Comparison of Antioxidant Activities of Different Grape Varieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Capacities of Grape Pulps
2.2. Total Phenolic Contents and Total Flavonoid Contents of Grape Pulps
2.3. Correlation between Antioxidant Capacities and Total Phenolic Contents
2.4. Correlation between Antioxidant Capacities and Total Phenolic Contents
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Sample Extraction
3.3. Determination of FRAP
3.4. Determination of ABTS Free Radical Scavenging Activity
3.5. Determination of TPC
3.6. Determination of TFC
3.7. High Performance Liquid Chromatography (HPLC) Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Filaire, E.; Dupuis, C.; Galvaing, G.; Aubreton, S.; Laurent, H.; Richard, R.; Filaire, M. Lung cancer: What are the links with oxidative stress, physical activity and nutrition. Lung Cancer 2013, 82, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Thapa, A.; Carroll, N.J. Dietary modulation of oxidative stress in Alzheimer’s disease. Int. J. Mol. Sci. 2017, 18, 1583. [Google Scholar] [CrossRef] [PubMed]
- Vetrani, C.; Costabile, G.; Di Marino, L.; Rivellese, A.A. Nutrition and oxidative stress: A systematic review of human studies. Int. J. Food Sci. Nutr. 2013, 64, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Manubolu, M.; Goodla, L.; Ravilla, S.; Thanasekaran, J.; Dutta, P.; Malmlof, K.; Obulum, V.R. Protective effect of Actiniopteris radiata (Sw.) Link. against CCl4 induced oxidative stress in albino rats. J. Ethnopharmacol. 2014, 153, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lightfoot, D.A.; Kinsel, M.; Watson, D.G. Employing response surface methodology for the optimization of ultrasound assisted extraction of lutein and β-carotene from spinach. Molecules 2015, 20, 6611–6625. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Dranca, F.; Oroian, M. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrason. Sonochem. 2016, 31, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Guo, C.J.; Yang, J.J.; Wei, J.Y.; Li, Y.F.; Xu, J.; Jiang, Y.G. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 2003, 23, 1719–1726. [Google Scholar] [CrossRef]
- Teng, H.; Fang, T.; Lin, Q.Y.; Song, H.B.; Liu, B.; Chen, L. Red raspberry and its anthocyanins: Bioactivity beyond antioxidant capacity. Trends Food Sci. Technol. 2017, 66, 153–165. [Google Scholar] [CrossRef]
- Kalaycioglu, Z.; Erim, F.B. Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chem. 2017, 221, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Law, M.R.; Morris, J.K. By how much does fruit and vegetable consumption reduce the risk of ischaemic heart disease? Eur. J. Clin. Nutr. 1998, 52, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Leifert, W.R.; Abeywardena, M.Y. Cardioprotective actions of grape polyphenols. Nutr. Res. 2008, 28, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Freedman, J.E.; Parker, C.; Li, L.Q.; Perlman, J.A.; Frei, B.; Ivanov, V.; Deak, L.R.; Iafrati, M.D.; Folts, J.D. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 2001, 103, 2792–2798. [Google Scholar] [CrossRef] [PubMed]
- Shukitt-Hale, B.; Carey, A.; Simon, L.; Mark, D.A.; Joseph, J.A. Effects of Concord grape juice on cognitive and motor deficits in aging. Nutrition 2006, 22, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.K.; Siddiqui, I.A.; El-Abd, S.; Mukhtar, H.; Ahmad, N. Combination chemoprevention with grape antioxidants. Mol. Nutr. Food Res. 2016, 60, 1406–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraishi, M.; Shinomiya, R.; Chijiwa, H. Varietal differences in polyphenol contents, antioxidant activities and their correlations in table grape cultivars bred in Japan. Sci. Hortic. 2018, 227, 272–277. [Google Scholar] [CrossRef]
