Bioactive Compounds in Functional Meat Products
Abstract
:1. Introduction
2. Functional Compounds with Relevance for Meat Industry
2.1. Fatty Acids Quantitative and Qualitative Modifications
2.2. Minerals
2.2.1. Iron
2.2.2. Selenium
2.2.3. Calcium and Magnesium
2.2.4. Zinc
2.2.5. Iodine
2.3. Vitamins
2.3.1. Vitamin E
2.3.2. Vitamin D
2.3.3. Vitamin C
2.3.4. B-Group Vitamins
2.4. Plant Antioxidants
2.4.1. Polyphenols
2.4.2. Carotenoids
2.5. Dietary Fibers
2.6. Probiotics
2.7. Bioactive Peptides
3. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Decker, E.A.; Park, Y. Healthier meat products as functional foods. Meat Sci. 2010, 86, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, M. Functional foods: Consumer willingness to compromise on taste for health? Food Qual. Prefer. 2006, 17, 126–131. [Google Scholar] [CrossRef]
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011, 93, 950–962. [Google Scholar] [CrossRef] [PubMed]
- Dietary Guidelines for Americans 2015–2020. Available online: https://health.gov/dietaryguidelines/2015/resources/2015-2020_Dietary_Guidelines.pdf (accessed on 3 November 2017).
- Food and Agriculture Organization (FAO). Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation. Food Nutr. Pap. 2010, 91, 1–166. [Google Scholar]
- Siurana, A.; Calsamiglia, S. A metaanalysis of feeding strategies to increase the content of conjugated linoleic acid (CLA) in dairy cattle milk and the impact on daily human consumption. Anim. Feed Sci. Technol. 2016, 217, 13–26. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on Coronary Heart Disease of Increasing Polyunsaturated Fat in Place of Saturated Fat: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, M.S. Reducing the fat content in ground beef without sacrificing quality: A review. Meat Sci. 2012, 91, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Rather, S.A.; Masoodi, F.A.; Akhter, R.; Gani, A.; Wani, S.M.; Malik, A.H. Effects of guar gum as fat replacer on some quality parameters of mutton goshtaba, a traditional Indian meat product. Small Rumin. Res. 2016, 137, 169–176. [Google Scholar] [CrossRef]
- Su, S.I.T.; Yoshida, C.M.P.; Contreras-Castillo, C.J.; Quiñones, E.M.; Venturini, A.C. Okara, a soymilk industry by-product, as a non-meat protein source in reduced fat beef burgers. Food Sci. Technol. (Camp.) 2013, 33, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Ševčíková, S.; Skřivan, M.; Skřivanová, V.; Tůmová, E.; Koucký, M. Effect of supplementation of copper in copper sulphate and Cu-glycine on fatty acid profile in meat of broiler chickens, cholesterol content and oxidation stability of fat. Czech J. Anim. Sci. 2003, 48, 432–440. [Google Scholar]
- Lauridsen, C.; Mu, H.; Henckel, P. Influence of dietary conjugated linoleic acid (CLA) and age at slaughtering on performance, slaughter- and meat quality, lipoproteins, and tissue deposition of CLA in barrows. Meat Sci. 2005, 69, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Madden, U.A.; Osweiler, G.D.; Knipe, L.; Beran, G.W.; Beitz, D.C. Effects of Eubacterium coprostanoligenes and Lactobacillus on pH, Lipid Content, and Cholesterol of Fermented Pork and Mutton Sausage-Type Mixes. J. Food Sci. 1999, 64, 903–908. [Google Scholar] [CrossRef]
- Brauner, R.; Johannes, C.; Ploessl, F.; Bracher, F.; Lorenz, R.L. Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, liver X receptor α activation, and expression of the basolateral sterol exporter ATP-binding cassette A1 in Caco-2 enterocytes. J. Nutr. 2012, 142, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, S.; Prakasan, P.; Sreedharan, S.; Wright, A.D.; Spener, F. Pros and cons of CLA consumption: An insight from clinical evidences. Nutr. Metab. 2015, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Boles, J.A.; Kott, R.W.; Hatfield, P.G.; Bergman, J.W.; Flynn, C.R. Supplemental safflower oil affects the fatty acid profile including conjugated linoleic acid of lamb. J. Anim. Sci. 2005, 83, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Ivan, M.; Mir, P.S.; Koenig, K.M.; Rode, L.M.; Neill, L.; Entz, T.; Mir, Z. Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration of conjugated linoleic acid in sheep. Small Rumin. Res. 2001, 41, 215–227. [Google Scholar] [CrossRef]
