Antiproliferative and Antimicrobial Activities of Selected Bryophytes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Antiproliferative Assay
4.3. Antimicrobial Assay
4.4. Phytochemical Characterisation of the Extracts
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Stewart, B.W.; Wild, C.P. World Cancer Report; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Paul, G.G.; Gordon, M.C.; David, J.N. Plant Natural Products in Anticancer Drug Discovery. Curr. Org. Chem. 2010, 14, 1781–1791. [Google Scholar] [CrossRef]
- Asakawa, Y. Liverworts-Potential Source of Medicinal Compounds. Med. Aromat. Plants 2012, 1. [Google Scholar] [CrossRef]
- Shaw, A.J. (Ed.) Bryophyte Biology; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521693226. [Google Scholar]
- Papp, B.; Erzberger, P.; Ódor, P.; Hock, Z.; Szövényi, P.; Szurdoki, E.; Tóth, Z. Updated Checklist And Red List of Hungarian Bryophytes—2010 Regional Red List. Stud. Bot. Hung. 2010, 41, 31–59. [Google Scholar]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Phytochemical and biological studies of bryophytes. Phytochemistry 2013, 91, 52–80. [Google Scholar] [CrossRef] [PubMed]
- McCleary, J.A.; Sypherd, P.S.; Walkington, D.L. Mosses as Possible Sources of Antibiotics. Science 1960, 131, 108. [Google Scholar] [CrossRef] [PubMed]
- McCleary, J.A.; Walkington, D.L. Mosses and Antibiosis. Rev. Bryol. Lichenol. 1966, 34, 309–314. [Google Scholar]
- Banerjee, R.D.; Sen, S.P. Antibiotic Activity of Bryophytes. Bryologist 1979, 82, 141–153. [Google Scholar] [CrossRef]
- Kim, S.-J.; Park, H.-R.; Park, E.; Lee, S.-C. Cytotoxic and Antitumor Activity of Momilactone B from Rice Hulls. J. Agric. Food Chem. 2007, 55, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-H.; Phipps, R.K.; Perry, N.B. Antimicrobial Chlorinated Bibenzyls from the Liverwort Riccardiamarginata. J. Nat. Prod. 2004, 67, 718–720. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.C.; Sim-Sim, M.; Barroso, J.G.; Pedro, L.G.; Santos, P.A.G.; Fontinha, S.S.; Schripsema, J.; Deans, S.G.; Scheffer, J.J.C. Composition of the Essential Oil From the Liverwort Marchesinia mackaii (Hook.) S. F. Gray Grown in Portugal. J. Essent. Oil Res. 2002, 14, 439–442. [Google Scholar] [CrossRef]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F.; Toyota, M.; Hashimoto, T.; Tori, M.; Fukuyama, Y.; Harinantenaina, L. Bryophytes: Bio- and Chemical Diversity, Bioactivity and Chemosystematics. Heterocycles 2009, 77, 99–150. [Google Scholar] [CrossRef]
- Shu, Y.-F.; Wei, H.-C.; Wu, C.-L. Sesquiterpenoids from liverworts Lepidozia vitrea and L. Fauriana. Phytochemistry 1994, 37, 773–776. [Google Scholar] [CrossRef]
- Asakawa, Y. Biologically active substances from bryophytes. In Bryophyte Development: Physiology and Biochemistry; Chopra, R.N., Bhatla, S.C., Eds.; CRC Press: Boca Raton, FL, USA, 1990; pp. 259–287. [Google Scholar]
- Scher, J.M.; Burgess, E.J.; Lorimer, S.D.; Perry, N.B. A cytotoxic sesquiterpene and unprecedented sesquiterpene-bisbibenzyl compounds from the liverwort Schistochila glaucescens. Tetrahedron 2002, 58, 7875–7882. [Google Scholar] [CrossRef]
- Harinantenaina, L.; Asakawa, Y. Chemical constituents of Malagasy liverworts, part II: Mastigophoric acid methyl ester of biogenetic interest from Mastigophora diclados (Lepicoleaceae Subf. Mastigophoroideae). Chem. Pharm. Bull. 2004, 52, 1382–1384. [Google Scholar] [CrossRef] [PubMed]
