Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biosynthesis and Characterization of AgNPs
2.2. Qualitative and Quantitative Assessments of Phytochemicals and DPPH-Scavenging Activities
2.3. Biological Activity
2.3.1. Antibacterial Activity
2.3.2. Biocompatibility and Anticancer Activity Study
3. Materials and Methods
3.1. Sample Preparation
3.2. Biosynthesis of Silver Nanoparticles (AgNPs)
3.3. Characterization of Silver Nanoparticles
3.4. Biological Activities
3.4.1. Antibacterial Activity
3.4.2. Qualitative Phytochemical Analysis
3.5. Quantitative Phytochemical Analysis and In Vitro Antioxidant Properties
3.5.1. Total Phenolic Content (TPC) Determination
3.5.2. Total Flavonoid Content (TFC) Determination
3.5.3. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Activity
3.6. In Vitro Biocompatibility and Anticancer Activity
3.6.1. Cell Line Culture and Treatment of AgNPs
3.6.2. Cell Viability Study by MTT Assay
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, H.; Hua, M.; Yang, H.; Huang, C.; Chu, P.; Wu, J.; Tseng, I.; Wang, J.; Yen, T.; Chen, P.; et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc. Natl. Acad. Sci. USA 2010, 107, 15205–15210. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Choi, J.; Park, C.; Jang, H.; Kim, K. Facile synthesis and catalytic application of silver-deposited magnetic nanoparticles. Catal. Lett. 2009, 133, 1. [Google Scholar] [CrossRef]
- Ren, X.; Meng, X.; Chen, D.; Tang, F.; Jiao, J. Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 2005, 21, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Sivakumar, R.; Anandan, S.; Madhavan, J.; Maruthamuthu, P.; Ashok Kumar, M. Biosensing technologies for Mycobacterium tuberculosis detection: Status and new developments. Water Res. 2008, 42, 4878–4884. [Google Scholar]
- Rai, M.; Deshmuk, F.; Ingle, A. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Haruta, M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bull. 2004, 37, 27–36. [Google Scholar] [CrossRef]
- Singh, P.; Yu-Jin, K.; Dabing, Z.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Iqra, S.M.; Shahid, R.; Tahir, B.M. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Lee, K.J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials 2009, 30, 6341–6350. [Google Scholar] [CrossRef] [PubMed]
- Pugazhenthiran, N.; Anandan, S.; Kathiravan, G.; Udaya Prakash, N.; Crawford, S.; Ashokkumar, M. Microbial synthesis of silver nanoparticles by Bacillus sp. J. Nanoparticle Res. 2009, 11, 1811–1815. [Google Scholar] [CrossRef]
- Shanmugan, R.; Chellapandian, K.; Gurusamy, A. Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int. J. Pharm. Biol. Sci. 2012, 4, 502–510. [Google Scholar]
- Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A.K. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl. Nanosci. 2013, 3, 145–151. [Google Scholar] [CrossRef]
- Brian, P. Antibiotics produced by fungi. Bot. Rev. 1951, 17, 357–430. [Google Scholar] [CrossRef]
- Li, G.; He, D.; Qian, Y.; Guan, B.; Gao, S.; Cui, Y.; Yokoyama, K.; Wang, L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci. 2012, 13, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.; Khan, M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 2001, 1, 515–519. [Google Scholar] [CrossRef]
- Mohanta, Y.; Singdevsachan, S.; Parida, U.; Panda, S.; Mohanta, T.K.; Bae, H. Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from the Similipal Biosphere Reserve, Odisha, India. IET Nanobiotechnol. 2016, 10, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Benotmane, M.; Monsieurs, P.; Grass, G.; Doonan, C.; Vogt, S.; Lai, B.; et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc. Nat. Acad. Sci. USA 2009, 106, 17757–17762. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, A.M.; Saidman, B.O.; Wright, J.E. Isoenzymes of Ganoderma species from southern South America. Mycol. Res. 1998, 102, 415–426. [Google Scholar] [CrossRef]
- Rai, M.; Tidke, G.; Wasser, S.P. Therapeutic potential of mushrooms. Nat. Prod. Radiance 2005, 4, 246–257. [Google Scholar]
- Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem. 2009, 20, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, H.; Chen, Z.S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011. [Google Scholar] [CrossRef]
- Iravani, S.; Thota, S.; Crans, D.C. Methods for Preparation of Metal Nanoparticles. In Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences; Wiley: Weinheim, Germany, 2018; Volume 63, pp. 15–31. [Google Scholar]
- Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost : Is it possible to reverse resistance ? Nat. Rev. Microbiol. 2010, 8, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Huh, A.J.; Kwon, Y.J. ‘’Nanoantibiotic’’: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156, 128–145. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354. [Google Scholar] [CrossRef]
- Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 2012, 8, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Bhosle, S.; Ranadive, K.; Bapat, G.; Garad, S.; Deshpande, G.; Vaidya, J. Taxonomy and diversity of Ganoderma from the western parts of Maharashtra (India). Mycosphere 2010, 1, 249–262. [Google Scholar]
- Chandran, K.; Song, S.; Yun, S.-I. Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arab. J. Chem. 2014. [Google Scholar] [CrossRef]
- Huang, H.; Yang, X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res. 2004, 339, 2627–2631. [Google Scholar] [CrossRef] [PubMed]
- Deljou, A.; Goudarzi, S. Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iran. J. Biotechnol. 2016, 14, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Firdhouse, M.J.; Lalitha, P. Biosynthesis of silver nanoparticles and its applications. J. Nanotechnol. 2015, 2015. [Google Scholar] [CrossRef]
- Ghorbani, H.; Safekordi, A.; Attar, H.; Sorkhabadi, S. Biological and non-biological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. Q. J. 2011, 25, 317–326. [Google Scholar]
- Haldar, K.; Haldar, B.; Chandra, G. Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall). Parasitol. Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, Y.K.; Panda, S.K.; Jayabalan, R.; Sharma, N. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci. 2017, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Roy, M.; Mandal, B.P.; Dey, G.K.; Mukherjee, P.K.; Ghatak, J.; Tyagi, A.K.; Kale, S.P. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 2008, 19, 75103. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci. 2015, 457, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, C.; Padma, M.; Samadanam, D.M.; Mareeswaran, R.; Uyavaran, A.; Suresh, K.; Premkumar, K.T.C. The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf. B Biointerfaces 2013, 102, 802–815. [Google Scholar] [CrossRef] [PubMed]
- Khurana, C.; Vala, A.K.; Andhariya, N.; Pandey, O.P.; Chudasama, B. Antibacterial activities of silver nanoparticles and antibiotic-adsorbed silver nanoparticles against biorecycling microbes. Environ. Sci. Process. Impacts 2014, 16, 2191–2198. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Sarkar, C.K.; Ghosh, C.K. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 146, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Dauthal, P.; Mukhopadhyay, M. Noble metal nanoparticles : Plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind. Eng. Chem. Res. 2016. [Google Scholar] [CrossRef]
- Karwa, A.; Gaikwad, S.; Rai, M.K. Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.:Fr.) P. Karst. and their role as antimicrobials and antibiotic activity enhancers. Int. J. Med. Mushrooms 2011, 13, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R. Synthesis of silver nanoparticles in photosynthetic plants. J. Nanoparticles 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Malarkodi, C. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Lanje, A.; Sharma, S.; Pode, R. Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res. 2010, 2, 478–483. [Google Scholar]
- Gibbins, B.; Hopman, L. Hydrogel Containing Silver Nano-Particles. U.S. Patent US6897349 B2, 24 May 2005. [Google Scholar]
- Singh, K.; Panghal, M.; Kadyan, S.; Chaudhary, U.; Yadav, J. Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. J. Nanomed. Nanotechnol. 2014, 5. [Google Scholar] [CrossRef]
- Yousefzadi, M.; Rahimi, Z.; Ghafori, V. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen). J. Agardh. Mater. Lett. 2014, 137, 1–4. [Google Scholar] [CrossRef]
- Ramesh, P.; Kokila, T.; Geetha, D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 142, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.; Sudipta, K.; Jayanta, K.; Balasubramanya, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata. Appl. Nanosci. 2015, 5, 73–81. [Google Scholar] [CrossRef]
- Rhim, J.; Ng, P. Natural biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food. Sci. 2007, 47, 411–433. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, B. Barrier Polymers. In The Wiley Encyclopedia of Packaging Technology; Yam, K.L., Ed.; John Wiley & Sons: New York, NY, USA, 2009; pp. 103–109. [Google Scholar]
- Netala, V.R.; Bethu, M.S.; Pushpalatha, B.; Baki, V.B.; Aishwarya, S.; Rao, J.V. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int. J. Nanomed. 2016, 11, 5683–5696. [Google Scholar] [CrossRef] [PubMed]