- Aurousseau, B.; Bauchart, D.; Calichon, E.; Micol, D.; Priolo, A. Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Sci. 2004, 66, 531–541. [Google Scholar] [CrossRef]
- Juárez, M.; Marco, A.; Brunton, N.; Lynch, B.; Troy, D.J.; Mullen, A.M. Cooking effect on fatty acid profile of pork breakfast sausages enriched in conjugated linoleic acid by dietary supplementation or direct addition. Food Chem. 2009, 117, 393–397. [Google Scholar] [CrossRef]
- Matthews, K.R.; Homer, D.B.; Thies, F.; Calder, P.C. Effect of whole linseed (Linum usitatissimum) in the diet of finishing pigs on growth performance and on the qualityand fatty acid composition of various tissues. Br. J. Nutr. 2000, 6, 637–643. [Google Scholar] [CrossRef]
- Poławska, E.; Marchewka, J.; Cooper, R.G.; Sartowska, K.; Pomianowski, J.; Jóźwik, A.; Strzałkowska, N.; Horbańczuk, J.O. The ostrich meat—An updated review. II. Nutritive value. Anim. Sci. Pap. Rep. 2011, 29, 89–97. [Google Scholar]
- Poławska, E.; Horbańczuk, J.O.; Pierzchała, M.; Strzałkowska, N.; Jóźwik, A.; Wójcik, A.; Pomianowski, J.; Gutkowska, K.; Wierzbicka, A.; Hoffman, L.C. Effect of dietary linseed and rapeseed supplementation on fatty acid profiles in the ostrich. Part 1. Muscles. Anim. Sci. Pap. Rep. 2013, 31, 239–248. [Google Scholar]
- Swanson, D.; Block, R.; Shaker, A.; Mousa, A. Omega-3 Fatty Acids EPA and DHA: Health Benefits Throughout Life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Carro, M.D.; Valiente, V.; Formoso-Rafferty, N.; Rebollar, P.G. Effects of dietary fish oil supplementation on performance, meat quality, and cecal fermentation of growing rabbits. J. Anim. Sci. 2017, 95, 3620–3630. [Google Scholar] [CrossRef] [PubMed]
- Hallenstvedt, E.; Kjos, N.P.; Rehnberg, A.C.; Øverland, M.; Thomassen, M. Fish oil in feeds for entire male and female pigs: Changes in muscle fatty acid composition and stability of sensory quality. Meat Sci. 2010, 85, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Dunne, P.G.; Rogalski, J.; Childs, S.; Monahan, F.J.; Kenny, D.A.; Moloney, A.P. Long Chain n-3 Polyunsaturated Fatty Acid Concentration and Color and Lipid Stability of Muscle from Heifers Offered a Ruminally Protected Fish Oil Supplement. J. Agric. Food Chem. 2011, 59, 5015–5025. [Google Scholar] [CrossRef] [PubMed]
- Jasińska, K.; Kurek, A. The effect of oil plants supplementation in pig diet on quality and nutritive value of pork meat. Anim. Sci. Pap. Rep. 2017, 35, 137–146. [Google Scholar]
- Josquin, N.M.; Linssen, J.P.; Houben, J.H. Quality characteristics of Dutch-style fermented sausages manufactured with partial replacement of pork back-fat with pure, pre-emulsified or encapsulated fish oil. Meat Sci. 2012, 90, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Wongtangtintharn, S.; Oku, H.; Iwasaki, H.; Toda, T. Effect of Branched-Chain Fatty Acids on Fatty Acid Biosynthesis of Human Breast Cancer Cells. J. Nutr. Sci. Vitaminol. 2004, 50, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 2001, 131, 568S–580S. [Google Scholar] [CrossRef] [PubMed]
- Radlowski, E.C.; Johnson, R.W. Perinatal iron deficiency and neurocognitive development. Front. Hum. Neurosci. 2013, 7, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta 2012, 1823, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Picciano, M.F. Pregnancy and lactation: Physiological adjustments, nutritional requirements and the role of dietary supplements. J. Nutr. 2003, 133, 1997S–2002S. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, N. Relationship between anaemia, caused from the iron deficiency, and academic achievement among third grade high school female students. Procedia 2011, 29, 1877–1884. [Google Scholar] [CrossRef]
- Peña-Rosas, J.P.; Field, M.S.; Burford, B.J.; De-Regil, LM. Wheat flour fortification with iron for reducing anaemia and improving iron status in populations. Cochrane Database Syst. Rev. 2014, 9, CD011302. [Google Scholar] [CrossRef]
- Ziegler, E.E.; Fomon, S.J.; Nelson, S.E.; Jeter, J.M.; Theuer, R.C. Dry cereals fortified with electrolytic iron or ferrous fumarate are equally effective in breast-fed infants. J. Nutr. 2011, 141, 243–248. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Iron Deficiency Anemia. Available online: http://www.who.int/nutrition/topics/ida/en/index.html (accessed on 11 January 2017).