- Komala, I.; Ito, T.; Nagashima, F.; Yagi, Y.; Asakawa, Y. Cytotoxic, radical scavenging and antimicrobial activities of sesquiterpenoids from the Tahitian liverwort Mastigophora diclados (Brid.) Nees (Mastigophoraceae). J. Nat. Med. 2010, 64, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Scher, J.M.; Schinkovitz, A.; Zapp, J.; Wang, Y.; Franzblau, S.G.; Becker, H.; Lankin, D.C.; Pauli, G.F. Structure and Anti-TB Activity of Trachylobanes from the Liverwort Jungermannia exsertifolia ssp. cordifolia. J. Nat. Prod. 2010, 73, 656–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, A.; Mukherjee, A. Therapeutic potential of bryophytes and derived compounds against cancer. J. Acute Dis. 2015, 4, 236–248. [Google Scholar] [CrossRef]
- Toyota, M.; Tanimura, K.; Asakawa, Y. Cytotoxic 2,3-Secoaromadendrane-Type Sesquiterpenoids from the Liverwort Plagiochila ovalifolia. Planta Med. 1998, 64, 462–464. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; da S Bolzani, V.; Baj, N.; Gunatilaka, A.; Kingston, D. A DNA-Damaging Sesquiterpene and Other Constituents from Frullania nisquallensis. Planta Med. 1996, 62, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Stephen, D.L.; Nigel, B.P.; Elaine, J.B.; Foster, L.M. 1-Hydroxyditerpenes from Two New Zealand Liverworts, Paraschistochila pinnatifolia and Trichocolea mollissima. J. Nat. Prod. 1997, 60, 421–424. [Google Scholar] [CrossRef]
- Perry, N.B.; Burgess, E.J.; Tangney, R.S. Cytotoxic 8,9-secokaurane diterpenes from a New Zealand liverwort, Lepidolaena taylorii. Tetrahedron Lett. 1996, 37, 9387–9390. [Google Scholar] [CrossRef]
- Neves, M.; Morais, R.; Gafner, S.; Hostettmann, K. Three triterpenoids and one flavonoid from the liverwort Asterella blumeana grown in vitro. Phyther. Res. 1998, 12, S21–S24. [Google Scholar] [CrossRef]
- Huang, W.-J.; Wu, C.-L.; Lin, C.-W.; Chi, L.-L.; Chen, P.-Y.; Chiu, C.-J.; Huang, C.-Y.; Chen, C.-N. Marchantin A, a cyclic bis(bibenzyl ether), isolated from the liverwort Marchantia emarginata subsp. tosana induces apoptosis in human MCF-7 breast cancer cells. Cancer Lett. 2010, 291, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, F.; Kasai, W.; Kondoh, M.; Fujii, M.; Watanabe, Y.; Braggins, J.E.; Asakawa, Y. New ent-kaurene-type diterpenoids possessing cytotoxicity from the New Zealand liverwort Jungermannia species. Chem. Pharm. Bull. 2003, 51, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Xi, G.; Sun, B.; Jiang, H.; Kong, F.; Yuan, H.; Lou, H. Bisbibenzyl derivatives sensitize vincristine-resistant KB/VCR cells to chemotherapeutic agents by retarding P-gp activity. Bioorg. Med. Chem. 2010, 18, 6725–6733. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-Q.; Liao, Y.-X.; Qu, X.-J.; Yuan, H.-Q.; Li, S.; Qu, J.-B.; Lou, H.-X. Marchantin C, a macrocyclic bisbibenzyl, induces apoptosis of human glioma A172 cells. Cancer Lett. 2008, 262, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Qu, X.; Liao, Y.; Xie, C.; Cheng, Y.; Li, S.; Lou, H. Reversal effect of a macrocyclic bisbibenzyl plagiochin E on multidrug resistance in adriamycin-resistant K562/A02 cells. Eur. J. Pharmacol. 