Rapid Determination of Active Compounds and Antioxidant Activity of Okra Seeds Using Fourier Transform Near Infrared (FT-NIR) Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Determination and Antioxidant Activity Assays
2.2. Calibration Models Development
2.3. External Validation
3. Materials and Methods
3.1. Chemicals and Samples
3.2. The Determination Of Active Compounds
3.2.1. Determination of Isoquercitrin and Quercetin-3-O-gentiobioside Contents
3.2.2. Determination of TP Content
3.3. Antioxidant Activity Measurement
3.3.1. DPPH Radical Scavenging Activity
3.3.2. Ferric Reducing Antioxidant Power (FRAP)
3.4. Spectral Acquisition
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ndunguru, J.; Rajabu, A. Effect of okra mosaic virus disease on the above-ground morphological yield components of okra in Tanzania. Sci. Hortic. 2004, 99, 225–235. [Google Scholar] [CrossRef]
- Messing, J.; Thole, C.; Niehues, M.; Shevtsova, A.; Glocker, E.; Boren, T.; Hensel, A. Antiadhesive properties of Abelmoschus esculentus (Okra) immature fruit extract against Helicobacter pylori adhesion. PLoS ONE 2014, 9, e84836. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yu, W.; Li, Y.; Prasad, N.; Tang, Z. Antioxidant activity of extract and its major constituents from okra seed on rat hepatocytes injured by carbon tetrachloride. Biomed. Res. Int. 2014, 2014, 341291. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P. Identification and quantification of polyphenolic compounds from okra seeds and skins. Food Chem. 2008, 110, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Adelakun, O.E.; Oyelade, O.J.; Ade-Omowaye, B.I.O.; Adeyemi, I.A.; Van de Venter, M. Chemical composition and the antioxidative properties of Nigerian Okra Seed (Abelmoschus esculentus Moench) Flour. Food Chem. Toxicol. 2009, 47, 1123–1126. [Google Scholar] [CrossRef] [PubMed]
- Pukalskienė, M.; Slapšytė, G.; Dedonytė, V.; Lazutka, J.R.; Mierauskienė, J.; Venskutonis, P.R. Genotoxicity and antioxidant activity of five Agrimonia and Filipendula species plant extracts evaluated by comet and micronucleus assays in human lymphocytes and Ames Salmonella/microsome test. Food Chem. Toxicol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Zhong, Y.; Li, M.; Chang, Q.; Liao, Y.; Liu, X.; Pan, R. Antioxidant and Anti-Fatigue Constituents of Okra. Nutrients 2015, 7, 8846–8858. [Google Scholar] [CrossRef] [PubMed]
- Pistollato, F.; Giampieri, F.; Battino, M. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem. Toxicol. 2015, 75, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Seiquer, I.; Rueda, A.; Olalla, M.; Cabrera-Vique, C. Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco-2 cell assays. Comparative study with extra virgin olive oil. Food Chem. 2015, 188, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.-H.; Dong, C.-J.; Nie, S.-P.; Li, F.; Wang, Z.-J.; Shen, M.-Y.; Xie, M.-Y. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem. 2015, 186, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Ma, G.; Li, N.; Deng, Q.; Yin, Y.; Huang, R. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem. 2015, 173, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Timóteo, P.; Karioti, A.; Leitão, S.G.; Vincieri, F.F.; Bilia, A.R. A validated HPLC method for the analysis of herbal teas from three chemotypes of Brazilian Lippia alba. Food Chem. 2015, 175, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.; Jayaprakasha, G.K.; Jifon, J.; Patil, B.S. Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chem. 2012, 130, 751–758. [Google Scholar] [CrossRef]