- McClements, D.J.; Decker, E.A. Lipids. In Food Chemistry; Damodaran, S., Parkin, K.L., Fennema, O.R., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 155–216. [Google Scholar]
- Navas-Carretero, S.; Pérez-Granados, A.M.; Sarriá, B.; Vaquero, P.M. Iron absorption from meat pate fortified with ferric pyrophosphate in iron-deficient women. Nutrition 2009, 25, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Czerwonka, M.; Szterk, A. The effect of meat cuts and thermal processing on selected mineral concentration in beef from Holstein–Friesian bulls. Meat Sci. 2015, 105, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Wadhwani, R.; Cornforth, D.P.; Murdia, L.K.; Whittier, D. Animal age, packaging and antioxidant treatment effects on sensory characteristics of beef Infraspinatus muscle. Int. J. Food Sci. Technol. 2011, 46, 1847–1855. [Google Scholar] [CrossRef]
- Ramos, A.; Cabrera, M.C.; Del Puerto, M.; Saadoun, A. Minerals, haem and non-haem iron contents of rhea meat. Meat Sci. 2009, 81, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Mehmood, K.T. Selenium in human health and disease: A review. J. Postgrad. Med. 2012, 26, 120–133. [Google Scholar] [CrossRef]
- Peter, P.P. (Ed.) New Aspects of Meat Quality: From Genes to Ethics; Woodhead Publishing: Sawston, UK, 2017; p. 472. [Google Scholar]
- Stoffaneller, R.; Morse, N.L. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients 2015, 7, 1494–1537. [Google Scholar] [CrossRef] [PubMed]
- Lagin, L.; Bobček, B.; Mrázová, J.; Debrecéni, O.; Adamec, M. The effect of organic selenium on slaughter value, physical-chemical and technological quality characteristic of pork. Biotechnol. Anim. Husb. 2008, 24, 97–107. [Google Scholar] [CrossRef]
- Poławska, E.; Zdanowska-Sąsiadek, Z.; Horbanczuk, J.O.; Pomianowski, J.; Jóżwik, A.; Tolik, D.; Raes, K.; De Smet, S. Effect of dietary organic and inorganic selenium supplementation on chemical, mineral and fatty acid composition of ostrich meat. CyTA J. Food 2016, 14, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Gjerlaug-Enger, E.; Haug, A.; Gaarder, M.; Ljøkjel, K.; Stenseth, R.S.; Sigfridson, K.; Egelandsdal, B.; Saarem, K.; Berg, P. Pig feeds rich in rapeseed products and organic selenium increased omega-3 fatty acids and selenium in pork meat and backfat. Food Sci. Nutr. 2015, 3, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Park, W.Y.; Choi, I.H. Effects of dietary α-tocopherol, selenium, and their different combinations on growth performance and meat quality of broiler chickens. Poult. Sci. 2010, 89, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Miezeliene, A.; Alencikiene, G.; Gruzauskas, R.; Barstys, T. The effect of dietary selenium supplementation on meat quality of broiler chickens. Biotechnol. Agron. Soc. Environ. 2011, 15, 61–69. [Google Scholar]
- Garcia-Iñiguez, C.; Larequi, E.; Rehecho, S.; Calvo, M.I.; Cavero, R.Y.; Navarro-Blasco, I.; Astiasarán, I.; Ansorena, D. Selenium, iodine, ω-3 PUFA and natural antioxidant form Melissa officialis L.: A combination of components for healthier dry fermented sausage formulation. Meat Sci. 2010, 85, 274–279. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services and US Department of Agriculture. Dietary Guidelines for Americans. 2005. Available online: www.healthierus.gov/dietaryguidelines (accessed on 24 November 2017).
- Moshfegh, A.; Goldman, J.; Ahuja, J.; Rhodes, D.; Lacomb, R. What We Eat in America, NHANES 2005-2006: Usual Nutrient Intakes from Food and Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2009. [Google Scholar]
- Beto, J.A. The Role of Calcium in Human Aging. Clin. Nutr. Res. 2015, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De Baaij, J.H.; Hoenderop, J.G.; Bindels, R.J. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Dikeman, M.E.; Hunt, M.C.; Addist, P.B.; Schoenbeck, H.J.; Pullen, M.; Katsanidis, E.; Yancey, E.J. Effects of postexsanguination vascular infusion of cattle with a solution of saccharides, sodium chloride, and phosphates or with calcium chloride on quality and sensory traits of steaks and ground beef. J. Anim. Sci. 2003, 81, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Alonso, V.; Provincial, L.; Guillén, E.; Roncalés, P.; Beltrán, J.A. The impact of short-term feeding of magnesium supplements on the quality of pork packaged in modified atmosphere. Meat Sci. 2012, 90, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Armenteros, M.; Aristoy, M.C.; Barat, J.M.; Toldrá, F. Biochemical and sensory changes in dry-cured ham salted with partial replacement of sodium by a mixture of potassium, calcium and magnesium. Meat Sci. 2012, 9, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Cruzen, S.M.; Bradkim, Y.H.; Lonergan, S.M.; Grubbs, J.K.; Fritchen, A.N.; Huff-Lonergan, E. Effect of early postmortem enhancement of calcium lactate/phosphate on quality attributes of beef round muscles under different packaging systems. Meat Sci. 2015, 101, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Horita, C.N.; Morgano, M.A.; Celeghini, R.M.S.; Polloni, M.A.R. Physico-chemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride. Meat Sci. 2011, 89, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar] [PubMed]
- Yang, W.L.; Chen, Y.P.; Cheng, Y.F.; Li, X.H.; Zhang, R.Q.; Wen, C.; Zhou, Y.M. An evaluation of zinc bearing palygorskite inclusion on the growth performance, mineral content, meat quality, and antioxidant status of broilers. Poult. Sci. 2016, 95, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, E.; Daneshyar, M.; Farhoomand, P.; Aliakbarlu, J.; Hamian, F. Effect of zinc acetate and magnesium sulfate dietary supplementation on broiler thigh meat colour, nutrient composition and lipid peroxidation values under continuous heat stress condition. Ann. Anim. Sci. 2014, 14, 353–363. [Google Scholar] [CrossRef]
- Jahanian, R.; Moghaddam, H.N.; Rezaeil, A. Improved Broiler Chick Performance by Dietary Supplementation of Organic Zinc Sources. Asian Aust. J. Anim. 2008, 21, 1348–1354. [Google Scholar] [CrossRef]
- Saenmahayak, B.; Singh, M.; Bilgili, S.F.; Hess, J.B. Influence of Dietary Supplementation with Complexed Zinc on Meat Quality and Shelf Life of Broilers. Int. J. Poult. Sci. 2012, 11, 28–32. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination: A Guide for Programme Managers, 3rd ed.; World Health Organization: Geneva, Switzerland, 2007; Available online: http://whqlibdoc.who.int/publications/2007/9789241595827_eng.pdf (accessed on 6 November 2017).
