Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl)-N-(5-cyclopropyl-1H-pyrazol-3-yl)-quinazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Activity against PAK4 Kinase and Structure-Activity Relationships
2.3. Effects of Compounds 8d and 9c on Cell Proliferation
2.4. Effects of Compound 8d on Cell Cycle Progression, Cell Migration, and Cell Invasion
2.5. Binding Mode Analysis
3. Experimental
3.1. Chemicals and Instruments
3.2. Synthesis
General Procedure for Synthesis of Compounds 6a,b, 7a–i, 8a–e, 9a–c
3.3. PAK4 HTRF Assays
3.4. Cell Proliferation Assay
3.5. Cell Cycle Analysis by Flow Cytometry
3.6. Cell Migration and Invasion Assay
3.7. Molecular Docking Study
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kumar, R.; Gururaj Anupama, E.; Barnes Christopher, J. p21-activated kinases in cancer. Nat. Rev. Cancer 2006, 6, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Durgan, J.; Hall, A. Function cross-talk between Cdc42 and two downstream targets, Par6B and PAK4. Biochem. J. 2015, 467, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, Y.; Ng, Y.W.; Selamat, W.; Ling, F.T.P.; Manser, E. Group I and II mammalian PAKs have different modes of activation by Cdc42. EMBO Rep. 2012, 13, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.M.; Ridley, A.J. Rho GTPases in cancer cell biology. FEBS Lett. 2008, 582, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Eswaran, J.; Lee, W.H.; Debreczeni, J.E.; Filippakopoulos, P.; Turnbull, A.; Fedorov, O.; Deacon, S.W.; Peterson, J.R.; Knapp, S. Crystal structures of the p21-Activated Kinases PAK4, PAK5 and PAK6 Reveal Catalytic Domain Plasticity of Active Group II PAKs. Structure 2007, 15, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Wells, C.M.; Jones, G.E. The emerging importance of group II PAKs. Biochem. J. 2010, 425, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Li, X.; Guo, J.; Hao, C.; Feng, Y.; Liu, B.G.T.; Zhang, Q.; Zhang, Z.; Li, R.; Wang, J.; et al. Design, synthesis and biological evaluation of 1-phenanthryl-tetrahydroisoquinoline derivatives as novel p21-Activated kinase (PAK4) inhibitors. Org. Biomol. Chem. 2015, 13, 3803–3818. [Google Scholar] [CrossRef] [PubMed]
- Fulciniti, M.; Martinez-Lopez, J.; Senapedis, W.; Oliva, S.; Bandi, R.L.; Amodio, N.; Xu, Y.; Szalat, R.; Gulla, A.; Samur, M.K.; et al. Functional role and therapeutic targeting of p21-activated kinase 4 in, multiple myeloma. Haematologica. Blood 2017, 129, 2233–2245. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gratzke, C.; Tamalunas, A.; Wiemer, N.; Ciotkowska, A.; Rutz, B.; Waidelich, R.; Strittmatter, F.; Liu, C.; Stief, C.G.; et al. p-21 Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscule Contraction in the Human Prostate. PLoS ONE 2016, 11, e0153312. [Google Scholar]
- Shao, Y.-G.; Ning, K.; Li, F. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer. World J. Gastroneterol. 2016, 22, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, J.; Murray, L.J.; Ndubaku, C.O.; O’Brien, T.; Blackwood, E.; Wang, W.; Aliagas, I.; Gazzard, L.; Crawford, J.J.; Drobnick, J.; et al. Chemically Diverse Group I p21-Activated Kinase (PAK) InhibitorsImpart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window. J. Med. Chem. 2016, 59, 5520–5541. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Woo, D.J.; Kim, S.Y.; Yang, E.G. p21-activated kinase 4 regulates HIF-1a translation in cancer cells. Biochem. Biophys. Res. Commun. 2017, 486, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Hoeflich, K.P.; Lyle, K.S.; Staben, S. p21-Activated Kinase 4(PAK4) Inhibitors as Potential Cancer Therapy. ACS Med. Chem. Lett. 2015, 6, 17–18. [Google Scholar]