- Mirbagheri, V.S.; Alizadeh, E.; Elahi, M.Y.; Bahabadi, S.E. Phenolic content and antioxidant properties of seeds from different grape cultivars grown in Iran. Nat. Prod. Res. 2018, 32, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Keser, S.; Celik, S.; Turkoglu, S. Total phenolic contents and free-radical scavenging activities of grape (Vitis vinifera L.) and grape products. Int. J. Food Sci. Nutr. 2013, 64, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from south China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [PubMed]
- Gougoulias, N.; Vyrlas, P.; Giurgiulescu, L.; Kalfountzos, D.; Eugenia, F. Evaluation of polyphenols content and antioxidant activity of two table grape varieties under environmental conditions of Thessaly. Carpathian J. Food Sci. Technol. 2015, 7, 119–125. [Google Scholar]
- Sandhu, A.K.; Gu, L. Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (Muscadine grapes) as determined by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2010, 58, 4681–4692. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.; Maier, C. In vitro antioxidant activities and polyphenol contents of seven commercially available fruits. Pharmacogn. Res. 2016, 8, 258–264. [Google Scholar]
- Sepahpour, S.; Selamat, J.; Manap, M.; Khatib, A.; Razis, A. Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules 2018, 23, 402. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H.; Honda, Y.; Nakagawa, S.; Ashida, H.; Kanazawa, K. Simultaneous determination of all polyphenols in vegetables, fruits, and teas. J. Agric. Food Chem. 2003, 51, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Brabo De Sousa, S.H.; Mattietto, R.D.A.; Chiste, R.C.; Carvalho, A.V. Phenolic compounds are highly correlated to the antioxidant capacity of genotypes of Oenocarpus distichus Mart. fruits. Food Res. Int. 2018, 108, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Hogan, S.; Zhang, L.; Li, J.; Zoecklein, B.; Zhou, K. Antioxidant properties and bioactive components of Norton (Vitis aestivalis) and Cabernet Franc (Vitis vinifera) wine grapes. LWT-Food Sci. Technol. 2009, 42, 1269–1274. [Google Scholar] [CrossRef]
- Lutz, M.; Jorquera, K.; Cancino, B.; Ruby, R.; Henriquez, C. Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. J. Food Sci. 2011, 76, C1088–C1093. [Google Scholar] [CrossRef] [PubMed]
- Policarpi, P.D.B.; Turcatto, L.; Demoliner, F.; Ferrari, R.A.; Azzolin Frescura Bascunan, V.L.; Ramos, J.C.; Jachmanian, I.; Vitali, L.; Micke, G.A.; Block, J.M. Nutritional potential, chemical profile and antioxidant activity of Chicha (Sterculia striata) nuts and its by-products. Food Res. Int. 2018, 106, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Xu, X.R.; Guo, Y.J.; Xia, E.Q.; Li, S.; Wu, S.; Chen, F.; Ling, W.H.; Li, H.B. Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. J. Funct. Food. 2012, 4, 906–914. [Google Scholar] [CrossRef] [Green Version]
- Nardini, M.; Cirillo, E.; Natella, F.; Mencarelli, D.; Comisso, A.; Scaccini, C. Detection of bound phenolic acids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem. 2002, 79, 119–124. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Xu, F.; Bao, J.; Kim, T.; Park, Y. Genome-wide association mapping of polyphenol contents and antioxidant capacity in whole-grain rice. J. Agric. Food Chem. 2016, 64, 4695–4703. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Food 2013, 5, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Packer, L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Gouveia, S.; Castilho, P.C. Antioxidant potential of Artemisia argentea L’Her alcoholic extract and its relation with the phenolic composition. Food Res. Int. 2011, 44, 1620–1631. [Google Scholar] [CrossRef]