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant activity of Citrus fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Sintara, M.; Chang, T. Multi-radical (ORAC(MR5)) antioxidant capacity of selected berries and effects of food processing. J. Berry Res. 2016, 6, 159–173. [Google Scholar] [CrossRef]
- Morita, M.; Naito, Y.; Yoshikawa, T.; Niki, E. Antioxidant capacity of blueberry extracts: Peroxyl radical scavenging and inhibition of plasma lipid oxidation induced by multiple oxidants. J. Berry Res. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Musingarabwi, D.M.; Nieuwoudt, H.H.; Young, P.R.; Eyéghè-Bickong, H.A.; Vivier, M.A. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Food Chem. 2016, 190, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.-L.; Zhao, N.; Wu, Z.-S.; Huang, M.; Wang, D.; Zhang, Y.-B.; Hu, X.; Chen, X.-L.; Huang, L.-Q.; Pang, Y.-X. NIR Rapid Assessments of Blumea balsamifera (Ai-na-xiang) in China. Molecules 2017, 22, 1730. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Guo, Y. Rapidly simultaneous determination of six effective components in Cistanche tubulosa by near infrared spectroscopy. Molecules 2017, 22, 843. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Gao, Z.; Li, Z.; Yuan, Y.; Yue, T. Rapid detection of volatile compounds in apple wines using FT-NIR spectroscopy. Food Chem. 2016, 190, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Bauer, R.; Nieuwoudt, H.; Bauer, F.F.; Kossman, J.; Koch, K.R.; Esbensen Kim, H. FTIR spectroscopy for grape and wine analysis. Anal. Chem. 2008, 80, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Rodríguez-Pulido, F.J.; Heredia, F.J.; Hernández-Hierro, J.M. Use of near infrared hyperspectral tools for the screening of extractable polyphenols in red grape skins. Food Chem. 2015, 172, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhao, J.; Liu, M.; Cai, J.; Liu, J. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. J. Pharm. Biomed. Anal. 2008, 46, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, J.; Lu, B.; Xiong, L.; He, Y.; Zhang, Y. Application of near infrared spectroscopy for the rapid determination of antioxidant activity of bamboo leaf extract. Food Chem. 2012, 135, 2147–2156. [Google Scholar] [CrossRef] [PubMed]
- Preserova, J.; Ranc, V.; Milde, D.; Kubistova, V.; Stavek, J. Study of phenolic profile and antioxidant activity in selected Moravian wines during winemaking process by FT-IR spectroscopy. J. Food Sci. Technol. 2015, 52, 6405–6414. [Google Scholar] [CrossRef] [PubMed]
- Magwaza, L.S.; Landahl, S.; Cronje, P.J.R.; Nieuwoudt, H.H.; Mouazen, A.M.; Nicolaï, B.M.; Terry, L.A.; Opara, U.L. The use of Vis/NIRS and chemometric analysis to predict fruit defects and postharvest behaviour of ‘Nules Clementine’ mandarin fruit. Food Chem. 2014, 163, 267–274. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds isoquercitrin, quercetin-3-O-gentiobioside and gallic acid are available from the authors. |
Calibration Set (n = 100) | External Validation Set (n = 20) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | SEL | Min | Max | Mean | SD | SEL | |
Isoquercitrin(%) | 0.2923 | 0.5971 | 0.4612 | 0.080 | 0.0073 | 0.3193 | 0.5946 | 0.4624 | 0.073 | 0.0076 |
Quercetin-3-O-gentiobioside(%) | 0.7150 | 1.733 | 1.249 | 0.26 | 0.027 | 0.7214 | 1.727 | 1.219 | 0.24 | 0.019 |
TP (%) | 1.633 | 10.18 | 5.513 | 2.3 | 0.26 | 0.8219 | 9.700 | 5.482 | 2.1 | 0.23 |