- Franco-Molina, M.A.; Mendoza-Gamboa, E.; Sierra-Rivera, C.A.; Gómez-Flores, R.A.; Zapata-Benavides, P.; Castillo-Tello, P.; Alcocer-González, J.M.; Miranda-Hernández, D.F.; Tamez-Guerra, R.S.; Rodríguez-Padilla, C. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J. Exp. Clin. Cancer Res. 2010, 29, 148. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C 2016, 58, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Sanpui, P.; Chattopadhyay, A.; Ghosh, S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl. Mater. Interfaces 2011, 3, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Hsin, Y.-H.; Chen, C.-F.; Huang, S.; Shih, T.-S.; Lai, P.-S.; Chueh, P.J. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 2008, 179, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Raman, J.; Malek, S.N.A.; John, P.A.; Vikineswary, S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic agent against breast cancer cells. Int. J. Nanomed. 2013, 8, 4399–4413. [Google Scholar] [CrossRef]
- Mohanta, Y.K.; Panda, S.K.; Bastia, A.K.; Mohanta, T.K. Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control. Front. Microbiol. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Parekh, J.; Chanda, S.V. In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turk. J. Biotechnol. 2008, 31, 53–58. [Google Scholar]
- Arunachalam, K.D.; Suhashani, S.; Sathesh, K.A. Wound healing and antigenotoxic activities of Aegle marmelos with relation to its antioxidant properties. J. Pharm. Res. 2012, 5, 1492–1502. [Google Scholar]
- Guruvaiah, P.; Arunachalam, A.; Velan, L.P.T. Evaluation of phytochemical constituents and antioxidant activities of successive solvent extracts of leaves of Indigofera caerulea Roxb using various in vitro antioxidant assay systems. Asian Pac. J. Trop. Dis. 2012, 2, S118–S123. [Google Scholar] [CrossRef]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Chia-Chi, C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- AshaRani, P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Kale, S.; Pardesi, K.; Cameotra, S.; Bellare, J.; Dhavale, D.; Jabgunde, A.; et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 2012, 7, 483–496. [Google Scholar] [CrossRef]
Phytoconstituent | Observation |
---|---|
Alkaloids | − |
Tannins and phenolic compounds | +++ |
Glycoside | − |
Flavonoids | +++ |
Steroids and sterols | − |
Triterpenoids | + |
Sugars | +++ |
Proteins | +++ |
Phytochemical Constituent | mg/100 g Dry Weight (Mean ± SD) |
---|---|
TPC | 620.67 ± 28.00 |
TFC | 845.26 ± 24.20 |
Mean Zone of Inhibition ± SD (in mm) | |||
---|---|---|---|
Name of The Test Strain | Silver Nanoparticles (500 µg/mL) | Kanamycin (5 mg/mL) | DMSO (5%) |
Escherichia coli | 11 ± 0.50 | 20.8 ± 0.59 | 0 |
Bacillus subtilis | 20 ± 1.00 | 13.3 ± 0.12 | 0 |
Streptococcus faecalis | 16 ± 1.00 | 11.1 ± 0.13 | 0 |
Listeria innocua | 22 ± 1.15 | 12.3 ± 0.21 | 0 |
Micrococcus luteus | 21 ± 1.15 | 10.2 ± 0.31 | 0 |
Antibacterial Activity of AgNPs (Percentage of Inhibition (%) ± SD) | ||||||
---|---|---|---|---|---|---|
Name of The Test Strain | 1000 µg/mL | 500 µg/mL | 250 µg/mL | 125 µg/mL | 61.25 µg/mL | IC50 (µg/mL) |
Escherichia coli | 83.10 ± 0.08a | 62.47 ± 0.26b | 40.33 ± 0.21c | 36.33 ± 0.09d | 35.33 ± 0.09e | 338.39 ± 1.71 |
Bacillus subtilis | 99.53 ± 0.29a | 99.44 ± 0.26a | 99.13 ± 0.17a | 71.47 ± 0.21b | 20.37 ± 1.33c | 93.38 ± 0.70 |
Streptococcus faecalis | 94.63 ± 0.39a | 92.80 ± 0.24b | 60.90 ± 0.22c | 46.03 ± 0.12d | 34.67 ± 0.37e | 150.40 ± 1.00 |
Listeria innocua | 93.93 ± 0.87a | 94.17 ± 0.12a | 80.20 ± 0.22b | 60.20 ± 0.08c | 35.03 ± 0.25d | 94.38 ± 0.25 |
Micrococcus luteus | 94.27 ± 0.12a | 93.70 ± 0.22b | 70.27 ± 0.12c | 55.33 ± 0.08d | 32.30 ± 0.16e | 106.55 ± 0.32 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanta, Y.K.; Nayak, D.; Biswas, K.; Singdevsachan, S.K.; Abd_Allah, E.F.; Hashem, A.; Alqarawi, A.A.; Yadav, D.; Mohanta, T.K. Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens. Molecules 2018, 23, 655. https://doi.org/10.3390/molecules23030655
Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd_Allah EF, Hashem A, Alqarawi AA, Yadav D, Mohanta TK. Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens. Molecules. 2018; 23(3):655. https://doi.org/10.3390/molecules23030655
Chicago/Turabian StyleMohanta, Yugal Kishore, Debasis Nayak, Kunal Biswas, Sameer Kumar Singdevsachan, Elsayed Fathi Abd_Allah, Abeer Hashem, Abdulaziz A. Alqarawi, Dhananjay Yadav, and Tapan Kumar Mohanta. 2018. "Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens" Molecules 23, no. 3: 655. https://doi.org/10.3390/molecules23030655
APA StyleMohanta, Y. K., Nayak, D., Biswas, K., Singdevsachan, S. K., Abd_Allah, E. F., Hashem, A., Alqarawi, A. A., Yadav, D., & Mohanta, T. K. (2018). Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens. Molecules, 23(3), 655. https://doi.org/10.3390/molecules23030655