.75 | 0.016 | 0.9005 | |
X1X3 | 90.70 | 1 | 90.70 | 0.31 | 0.5875 | |
X2X3 | 6.09 | 1 | 6.09 | 0.021 | 0.8874 | |
X12 | 2938.09 | 1 | 2938.09 | 10.18 | 0.0097 | |
X22 | 5901.36 | 1 | 5901.36 | 20.44 | 0.0011 | |
X32 | 2681.88 | 1 | 2681.88 | 9.29 | 0.0123 | |
Residual | 2887.38 | 10 | 288.74 | |||
Lack of Fit | 1155.11 | 5 | 231.02 | 0.67 | 0.6663 | not significant |
Pure Error | 1732.27 | 5 | 346.45 | |||
Cor Total | 35,350.01 | 19 | ||||
R-Squared | 0.9183 | |||||
Adj R-Squared | 0.8448 |
Extraction Methods | Ethanol Concentration (%) | Time | Temperature (°C) | TEAC (µmol Trolox/g DW) | TPC (mg GAE/g DW) | TFC (mg QE/g DW) |
---|---|---|---|---|---|---|
maceration | 36.89 | 24 h | 25 | 168.67 ± 3.88 | 13.69 ± 0.11 | 1.90 ± 0.08 |
Soxhlet | 36.89 | 4 h | 85 | 114.09 ± 2.01 | 9.63 ± 0.45 | 1.82 ± 0.11 |
MAE | 36.89 | 71.04 min | 40 | 198.16 ± 5.47 | 17.69 ± 1.02 | 3.11 ± 0.12 |
Phenolic Components | Retention Time (tR, min) | Parent Ion (m/z, [M − H]¯) | Product Ion (m/z) | Contents (µg/g DW) |
---|---|---|---|---|
Rutin | 14.77 | 609 | 300, 343 | 60.38 ± 4.32 |
Gallic acid | 4.76 | 169.1 | 125, 112 | 15.39 ± 1.73 |
Protocatechuic acid | 8.07 | 153.1 | 109, 108 | 11.03 ± 1.24 |
Epicatechin | 12.3 | 289 | 203, 245 | 5.34 ± 0.44 |
Epicatechin gallate | 13.13 | 441 | 169, 289.1 | 2.86 ± 0.31 |
2-Hydrocinnamic acid | 14.03 | 163.1 | 119, 90 | 2.16 ± 0.23 |
p-Coumaric acid | 14.03 | 162.7 | 119, 90 | 2.09 ± 0.21 |
Quercetin | 16.54 | 301 | 179, 151 | 0.96 ± 0.05 |
Chlorogenic acid | 11.07 | 353 | 191, 114 | 0.29 ± 0.02 |
Ferulic acid | 14.28 | 193.1 | 134, 178 | 0.13 ± 0.01 |
Variable | Units | Symbol | Coded Levels | ||||
---|---|---|---|---|---|---|---|
−1.68 | −1 | 0 | 1 | 1.68 | |||
Ethanol concentration | % (v/v) | X1 | 23.18 | 30 | 40 | 50 | 56.82 |
Solvent/material ratio | mL/g | X2 | 3.18 | 20 | 30 | 40 | 36.82 |
Extraction time | min | X3 | 49.77 | 60 | 75 | 90 | 100.23 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, S.; Lin, S.-J.; Zhang, J.-J.; Zhao, C.-N.; Li, H.-B. Microwave-Assisted Extraction of Natural Antioxidants from the Exotic Gordonia axillaris Fruit: Optimization and Identification of Phenolic Compounds. Molecules 2017, 22, 1481. https://doi.org/10.3390/molecules22091481
Li Y, Li S, Lin S-J, Zhang J-J, Zhao C-N, Li H-B. Microwave-Assisted Extraction of Natural Antioxidants from the Exotic Gordonia axillaris Fruit: Optimization and Identification of Phenolic Compounds. Molecules. 2017; 22(9):1481. https://doi.org/10.3390/molecules22091481
Chicago/Turabian StyleLi, Ya, Sha Li, Sheng-Jun Lin, Jiao-Jiao Zhang, Cai-Ning Zhao, and Hua-Bin Li. 2017. "Microwave-Assisted Extraction of Natural Antioxidants from the Exotic Gordonia axillaris Fruit: Optimization and Identification of Phenolic Compounds" Molecules 22, no. 9: 1481. https://doi.org/10.3390/molecules22091481