- Ma, Y.; McCarty, S.K.; Kapuriya, N.P.; Brendel, V.J.; Wang, C.; Zhang, X.; Jarjoura, D.; Saji, M.; Chen, C.; Ringel, M.D. Development of p21 Activated Kinase-Targeted Multikinase Inhibitors That Inhibit Thyroid Cancer Cell Migration. J. Clin. Endocr. Metab. 2013, 98, E1314–E1322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.; Guo, Q.; Wang, Y.; Zhou, Y.; Peng, H.; Cheng, M.; Zhao, D.; Li, F. LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells. Cancer Lett. 2012, 317, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Statsuk, A.V.; Maly, D.J.; Seeliger, M.A.; Fanian, M.A.; Biggs, W.H., III; Lockhart, D.J.; Zarrinkar, P.P.; Kuriyan, J.; Shokat, K.M. Tuning a three-component reaction for trapping kinase substrate complexes. J. Am. Chem. Soc. 2008, 130, 17568–17574. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.-S.; He, Q.-Q.; Liang, Y.-H.; Feng, X.-Q.; Chen, F.-E.; De Clercq, E.; Balzarini, J.; Pannecouque, C. Hybrid diarylbenzopyrimidine non-nucleoside reverse transcriptase inhibitors as promising new leads for improved anti-HIV-1 chemotherapy. Bioorg. Med. Chem. 2010, 18, 5039–5047. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.-C.; Cha, J.H.; Kim, H.; Kwak, J.; Kim, D.; Seo, S.-H.; Shin, J.; Kim, T.H.; Park, K.D.; Lee, J.; No, K.T.; Kim, Y.K.; Lee, K.; Pae, A.N. Discovery of 2-aryloxy-4-amino-quinazoline derivatives as novel protease-activated receptor 2 (PAR2) antagonists. Bioorg. Med. Chem. 2015, 23, 7717–7727. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 6a,b, 7a–i, 8a–e, 9a–c are available from the authors. |
Compound | PAK4 | Compound | PAK4 | Compound | PAK4 |
---|---|---|---|---|---|
IC50 a | IC50 | IC50 | |||
6a | 0.44 | 7f | 0.49 | 8d | 0.060 |
6b | 0.56 | 7g | 0.30 | 8e | 0.22 |
7a | 0.85 | 7h | 0.69 | 9a | 0.38 |
7b | 0.24 | 7i | 0.20 | 9b | 0.11 |
7c | 0.10 | 8a | 0.31 | 9c | 0.068 |
7d | 0.65 | 8b | 0.38 | PF-3758309 b | 0.016 |
7e | 0.16 | 8c | 0.087 |
Compound | PAK4 | Cells | |
---|---|---|---|
A549 | HT1080 | ||
8d | 0.060 | 4.685 | 21.519 |
9c | 0.068 | 4.751 | 39.303 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Pang, Y.; Guo, J.; Yin, W.; Zhu, M.; Hao, C.; Wang, K.; Wang, J.; Zhao, D.; Cheng, M. Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl)-N-(5-cyclopropyl-1H-pyrazol-3-yl)-quinazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity. Molecules 2018, 23, 417. https://doi.org/10.3390/molecules23020417
Wu T, Pang Y, Guo J, Yin W, Zhu M, Hao C, Wang K, Wang J, Zhao D, Cheng M. Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl)-N-(5-cyclopropyl-1H-pyrazol-3-yl)-quinazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity. Molecules. 2018; 23(2):417. https://doi.org/10.3390/molecules23020417
Chicago/Turabian StyleWu, Tianxiao, Yu Pang, Jing Guo, Wenbo Yin, Mingyue Zhu, Chenzhou Hao, Kai Wang, Jian Wang, Dongmei Zhao, and Maosheng Cheng. 2018. "Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl)-N-(5-cyclopropyl-1H-pyrazol-3-yl)-quinazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity" Molecules 23, no. 2: 417. https://doi.org/10.3390/molecules23020417
APA StyleWu, T., Pang, Y., Guo, J., Yin, W., Zhu, M., Hao, C., Wang, K., Wang, J., Zhao, D., & Cheng, M. (2018). Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl)-N-(5-cyclopropyl-1H-pyrazol-3-yl)-quinazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity. Molecules, 23(2), 417. https://doi.org/10.3390/molecules23020417