- Kalia, K.; Sharma, K.; Singh, H.P.; Singh, B. Effects of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RP-HPLC. J. Agric. Food Chem. 2008, 56, 10129–10134. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.Z.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the standard compounds are available from the authors. |
Parameter | Fraction | Mean ± SD | p |
---|---|---|---|
FRAP values | lipophilic | 3.525 ± 1.809 a | <0.001 |
hydrophilic | 1.393 ± 0.702 b | ||
insoluble-bound | 0.054 ± 0.039 c | ||
TEAC values | lipophilic | 1.753 ± 1.020 a | <0.001 |
hydrophilic | 0.263 ± 0.198 b | ||
insoluble-bound | 0.033 ± 0.013 b | ||
TPC values | lipophilic | 0.753 ± 0.251 a | <0.001 |
hydrophilic | 0.095 ± 0.063 b | ||
insoluble-bound | 0.011 ± 0.005 c | ||
TFC values | lipophilic | 0.061 ± 0.009 a | <0.001 |
hydrophilic | 0.029 ± 0.005 b | ||
insoluble-bound | 0.013 ± 0.006 c |
Name | Original Place | Phenolic | Content (mean ± SD, μg/g FW) |
---|---|---|---|
Black Grape | Yunnan, China | caffeic acid | 0.559 ± 0.008 |
epicatechin | 2.464 ± 0.047 | ||
p-coumaric acid | 0.582 ± 0.055 | ||
Blackcurrant Grape | California, America | gallic acid | 0.363 ± 0.009 |
epicatechin | 1.237 ± 0.058 | ||
rutin | 2.244 ± 0.074 | ||
Flame Grape | Xinjiang, China | gallic acid | 1.725 ± 0.019 |
caffeic acid | 0.956 ± 0.017 | ||
epicatechin | 1.576 ± 0.013 | ||
p-coumaric acid | 0.642 ± 0.006 | ||
rutin | 3.067 ± 0.045 | ||
Fragrant Green Grape | Yunnan, China | caffeic acid | 0.847 ± 0.007 |
Golden Finger Grape | California, America | gallic acid | 0.270 ± 0.004 |
caffeic acid | 0.590 ± 0.016 | ||
ferulic acid | 0.135 ± 0.012 | ||
rutin | 5.263 ± 0.074 | ||
catechin gallate | 0.344 ± 0.013 | ||
Green Grape | Victoria, Australia | protocatechuic acid | 0.405 ± 0.001 |
caffeic acid | 2.115 ± 0.026 | ||
Ito Kyoho Grape | Yunnan, China | protocatechuic acid | 0.452 ± 0.017 |
caffeic acid | 0.650 ± 0.019 | ||
Kyoho Grape | Guangxi, China | caffeic acid | 0.962 ± 0.024 |
Kyoho Grape | Liaoning, China | catechin gallate | 0.185 ± 0.015 |
Kyoho Grape | Xinjiang, China | caffeic acid | 1.157 ± 0.046 |
catechin gallate | 0.219 ± 0.004 | ||
Kyoho Grape | Yunnan, China | epicatechin | 0.654 ± 0.031 |
Pearl Black Grape | Xinjiang, China | gallic acid | 2.262 ± 0.051 |
caffeic acid | 0.688 ± 0.045 | ||
epicatechin | 0.976 ± 0.025 | ||
Pearl Green Grape | Xinjiang, China | gallic acid | 1.430 ± 0.074 |
protocatechuic acid | 0.210 ± 0.005 | ||
caffeic acid | 0.415 ± 0.004 | ||
epicatechin | 0.630 ± 0.013 | ||
rutin | 3.503 ± 0.058 | ||
Pearl Green Grape | Victoria, Australia | gallic acid | 0.274 ± 0.001 |
caffeic acid | 0.910 ± 0.013 | ||
Red Grape | California, America | protocatechuic acid | 0.338 ± 0.033 |
Red Grape | Guangxi, China | protocatechuic acid | 0.321 ± 0.007 |
Red Grape | Xinjiang, China | caffeic acid | 0.848 ± 0.039 |
Red Grape | Yunnan, China | gallic acid | 0.219 ± 0.002 |
caffeic acid | 0.301 ± 0.020 | ||
Rose Black Grape | Xinjiang, China | caffeic acid | 0.829 ± 0.055 |
Rose Black Grape | Yunnan, China | protocatechuic acid | 0.240 ± 0.001 |
epicatechin | 1.439 ± 0.027 | ||
rutin | 1.369 ± 0.018 | ||
Seedless Black Grape | California, America | epicatechin | 1.586 ± 0.091 |
Seedless Black Grape | Xinjiang, China | gallic acid | 0.313 ± 0.007 |
caffeic acid | 1.285 ± 0.069 | ||
epicatechin | 1.338 ± 0.023 | ||