2008, 584, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, F.; Kondoh, M.; Uematsu, T.; Nishiyama, A.; Saito, S.; Sato, M.; Asakawa, Y. Cytotoxic and apoptosis-inducing ent-kaurane-type diterpenoids from the Japanese liverwort Jungermannia truncata NEES. Chem. Pharm. Bull. 2002, 50, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, F.; Kondoh, M.; Kawase, M.; Simizu, S.; Osada, H.; Fujii, M.; Watanabe, Y.; Sato, M.; Asakawa, Y. Apoptosis-Inducing Properties of ent-Kaurene-Type Diterpenoids from the Liverwort Jungermannia truncata. Planta Med. 2003, 69, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Kondoh, M.; Nagashima, F.; Suzuki, I.; Harada, M.; Fujii, M.; Asakawa, Y.; Watanabe, Y. Induction of Apoptosis by New ent-Kaurene-Type Diterpenoids Isolated from the New Zealand Liverwort Jungermannia Species. Planta Med. 2005, 71, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhu, C.; Yuan, H.; Li, B.; Gao, J.; Qu, X.; Sun, B.; Cheng, Y.; Li, S.; Li, X.; et al. Marchantin C, a novel microtubule inhibitor from liverwort with anti-tumor activity both in vivo and in vitro. Cancer Lett. 2009, 276, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Chandra, D.; Barh, A.; Pankaj; Pandey, R.K.; Sharma, I.P. Bryophytes: Hoard of remedies, an ethno-medicinal review. J. Tradit. Complement. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Catalano, S.; Marsili, A.; Morelli, I.; Pacchiani, M. Triterpenoids and fatty acids from some mosses. obtusifoliol from Racomitrium lanuginosum. Phytochemistry 1976. [Google Scholar] [CrossRef]
- Dembitsky, V.M. Lipids of bryophytes. Prog. Lipid Res. 1993, 32, 281–356. [Google Scholar] [CrossRef]
- Pejin, B.; Vujisic, L.; Sabovljevic, M.; Tesevic, V.; Vajs, V. Fatty acid chemistry of Atrichum undulatum and Hypnum andoi. Hem. Ind. 2012, 66, 207–209. [Google Scholar] [CrossRef]
- Jung, M.; Zinsmeister, H.D.; Geiger, H. New 3-Oxygenated and Tetraoxygenated Coumarin Glucosides from the Mosses Atrichum-Undulatum and Polytrichum-Formosum. Z. Naturforsch. C 1994, 49, 153. [Google Scholar]
- Sabovljevic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A.; Vujicic, M.; Pejin, B.; Sabovljevic, M. Comparison of extract bio-activities of in-situ and in vitro grown selected bryophyte species. Afr. J. Microbiol. Res. 2010, 4, 808–812. [Google Scholar]
- Nikolajeva, V.; Liepina, L.; Petrina, Z.; Krumina, G.; Grube, M.; Muiznieks, I. Antibacterial activity of extracts from some Bryophytes. Adv. Microbiol. 2012, 2, 345–353. [Google Scholar] [CrossRef]
- Jockovic, N.; Andrade, P.B.; Valentao, P.; Sabovljevic, M. HPLC-DAD of phenolics in bryophytes Lunularia cruciata, Brachytheciastrum velutinum and Kindbergia praelonga. J. Serbian Chem. Soc. 2008, 73, 1161–1167. [Google Scholar] [CrossRef]
- Singh, M.; Rawat, A.K.S.; Govindarajan, R. Antimicrobial activity of some Indian mosses. Fitoterapia 2007, 78, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Markham, K.R.; Given, D.R. The major flavonoids of an antarctic Bryum. Phytochemistry 1988, 27, 2843–2845. [Google Scholar] [CrossRef]
- Ryan, K.G.; Burne, A.; Seppelt, R.D. Historical ozone concentrations and flavonoid levels in herbarium specimens of the Antarctic moss Bryum argenteum. Glob. Chang. Biol. 2009. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.; Nath, V.; Sahu, V.; Rawat, A.K.S. Antibacterial activity of some bryophytes used traditionally for the treatment of burn infections. Pharm. Biol. 2011, 49, 526–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabovljevic, A.; Sokovic, M.; Sabovljevic, M.; Grubisic, D. Antimicrobial activity of Bryum argenteum. Fitoterapia 2006, 77, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Pejin, B.; Vujisic, L.; Sabovljevic, M.; Tesevic, V.; Vajs, V. An Insight into Fatty Acid Composition of Calliergonella cuspidata. Asian J. Chem. 2011, 23, 5161–5162. [Google Scholar]