DPPH (%) | 0.4718 | 0.8936 | 0.7368 | 0.097 | 0.017 | 0.4327 | 0.8927 | 0.7358 | 0.086 | 0.0096 |
FRAP (mmol/g) | 0.9214 | 11.72 | 4.119 | 2.3 | 0.24 | 1.072 | 10.64 | 4.158 | 2.4 | 0.27 |
Parameters | Preprocessing | Wavenumber Range (cm−1) | Calibration | Cross-Validation | |||
---|---|---|---|---|---|---|---|
RMSEC | RMSECV | RPD | |||||
Isoquercitrin | FD + SNV | 11,995.5~6098 4601.5~4246.1 | 0.9232 | 0.01760 | 0.9096 | 0.02600 | 4.07 |
SNV | 11,995.5~5446 4601~4246 | 0.9499 | 0.02260 | 0.9010 | 0.02400 | 3.18 | |
FD + SNV | 11,995~7498 6101.9~5446.2 4601.5~4246.6 | 0.8155 | 0.02900 | 0.6216 | 0.03810 | 2.33 | |
MSC | 11,995.5~6098 5450~4246.6 | 0.6953 | 0.03860 | 0.4368 | 0.04790 | 1.81 | |
Quercetin-3-O-gentiobioside | FD + SNV | 7502~5446.2; 4601.5~4246.6 | 0.9412 | 0.05890 | 0.9387 | 0.08690 | 4.04 |
FD + MSC | 7502~5446.2; 4601.5~4246.6 | 0.9318 | 0.06320 | 0.9281 | 0.08840 | 3.73 | |
FD + MSC | 7502~4246.6 | 0.9293 | 0.06330 | 0.8197 | 0.09150 | 3.76 | |
MSC | 7502~5446.2; 4601.5~4246.6 | 0.9208 | 0.06700 | 0.8172 | 0.09210 | 3.55 | |
TP | FD + SNV | 7502~5446.2; 4601.5~4246.6 | 0.9896 | 0.2620 | 0.9722 | 0.3870 | 9.79 |
FD + COE | 7502~5446.2; 4601.5~4246.6 | 0.9690 | 0.4600 | 0.8870 | 0.7430 | 3.08 | |
FD + MSC | 7502~5446.2; 4601.5~4246.6 | 0.9406 | 0.607 | 0.8858 | 0.747 | 2.99 | |
MSC | 7502~5446.2; 4601.5~4246.6 | 0.8809 | 0.7620 | 0.8555 | 0.9390 | 2.90 | |
DPPH | MSC | 11,995.5~4246.6 | 0.9798 | 0.01510 | 0.9522 | 0.02090 | 4.58 |
SNV | 11,995.5~7498; 5450~4246.5 | 0.9252 | 0.02750 | 0.8548 | 0.03640 | 2.63 | |
FD | 11,995.5~4597 | 0.9746 | 0.01650 | 0.8541 | 0.03640 | 2.62 | |
COE | 11,995.5~7498; 6101~4246.5 | 0.9212 | 0.02910 | 0.8406 | 0.03820 | 2.50 | |
FRAP | MSC | 7502~4246.5 | 0.9676 | 0.4730 | 0.9410 | 0.5700 | 4.12 |
SNV | 7502~5446.6 | 0.9715 | 0.4440 | 0.9401 | 0.5740 | 4.08 | |
FD | 7502~4246.5 | 0.9724 | 0.4370 | 0.9400 | 0.5750 | 4.08 | |
MSC | 7502~5446.6; 4601.5~4246.5 | 0.9686 | 0.4680 | 0.8443 | 0.9510 | 2.62 |
Parameters | External Validation | ||
---|---|---|---|
RMSEP | RPD | ||
isoquercitrin | 0.9043 | 0.024 | 3.1 |
quercetin-3-O-gentiobioside | 0.9423 | 0.050 | 4.7 |
TP | 0.9732 | 0.34 | 6.4 |
DPPH | 0.9775 | 0.0194 | 4.4 |
FRAP | 0.9734 | 0.423 | 5.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, F.; Li, C.; Zhao, N.; Li, H.; Chang, Q.; Liu, X.; Liao, Y.; Pan, R. Rapid Determination of Active Compounds and Antioxidant Activity of Okra Seeds Using Fourier Transform Near Infrared (FT-NIR) Spectroscopy. Molecules 2018, 23, 550. https://doi.org/10.3390/molecules23030550
Xia F, Li C, Zhao N, Li H, Chang Q, Liu X, Liao Y, Pan R. Rapid Determination of Active Compounds and Antioxidant Activity of Okra Seeds Using Fourier Transform Near Infrared (FT-NIR) Spectroscopy. Molecules. 2018; 23(3):550. https://doi.org/10.3390/molecules23030550
Chicago/Turabian StyleXia, Fangbo, Chenchen Li, Ning Zhao, He Li, Qi Chang, Xinmin Liu, Yonghong Liao, and Ruile Pan. 2018. "Rapid Determination of Active Compounds and Antioxidant Activity of Okra Seeds Using Fourier Transform Near Infrared (FT-NIR) Spectroscopy" Molecules 23, no. 3: 550. https://doi.org/10.3390/molecules23030550
APA StyleXia, F., Li, C., Zhao, N., Li, H., Chang, Q., Liu, X., Liao, Y., & Pan, R. (2018). Rapid Determination of Active Compounds and Antioxidant Activity of Okra Seeds Using Fourier Transform Near Infrared (FT-NIR) Spectroscopy. Molecules, 23(3), 550. https://doi.org/10.3390/molecules23030550