- Keno, T.; Ahrens, C.; Lauvai, J.; Kurabachew, H.; Biesalski, H.K.; Scherbaum, V. Iodine status in pregnant women and school children of the Aira district in Ethiopia. NFS J. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Szybiński, Z.; Jarosz, M.; Hubalewska-Dydejczyk, A.; Stolarz-Skrzypek, K.; Kawecka-Jaszcz, K.; Traczyk, I.; Stoś, K. Iodine-deficiency prophylaxis and the restriction of salt consumption—A 21st century challenge. Pol. J. Endocrynol. 2010, 61, 135–140. [Google Scholar]
- Haldimann, M.; Alt, A.; Blanc, A.; Blondeau, K. Iodine content of food groups. J. Food Compos. Anal. 2005, 18, 461–471. [Google Scholar] [CrossRef]
- Čepulienė, R.; Bobinienė, R.; Sirvydis, V.; Gudavičiūtė, D.; Miškinienė, M.; Kepalienė, I. Effect of stable iodine preparation on the quality of poultry products. Vet. Zootech. 2008, 42, 38–43. [Google Scholar] [CrossRef]
- Meyer, U.; Weigel, K.; Schöne, F.; Leiterer, M.; Flachowsky, G. Effect of dietary iodine on growth and iodine status of growing fattening bulls. Livest. Sci. 2008, 115, 219–225. [Google Scholar] [CrossRef]
- Horbańczuk, O.K.; Wierzbicka, A. Technological and nutritional properties of ostrich, emu and rhea meat quality. J. Vet. Res. 2016, 60, 279–286. [Google Scholar] [CrossRef]
- González-Calvo, L.; Ripoll, G.; Molino, F.; Calvo, J.H.; Joy, M. The relationship between muscle α-tocopherol concentration and meat oxidation in light lambs fed vitamin E supplements prior to slaughter. J. Sci. Food Agric. 2015, 95, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Rymer, C.; Givens, D.I. Effects of vitamin E and fish oil inclusion in broiler diets on meat fatty acid composition and on the flavour of a composite sample of breast meat. J. Sci. Food Agric. 2010, 90, 1628–1633. [Google Scholar] [CrossRef] [PubMed]
- Gobert, M.; Gruffat, D.; Habeanu, M.; Parafita, E.; Bauchart, D.; Durand, D. Plant extracts combined with vitamin E in PUFA-rich diets of cull cows protect processed beef against lipid oxidation. Meat Sci. 2010, 85, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, S.; Cardinali, R.; Balzano, M.; Pacetti, D.; Castellini, C.; Dal Bosco, A.; Frega, N.G. Influence of Dietary Supplementation with Prebiotic, Oregano Extract, and Vitamin E on Fatty Acid Profile and Oxidative Status of Rabbit Meat. J. Food Qual. 2017, 2017, 3015120. [Google Scholar] [CrossRef]
- Perez, T.I.; Zuidhof, M.J.; Renema, R.A.; Curtis, J.M.; Ren, Y.; Betti, M. Effects of Vitamin E and Organic Selenium on Oxidative Stability of ω-3 Enriched Dark Chicken Meat during Cooking. J. Food Sci. 2010, 75, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Kim, Y.S.; Liang, C.Y.; Song, Y.H. Effects of dietary vitamin E supplementation on color stability, lipid oxidation and reducing ability of Hanwoo (Korean cattle) beef during retail display. Asian-Aust. J. Anim. 2003, 10, 1529–1534. [Google Scholar] [CrossRef]
- Carnagey, K.M.; Huff-Lonergan, E.J.; Trenkle, A.; Wertz-Lutz, A.E.; Horst, R.L.; Beitz, D.C. Use of 25-hydroxyvitamin D3 and vitamin E to improve tenderness of beef from the longissimus dorsi of heifers. J. Anim. Sci. 2008, 86, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Maiorano, G.; Cavone, C.; Mccormick, R.J.; Ciarlariello, A.; Gambacorta, M.; Manchisi, A. The effect of dietary energy and vitamin E administration on performance and intramuscular collagen properties of lambs. Meat Sci. 2007, 76, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhou, G.H.; Xu, X.L.; Zhao, G.M.; Li, C.B. Phospholipase A2 and antioxidant enzyme activities in normal and PSE pork. Meat Sci. 2010, 84, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Brodowska, M.; Guzek, D.; Kołota, A.; Głąbska, D.; Górska-Horczyczak, E.; Wojtasik-Kalinowska, I.; Wierzbicka, A. Effect of diet on oxidation and profile of volatile compounds of pork after freezing storage. J. Food Nutr. Res. 2016, 55, 40–47. [Google Scholar]