- Pejin, B.; Bogdanovic-Pristov, J. ABTS Cation scavenging activity and total phenolic content of three moss species. Hem. Ind. 2012, 66, 723–726. [Google Scholar] [CrossRef]
- Klavina, L.; Springe, G.; Nikolajeva, V.; Martsinkevich, I.; Nakurte, I.; Dzabijeva, D.; Steinberga, I. Chemical composition analysis, antimicrobial activity and cytotoxicity screening of moss extracts (moss phytochemistry). Molecules 2015, 20, 17221–17243. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.H.; Cho, I.S.; Kim, S.J.; Nam, C.W.; Seo, J.T.; Yoo, D.L.; Kim, W.B.; Ryu, S.Y.; Lee, E.H.; Kim, M.Y.; et al. Phytochemical constituents of Climacium dendroides. J. Korean Soc. Appl. Biol. Chem. 2008, 51, 136–141. [Google Scholar]
- Veljic, M.; Tarbuk, M.; Martin, P.D.; Ciric, A.; Sokovic, M.; Marin, M. Antimicrobial Activity of Methanol Extracts of Mosses from Serbia. Pharm. Biol. 2008, 46, 871–875. [Google Scholar] [CrossRef]
- Freitag, P.; Mues, R.; Brill-Fess, C.; Stoll, M.; Zinsmeister, H.D.; Markham, K.R. Isoorientin 3′-O-sophoroside and 3′-O-neohesperidoside from the moss Plagiomnium affine. Phytochemistry 1986, 25, 669–671. [Google Scholar] [CrossRef]
- Basile, A.; Sorbo, S.; Lopez-Saez, J.A.; Castaldo Cobianchi, R.; López-Sáez, J.A.; Castaldo Cobianchi, R. Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW. (Bryophyta) and Raphanus sativus L. (Magnoliophyta). Phytochemistry 2003, 62, 1145–1151. [Google Scholar] [CrossRef]
- Anhut, S.; Biehl, J.; Seeger, T.; Mues, R.; Zinsmeister, H.D. Flavone-C-Glycosides from the Mosses Plagiomnium-Elatum and Plagiomnium-Cuspidatum. Z. Naturforsch. C 1992, 47, 654–660. [Google Scholar]
- Rampendahl, C.; Seeger, T.; Geiger, H.; Zinsmeister, H.D. The biflavonoids of Plagiomnium undulatum. Phytochemistry 1996, 41, 1621–1624. [Google Scholar] [CrossRef]
- Österdahl, B.-G. Chemical Studies on Bryophytes. 22. Flavonoid C-Glycosides of Mnium undulatum. Acta Chem. Scand. 1979, 33, 400–404. [Google Scholar] [CrossRef]
- Kang, S.J.; Kim, S.H.; Liu, P.; Jovel, E.; Towers, G.H.N. Antibacterial activities of some mosses including Hylocomium splendens from South Western British Columbia. Fitoterapia 2007, 78, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Toyota, M.; Takemoto, T.; Suire, C. Pinguisanin, pinguisanolide and β-pinguisenediol, three new pinguisane-type sesquiterpenes from Porella platyphylla. Phytochemistry 1979, 18, 1349–1353. [Google Scholar] [CrossRef]
- Buchanan, M.S.; Connolly, J.D.; Rycroft, D.S. Pinguisane and sacculatane terpenoids from the liverwort Porella platyphylla. Phytochemistry 1996, 43, 1249–1253. [Google Scholar] [CrossRef]
- Nilsson, E. Apigenin-6,8-di-C-glycoside from Porella platyphylla. Phytochemistry 1973, 12, 722–723. [Google Scholar] [CrossRef]
- Mues, R. Occurrence and absence of C-glycosylflavones in species of the liverwort genera Blepharostoma, Herbertus, Mastigophora, Porella, Ptilidium, and Trichocolea: An indication of taxonomic significance? J. Hattori Bot. Lab. 1982, 53, 271–281. [Google Scholar]
- Chiu, P.-L.; Patterson, G.W.; Fenner, G.P. Sterols of bryophytes. Phytochemistry 1985, 24, 263–266. [Google Scholar] [CrossRef]