ferulic acid | 0.613 ± 0.030 | ||
rutin | 1.822 ± 0.023 | ||
Seedless Dew Grape | Xinjiang, China | protocatechuic acid | 0.157 ± 0.002 |
caffeic acid | 0.457 ± 0.037 | ||
epicatechin | 1.235 ± 0.011 | ||
rutin | 1.267 ± 0.026 | ||
Seedless Green Grape | Xinjiang, China | protocatechuic acid | 1.501 ± 0.035 |
caffeic acid | 0.798 ± 0.042 | ||
epicatechin | 0.762 ± 0.055 | ||
rutin | 8.074 ± 0.094 | ||
Seedless Red Grape | California, America | protocatechuic acid | 0.143 ± 0.008 |
caffeic acid | 1.048 ± 0.010 | ||
rutin | 2.277 ± 0.053 | ||
catechin gallate | 0.355 ± 0.023 | ||
Seedless Red Grape | Victoria, Australia | gallic acid | 0.262 ±0.012 |
protocatechuic acid | 0.371 ± 0.023 | ||
caffeic acid | 0.770 ± 0.063 | ||
epicatechin | 1.053 ± 0.065 | ||
Seedless Red Grape | Xinjiang, China | caffeic acid | 0.879 ± 0.036 |
Seedless Red Grape | Yunnan, China | gallic acid | 0.413 ± 0.020 |
epicatechin | 0.649 ± 0.014 | ||
rutin | 1.950 ± 0.062 | ||
Summer Black Grape | Shaanxi, China | gallic acid | 0.658 ± 0.053 |
caffeic acid | 1.488 ± 0.047 | ||
epicatechin | 1.431 ± 0.075 | ||
rutin | 3.770 ± 0.004 | ||
Summer Black Grape | Xinjiang, China | protocatechuic acid | 0.353 ± 0.033 |
caffeic acid | 1.052 ± 0.011 | ||
epicatechin | 2.263 ± 0.095 |
No. | Name | Original Places |
---|---|---|
1 | Black Grape | Yunnan, China |
2 | Blackcurrant Grape | California, America |
3 | Flame Grape | Xinjiang, China |
4 | Fragrant Green Grape | Yunnan, China |
5 | Golden Finger Grape | California, America |
6 | Green Grape | Victoria, Australia |
7 | Ito Kyoho Grape | Yunnan, China |
8 | Kyoho Grape | Guangxi, China |
9 | Kyoho Grape | Liaoning, China |
10 | Kyoho Grape | Xinjiang, China |
11 | Kyoho Grape | Yunnan, China |
12 | Pearl Black Grape | Xinjiang, China |
13 | Pearl Green Grape | Xinjiang, China |
14 | Pearl Green Grape | Victoria, Australia |
15 | Red Grape | California, America |
16 | Red Grape | Guangxi, China |
17 | Red Grape | Xinjiang, China |
18 | Red Grape | Yunnan, China |
19 | Rose Black Grape | Xinjiang, China |
20 | Rose Black Grape | Yunnan, China |
21 | Seedless Black Grape | California, America |
22 | Seedless Black Grape | Xinjiang, China |
23 | Seedless Dew Grape | Xinjiang, China |
24 | Seedless Green Grape | Xinjiang, China |
25 | Seedless Red Grape | California, America |
26 | Seedless Red Grape | Victoria, Australia |
27 | Seedless Red Grape | Xinjiang, China |
28 | Seedless Red Grape | Yunnan, China |
29 | Summer Black Grape | Shaanxi, China |
30 | Summer Black Grape | Xinjiang, China |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Tang, G.-Y.; Zhao, C.-N.; Feng, X.-L.; Xu, X.-Y.; Cao, S.-Y.; Meng, X.; Li, S.; Gan, R.-Y.; Li, H.-B. Comparison of Antioxidant Activities of Different Grape Varieties. Molecules 2018, 23, 2432. https://doi.org/10.3390/molecules23102432
Liu Q, Tang G-Y, Zhao C-N, Feng X-L, Xu X-Y, Cao S-Y, Meng X, Li S, Gan R-Y, Li H-B. Comparison of Antioxidant Activities of Different Grape Varieties. Molecules. 2018; 23(10):2432. https://doi.org/10.3390/molecules23102432
Chicago/Turabian StyleLiu, Qing, Guo-Yi Tang, Cai-Ning Zhao, Xiao-Ling Feng, Xiao-Yu Xu, Shi-Yu Cao, Xiao Meng, Sha Li, Ren-You Gan, and Hua-Bin Li. 2018. "Comparison of Antioxidant Activities of Different Grape Varieties" Molecules 23, no. 10: 2432. https://doi.org/10.3390/molecules23102432
APA StyleLiu, Q., Tang, G.-Y., Zhao, C.-N., Feng, X.-L., Xu, X.-Y., Cao, S.-Y., Meng, X., Li, S., Gan, R.-Y., & Li, H.-B. (2018). Comparison of Antioxidant Activities of Different Grape Varieties. Molecules, 23(10), 2432. https://doi.org/10.3390/molecules23102432