- Wojtasik-Kalinowska, I.; Guzek, D.; Górska-Horczyczak, E.; Głąbska, D.; Brodowska, M.; Sun, D.-W.; Wierzbicka, A. Volatile compounds and fatty acids profile in Longissimus dorsimuscle from pigs fed with feed containing bioactive components. LWT Food Sci. Technol. 2016, 67, 112–117. [Google Scholar] [CrossRef]
- Bolger, Z.; Brunton, N.P.; Lyng, J.G.; Monahan, F.J. Quality attributes and retention of vitamin E in reduced salt chicken sausages fortified with vitamin E. J. Food Sci. Technol. 2016, 53, 3948–3959. [Google Scholar] [CrossRef] [PubMed]
- Rosli, W.I.W.; Babji, A.S.; Aminah, A.; Foo, S.P.; Abd Malik, O. Effect of retorting and oven cooking on the nutritional properties of beef frankfurters blended with palm oils. Int. J. Food Sci. Technol. 2010, 61, 519–535. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Kiely, M. Tackling inadequate vitamin D intakes within the population: Fortification of dairy products with vitamin D may not be enough. Endocrine 2016, 51, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.L.; King, M.B.; Gentry, J.G.; Barham, A.R.; Barham, B.L.; Hilton, G.G.; Blanton, J.R., Jr.; Horst, R.L.; Galyean, M.L.; Morrow, K.J., Jr.; et al. Supplemental vitamin D3 concentration and biological type of steers. II. Tenderness, quality, and residues of beef. J. Anim. Sci. 2004, 82, 2092–2104. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, B.R.; Sparks, J.C.; Beitz, D.C.; Parrish, F.C., Jr.; Horst, R.L.; Trenkleand, A.H.; Ewan, R.C. Short-term feeding of vitamin D3 improves color but does not change tenderness of pork-loin chops. J. Anim. Sci. 2002, 80, 2116–2121. [Google Scholar] [CrossRef] [PubMed]
- Whipple, G.; Koohmaraie, M. Calcium chloride marination effects on beef steak tenderness and calpain proteolytic activity. Meat Sci. 1993, 33, 265–275. [Google Scholar] [CrossRef]
- Boleman, C.T.; Mckenna, D.R.; Ramsey, W.S.; Peel, R.K.; Savell, J.W. Influence of feeding vitamin D3 and aging on tenderness of four lamb muscles. Meat Sci. 2004, 67, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.R.; Neuzil, J.; Mhor, D.; Stocker, R. Restoration of tocopherol by co-antioxidants make a-tocopherol an effective antioxidant for low-density lipoproteins. Am. J. Clin. Nutr. 1995, 62, 1357–1364. [Google Scholar] [CrossRef]
- Skřivan, M.; Marounek, M.; Englmaierová, M.; Skřivanová, E. Influence of dietary vitamin C and selenium, alone and in combination, on the composition and oxidative stability of meat of broilers. Food Chem. 2012, 130, 660–664. [Google Scholar] [CrossRef]
- Lo Fiego, D.P.; Santoro, P.; Macchioni, P.; Mazzoni, D.; Piattoni, F.; Tassone, F.; De Leonibus, E. The effect of dietary supplementation of vitamins C and E on the α-tocopherol content of muscles, liver and kidney, on the stability of lipids, and on certain meat quality parameters of the longissimus dorsi of rabbits. Meat Sci. 2004, 67, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Pion, S.J.; Van Heugten, E.; See, M.T.; Larick, D.K.; Pardue, S. Effects of vitamin C supplementation on plasma ascorbic acid and oxalate concentrations and meat quality in swine. J. Anim. Sci. 2004, 82, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Decker, E.A.; Xu, Z. Minimizing rancidity in muscle foods. Food Technol. 1998, 52, 54–59. [Google Scholar]
- Yano, H. Method of Improving Beef Quality. U.S. Patent 07,452,559, 18 November 2008. [Google Scholar]
- Czeizel, A.E.; Dudás, I.; Vereczkey, A.; Bánhidy, F. Folate Deficiency and Folic Acid Supplementation: The Prevention of Neural-Tube Defects and Congenital Heart Defects. Nutrients 2013, 5, 4760–4775. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.U. Vitamin B12 Deficiency Some Observations, Some Misconceptions. Eur. J. Gen. Pract. 2015, 12, 261–266. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO); World Health Organization (WHO). Human Vitamin and Mineral Requirements Food and Nutrition Division; FAO: Rome, Italy, 2001; Available online: http://www.fao.org/3/a-y2809e.pdf (accessed on 28 November 2017).