- Marsili, A.; Morelli, I.; Iori, A.M. 21-Hopene and some other constituents of Pseudoscleropodium purum. Phytochemistry 1971. [Google Scholar] [CrossRef]
- Tosun, G.; Yayli, B.; Ozdemir, T.; Batan, N.; Bozdeveci, A.; Yayli, N.; Gonca, G.; Yayli, B.; Ozdemir, T.; Batan, N.; et al. Volatiles and Antimicrobial Activity of the Essential Oils of the Mosses Pseudoscleropodium purum, Eurhynchium striatum, and Eurhynchium angustirete Grown in Turkey. Rec. Nat. Prod. 2015, 9, 237–242. [Google Scholar]
- Marsili, A.; Morelli, I.; Bernardini, C.; Pacchiani, M. Constituents of some mosses. Phytochemistry 1972, 11, 2003–2005. [Google Scholar] [CrossRef]
- Huneck, S. Die inhaltsstoffe der laubmoose Abietinella abietina, Plagiothecium undulatum und Tortella inclinata. Phytochemistry 1971, 10, 3262–3283. [Google Scholar] [CrossRef]
- Bukvicki, D.; Veljic, M.; Sokovic, M.; Grujic, S.; Marin, P.D. Antimicrobial Activity of Methanol Extracts of Abietinella abietina, Neckera crispa, Platyhypnidium riparoides, Cratoneuron filicinum and Campylium protensum Mosses. Arch. Biol. Sci. 2012, 64, 911–916. [Google Scholar] [CrossRef]
- Chobot, V.; Kubicova, L.; Nabbout, S.; Jahodar, L.; Hadacek, F. Evaluation of antioxidant activity of some common mosses. Z. Naturforsch. C 2008, 63, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Croisier, E.; Rempt, M.; Pohnert, G. Survey of volatile oxylipins and their biosynthetic precursors in bryophytes. Phytochemistry 2010, 71, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Pejin, B.; Vujisic, L.; Sabovljevic, A.; Sabovljevic, M.; Tesevic, V.; Vajs, V. Fatty acids of some moss species from Germany. Asian J. Chem. 2011, 23, 5187–5188. [Google Scholar]
- Pejin, B.; Bogdanovic-Pristov, J.; Pejin, I.; Sabovljevic, M. Potential antioxidant activity of the moss Bryum moravicum. Nat. Prod. Res. 2013, 27, 900–902. [Google Scholar] [CrossRef] [PubMed]
- Vandekerkhove, O. The occurrence of flavonoids in the acrocarpous mosses. II. Luteolin from the sporophyte of Ceratodon purpureus (L.) Brid. Z. Pflanzenphysiol. 1978, 86, 279–281. [Google Scholar] [CrossRef]
- Minto, R.E.; Blacklock, B.J. Biosynthesis and function of polyacetylenes and allied natural products. Prog. Lipid Res. 2008, 47, 233–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-N.; Bashyal, B.P.; Wijeratne, E.M.K.; U’Ren, J.M.; Liu, M.X.; Gunatilaka, M.K.; Arnold, A.E.; Gunatilaka, A.A.L. Smardaesidins A-G, isopimarane and 20-nor-isopimarane diterpenoids from Smardaea sp., a fungal endophyte of the moss Ceratodon purpureus. J. Nat. Prod. 2011, 74, 2052–2061. [Google Scholar] [CrossRef] [PubMed]
- Chobot, V.; Kubicova, L.; Nabbout, S.; Jahodar, L.; Vytlacilova, J. Antioxidant and free radical scavenging activities of five moss species. Fitoterapia 2006, 77, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Weitz, S.; Ikan, R. Bracteatin from the moss Funaria hygrometrica. Phytochemistry 1977, 16, 1108–1109. [Google Scholar] [CrossRef]
- Savaroglu, F.; Ilhan, S.; Filik-Iscen, C. An evaluation of the antimicrobial activity of some Turkish mosses. J. Med. Plants Res. 2011, 5, 3286–3292. [Google Scholar]
- Seeger, T.; Geiger, H.; Zinsmeister, H.D.; Rozdzinski, W. Biflavonoids from the Moss Homalothecium lutescens. Phytochemistry 1993, 34, 295–296. [Google Scholar] [CrossRef]