- Riccio, F.; Mennella, C.; Fogliano, V. Effect of cooking on the concentration of Vitamins B in fortified meat products. J. Pharm. Biomed. Anal. 2006, 41, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Galán, I.; García, M.A.; Selgas, M.A. Irradiation is useful for manufacturing ready-to-eat cooked meat products enriched with folic acid. Meat Sci. 2011, 87, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Sabharanjak, S.M.; Zengin, G.; Mollica, A.; Szostak, A.; Simirgiotis, M.; Huminiecki, L.; Horbanczuk, O.K.; Nabavii, S.M.; Mocani, A. Pecan nuts: A review of reported bioactivities and health effects. Trends Food Sci. Technol. 2018, 71, 246–257. [Google Scholar] [CrossRef]
- Tewari, D.; Stankiewicz, A.; Mocan, A.; Sah, A.; Huminiecki, L.; Horbańczuk, J.O.; Atanasov, A.G. Ethnopharmacological approaches for management of dementia and the therapeutic significance of natural products and herbal drugs. Front. Aging Neurosci. 2017. [Google Scholar] [CrossRef]
- Kozuharova, E.; Matkowski, A.; Wozniak, D.; Simeonova, R.; Naychov, Z.; Malainer, C.; Mocan, A.; Nabavi, S.M.; Atanasov, A.G. Amorpha fruticosa—A Noxious Invasive Alien Plant in Europe or a Medicinal Plant against Metabolic Disease? Front. Pharmacol. 2017, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Waltenberger, B.; Mocan, A.; Šmejkal, K.; Heiss, E.H.; Atanasov, A.G. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016, 21, 807. [Google Scholar] [CrossRef] [PubMed]
- Braicu, C.; Mehterov, N.; Vladimirov, B.; Sarafian, V.; Nabavi, S.M.; Atanasov, A.G.; Berindan-Neagoe, I. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin. Cancer Biol. 2017, 46, 84–106. [Google Scholar] [CrossRef] [PubMed]
- Ajami, M.; Pazoki-Toroudi, H.; Amani, H.; Nabavi, S.F.; Braidy, N.; Vacca, R.A.; Atanasov, A.G.; Mocan, A.; Nabavi, S.M. Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols. Neurosci. Biobehav. Rev. 2017, 73, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Mozos, I.; Stoian, D.; Caraba, A.; Malainer, C.; Horbańczuk, J.; Atanasov, A. Lycopene and vascular health. Front. Pharmacol. 2018. under review. [Google Scholar]
- Huminiecki, L.; Horbańczuk, J.O.; Atanasov, A.G. The functional genomic studies of curcumin. Semin. Cancer Biol. 2017, 46, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Huminiecki, L.; Horbanczuk, J.O. The functional genomic studies of resveratrol in respect to its anti-cancer effects. Biotechnol. Adv. 2017. under review. [Google Scholar]
- Bajpai, V.K.; Rahman, A.; Dung, N.T.; Huh, M.K.; Kang, S.C. In vitro inhibition of food spoilage and food borne pathogenic bacteria by essential oil and leaf extracts of Magnolia liliflora Desr. J. Food Sci. 2008, 73, 314–320. [Google Scholar] [CrossRef]
- Muíño, I.; Apeleo, E.; De La Fuente, J.; Pérez-Santaescolástica, C.; Rivas-Cañedo, A.; Pérez, C.; Díaz, M.T.; Cañeque, V.; Lauzurica, S. Effect of dietary supplementation with red wine extract or vitamin E, in combination with linseed and fish oil, on lamb meat quality. Meat Sci. 2014, 98, 116–123. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, M.N.; Carpenter, R.; Lynch, P.B.; O’brien, N.M.; Kerry, J.P. Addition of grape seed extract and bearberry to porcine diets: Influence on quality attributes of raw and cooked pork. Meat Sci. 2008, 78, 438–446. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, M.N.; Maher, M.; Troy, D.J.; Monoley, A.P.; Kerry, J.P. An assessment of dietary supplementation with tea catechins and rosemary extract on the quality of fresh beef. Meat Sci. 2006, 73, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Rica, B.D.; Arija, I.; Brenes, A. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Res. Int. 2015, 73, 197–203. [Google Scholar] [CrossRef]
- Ranucci, D.; Beghelli, D.; Trabalza-Marinucci, M.; Branciari, R.; Forte, C.; Olivieri, O.; Badillo Pazmay, G.V.; Cavallucci, C.; Acuti, G. Dietary effects of a mix derived from oregano (Origanum vulgare L.) essential oil and sweet chestnut (Castanea sativa Mill.) wood extract on pig performance, oxidative status and pork quality traits. Meat Sci. 2015, 100, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Serrano, R.; Jordán, M.J.; Bañón, S. Use of dietary rosemary extract in ewe and lamb to extend the shelf life of raw and cooked meat. Small Rumin. Res. 2014, 116, 144–152. [Google Scholar] [CrossRef]
- Lipinska, P.; Atanasov, A.G.; Palka, M.; Jozwik, A. Chokeberry Pomace as a Determinant of Antioxidant Parameters Assayed in Blood and Liver Tissue of Polish Merino and Wrzosówka Lambs. Molecules 2017, 22, 1461. [Google Scholar] [CrossRef] [PubMed]
- Luciano, G.; Vasta, V.; Monahan, F.J.; López-Andrés, P.; Biondi, L.; Lanza, M.; Priolo, A. Antioxidant status, colour stability and myoglobin resistance to oxidation of Longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Jung, S.; Choe, J.H.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Shirahigue, L.D.; Plata-Oviedo, M.; De Alencar, S.M.; D’arce, M.A.B.R.; De Souza Vieira, T.M.F.; Oldoni, T.L.C.; Contreras-Castillo, C.J. Wine industry residue as antioxidant in cooked chicken meat. Int. J. Food Sci. Technol. 2010, 45, 863–870. [Google Scholar] [CrossRef]
- Nowak, A.; Czyzowska, A.; Efenberger, M.; Krala, L. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiol. 2016, 59, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.I.A.; O’Grady, M.N.; Gutierrez, J.I.; Kerry, J.P. Screening of phytochemicals in fresh lamb meat patties stored in modified atmosphere packs: Influence on selected meat quality characteristics. Int. J. Food Sci. Technol. 2010, 45, 289–294. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Narsaiah, K.; Borah, A. Anti-oxidant effect of extracts of kinnow rind, pomegranate rind and seed powders in cooked goat meat patties. Meat Sci. 2010, 85, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Cho, A.R.; Han, J. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control 2013, 29, 112–120. [Google Scholar] [CrossRef]
- Fan, W.; Chen, Y.; Sun, J.; Zheng, Y. Effects of tea polyphenol on quality and shelf life of pork sausages. J. Food Sci. Technol. 2014, 51, 191–195. [Google Scholar] [CrossRef]
- Hayes, J.E.; Stepanyan, V.; Allen, P.; O’Grady, M.N.; Kerry, J.P. Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages. LWT Food Sci. Technol. 2011, 44, 164–172. [Google Scholar] [CrossRef]
- Rajput, N.; Naeem, M.; Ali, S.; Rui, Y.; Tian, W. Effect of dietary supplementation of marigold pigment on immunity, skin and meat color, and growth performance of broiler chickens. Rev. Bras. Cienc. Avic. 2012, 14, 233–234. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Zhong, H.; Li, N.; Xu, H.; Zhu, Q.; Liu, Y. Effect of probiotics on the meat flavour and gut microbiota of chicken. Sci. Rep. 2017, 7, 6400. [Google Scholar] [CrossRef] [PubMed]
- Akiba, Y.; Sato, K.; Takahashi, K.; Matsushita, K.; Komiyama, H.; Tsunekawa, H.; Nagao, H. Meat Color Modification in Broiler Chickens by Feeding Yeast Phaffia rhodozyma Containing High Concentrations of Astaxanthin. J. Appl. Poult. Res. 2001, 10, 154–161. [Google Scholar] [CrossRef]
- Yang, Y.X.; Kim, Y.J.; Jin, Z.; Lohakare, J.D.; Kim, C.H.; Ohh, S.H.; Lee, S.H.; Choi, J.Y.; Chae, B.J. Effects of Dietary Supplementation of Astaxanthin on Production Performance, Egg Quality in Layers and Meat Quality in Finishing Pigs. Asian Aust. J. Anim. 2006, 19, 1019–1025. [Google Scholar] [CrossRef]
- Englmaierová, M.; Bubancová, I.; Vít, T.; Skřivan, M. The effect of lycopene and vitamin E on growth performance, quality and oxidative stability of chicken leg meat. Czech J. Anim. Sci. 2011, 56, 536–543. [Google Scholar]
- Granado-Lorencio, F.; López-López, I.; Herrero-Barbudo, C.; Blanco-Navarro, I.; Cofrades, S.; Pérez-Sacristán, B.; Delgado-Pando, G.; Jiménez-Colmenero, F. Lutein-enriched frankfurter-type products: Physicochemical characteristics and lutein in vitro bioaccessibility. Food Chem. 2010, 120, 741–748. [Google Scholar] [CrossRef]
- Dunne, P.G.; Monahan, F.J.; O’Mara, F.P.; Moloney, A.P. Colour of bovine subcutaneous adipose tissue: A review of contributory factors, associations with carcass and meat quality and its potential utility in authentication of dietary history. Meat Sci. 2009, 81, 28–45. [Google Scholar] [CrossRef] [PubMed]
- García, M.L.; Calvo, M.M.; Selgas, M.D. Beef hamburgers enriched in lycopene using dry tomato peel as an ingredient. Meat Sci. 2009, 83, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Doménech-Asensi, G.; García-Alonso, F.J.; Martínez, E.; Santaella, M.; Martín-Pozuelo, G.; Bravo, S.; Periago, M.J. Effect of the addition of tomato paste on the nutritional and sensory properties of mortadella. Meat Sci. 2013, 93, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Østerlie, M.; Lerfall, J. Lycopene from tomato products added minced meat: Effect on storage quality and colour. Food Res. Int. 2005, 38, 925–929. [Google Scholar] [CrossRef]
- AACC International. The Definition of Dietary Fiber; Report of the Dietary Fiber Definition Committee to the Board of Directors of the American Association of Cereal Chemists; AACC International: St. Paul, MN, USA, 2001. [Google Scholar]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Shriver, J.A.; Carter, S.D.; Sutton, A.L.; Richert, B.T.; Senne, B.W.; Pettey, L.A. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci. 2003, 81, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Turhan, S.; Sagir, I.; Sule Ustun, N. Utilization of hazelnut pellicle in low-fat beef burgers. Meat Sci. 2005, 71, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Besbes, S.; Attia, H.; Deroanne, C.; Makni, S.; Blecker, C. Partial replacement of meat by pea fiber and wheat fiber: Effect on the chemical composition, cooking characteristics and sensory properties of beef burgers. J. Food Qual. 2008, 31, 480–489. [Google Scholar] [CrossRef]
- Sáyago-Ayerdi, S.G.; Brenes, A.; Goñi, I. Effect of grape antioxidant dietary fiber on the lipid oxidation of raw and cooked chicken hamburgers. LWT Food Sci. Technol. 2009, 42, 971–976. [Google Scholar] [CrossRef]
- Huang, S.C.; Tsai, Y.F.; Chen, C.M. Effects of Wheat Fiber, Oat Fiber, and Inulin on Sensory and Physico-chemical Properties of Chinese-style Sausages. Asian Aust. J. Anim. 2011, 24, 875–880. [Google Scholar] [CrossRef]
- Yilmaz, I. Effects of rye bran addition on fatty acid composition and quality characteristics of low-fat meatballs. Meat Sci. 2004, 67, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics Overuse in Animal Agriculture: A Call to Action for Health Care Providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef] [PubMed]
- Yirga, H. The Use of Probiotics in Animal Nutrition. J. Probiotic Health 2015, 3, 132. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO). Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; Food and Agriculture Organization of the United Nations (FAO): Córdoba, Argentina, 2001. [Google Scholar]
- Eid, H.M.; Wright, M.L.; Anil Kumar, N.V.; Qawasmeh, A.; Hassan, S.T.S.; Mocan, A.; Nabavi, S.M.; Rastrelli, L.; Atanasov, A.G.; Haddad, P.S. Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Front. Pharmacol. 2017, 8, 387. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Castillo, C.J.; Brossi, C.; Previero, T.C.; Demattê, L.C. Performance and carcass quality of broilers supplemented with antibiotics or probiotics. Rev. Bras. Cienc. Avic. 2008, 10, 227–232. [Google Scholar] [CrossRef]
- Pelicano, E.R.L.; Souza, P.A.; de Souza, H.B.A.; de Oba, A.; Norkus, E.A.; Kodawara, L.M.; de Lima, T.M.A. Effect of different probiotics on broiler carcass and meat quality. Rev. Bras. Cienc. Avic. 2003, 5, 207–214. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, E.; Li, S.; Wang, C.; Qiao, E.; Wu, G. Effects of dietary supplementation of probiotics (Bacillus subtilis, Bacillus licheniformis, and Bacillus natto) on broiler muscle development and meat quality. Turk. J. Vet. Anim. Sci. 2015, 39, 203–210. [Google Scholar] [CrossRef]
- Abdullaa, N.S.; Zamria, A.N.M.; Sabowa, A.B.; Kareema, K.Y.; Nurhaziraha, S.; Ling, F.H.; Sazilia, A.Q.; Loha, T.C. Physico-chemical properties of breast muscle in broiler chickens fed probiotics, antibiotics or antibiotic–probiotic mix. J. Appl. Anim. Res. 2017, 45, 64–70. [Google Scholar] [CrossRef]
- Novak, R.; Bogovič Matijašić, B.; Terčič, D.; Červek, M.; Gorjanc, G.; Holcman, A.; Levart, A.; Rogelj, I. Effects of two probiotic additives containing Bacillusspores on carcass characteristics, blood lipids and cecal volatile fatty acids in meat type chickens. J. Anim. Physiol. Anim. Nutr. 2011, 95, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Ross, G.R.; Van Nieuwenhove, C.P.; González, S.N. Fatty acid profile of pig meat after probiotic administration. J. Agric. Food Chem. 2012, 60, 5974–5978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xiao, S.; Samaraweera, H.; Lee, E.J.; Ahn, D.U. Improving functional value of meat products. Meat Sci. 2010, 86, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Ejiri, M.; Mizuno, S. Biogenic peptides and their potential use. Curr. Pharm. Des. 2003, 9, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Goa, K.L.; Balfour, J.A.; Zuanetti, G. Lisinopril. A review of its pharmacology and clinical efficacy in the early management of acute myocardial infarction. Drugs 1996, 52, 564–588. [Google Scholar] [CrossRef] [PubMed]
- Mancini, G.B.; Etminan, M.; Zhang, B.; Levesque, L.E.; Fitzgerald, J.M.; Brophy, J.M. Reduction of morbidity and mortality by statins, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers in patients with chronic obstructive pulmonary disease. J. Am. Coll. Cardiol. 2006, 47, 2554–2560. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, R.J.; Meisel, H. Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 2000, 84, 33–37. [Google Scholar] [CrossRef]
- Johanna, M. Industrial Enzymes, Structure, Function and Applications; Polaina, L., Maccabe, A.P., Eds.; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogorzelska-Nowicka, E.; Atanasov, A.G.; Horbańczuk, J.; Wierzbicka, A. Bioactive Compounds in Functional Meat Products. Molecules 2018, 23, 307. https://doi.org/10.3390/molecules23020307
Pogorzelska-Nowicka E, Atanasov AG, Horbańczuk J, Wierzbicka A. Bioactive Compounds in Functional Meat Products. Molecules. 2018; 23(2):307. https://doi.org/10.3390/molecules23020307
Chicago/Turabian StylePogorzelska-Nowicka, Ewelina, Atanas G. Atanasov, Jarosław Horbańczuk, and Agnieszka Wierzbicka. 2018. "Bioactive Compounds in Functional Meat Products" Molecules 23, no. 2: 307. https://doi.org/10.3390/molecules23020307
APA StylePogorzelska-Nowicka, E., Atanasov, A. G., Horbańczuk, J., & Wierzbicka, A. (2018). Bioactive Compounds in Functional Meat Products. Molecules, 23(2), 307. https://doi.org/10.3390/molecules23020307