- Ucuncu, O.; Cansu, T.B.; Ozdemir, T.; Karaoglu, S.A.; Yayli, N. Chemical composition and antimicrobial activity of the essential oils of mosses (Tortula muralis Hedw., Homalothecium lutescens (Hedw.) H. Rob., Hypnum cupressiforme Hedw., and Pohlia nutans (Hedw.) Lindb.) from Turkey. Turk. J. Chem. 2010, 34, 825–834. [Google Scholar] [CrossRef]
- Cansu, T.B.; Yayli, B.; Ozdemir, T.; Batan, N.; Alpay Karaoglu, S.; Yayli, N. Antimicrobial activity and chemical composition of the essential oils of mosses (Hylocomium splendens (Hedw.) Schimp. and Leucodon sciuroides (Hedw.) Schwagr.) growing in Turkey. Turk. J. Chem. 2013, 37, 213–219. [Google Scholar] [CrossRef]
- Dulger, B.; Yayintas, O.T.; Gonuz, A. Antimicrobial activity of some mosses from Turkey. Fitoterapia 2005, 76, 730–732. [Google Scholar] [CrossRef] [PubMed]
- Özdemır, T.; Yaylı, N.; Cansu, T.B.; Volga, C. Essential oils in mosses (Brachythecium salebrosum, Eurhynchium pulchellum and Plagiomnium undulatum) grown in Turkey. Asian J. Chem. 2009, 21, 5505–5509. [Google Scholar]
- Vandekerkhove, O. Über die Verbreitung von Flavonoiden bei pleurokarpen Laubmoosen II. Apigenin and Apigenin-7-rhamnoglucosid bei Pleurozium schreberi (Willd.) Mitt. Z. Pflanzenphysiol. 1980, 100, 369–372. [Google Scholar] [CrossRef]
- Abay, G.; Altun, M.; Karakoc, O.C.; Gul, F.; Demirtas, I. Insecticidal Activity of Fatty Acid-Rich Turkish Bryophyte Extracts against Sitophilus granarius (Coleoptera: Curculionidae). Comb. Chem. High Throughput Screen. 2013, 16, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, F.; Momosaki, S.; Watanabe, Y.; Toyota, M.; Huneck, S.; Asakawa, Y. Terpenoids and aromatic compounds from six liverworts. Phytochemistry 1996, 41, 207–211. [Google Scholar] [CrossRef]
- Tosun, A.; Akkol, E.K.; Suntar, I.; Kiremit, H.O.; Asakawa, Y. Phytochemical investigations and bioactivity evaluation of liverworts as a function of anti-inflammatory and antinociceptive properties in animal models. Pharm. Biol. 2013, 51, 1008–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeger, T.; Zinsmeister, H.D.; Geiger, H. The biflavonoid pattern of Rhytidiadelphus squarrosus (Hedw.) Warnst. Z. Naturforsch. C 1990, 45, 583–586. [Google Scholar]
- Li, L.; Wu, J.; Han, T.; Qin, L. Chemical composition of the essential oil and ether extract from Rhytidium rugosum. Chem. Nat. Compd. 2008, 44, 797–799. [Google Scholar] [CrossRef]
- Réthy, B.; Csupor-Löffler, B.; Zupkó, I.; Hajdú, Z.; Máthé, I.; Hohmann, J.; Rédei, T.; Falkay, G. Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part I. Phyther. Res. 2007, 21, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the extracts are available from the authors. |
Species | Extract A | Extract B | ||||||||||
HeLa | A2780 | T47D | HeLa | A2780 | T47D | |||||||
10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | |
Abietinella abietina | <25 | <25 | <25 | <25 | <25 | 32.26 | 30.00 | 38.62 | <25 | <25 | 42.99 | 48.97 |
Amblystegium serpens | <25 | 46.13 | 29.58 | 49.94 | 49.15 | 70.15 | 61.93 | 70.78 | 53.46 | 65.35 | 70.15 | 74.76 |
Anomodon viticulosus | 26.96 | 50.72 | <25 | <25 | <25 | 27.81 | 27.04 | 49.35 | 32.35 | 53.87 | <25 | 36.32 |
Atrichum undulatum | <25 | <25 | <25 | <25 | <25 | 41.66 | 59.93 | 76.26 | 37.78 | 64.28 | 64.11 | 65.26 |
Barbula unguiculata | 45.74 | 63.27 | <25 | <25 | <25 | 34.14 | 65.46 | 75.11 | <25 | 47.47 | 44.20 | 53.16 |
Brachytheciastrum velutinum | 31.92 | 64.96 | <25 | 35.58 | <25 | 41.01 | 34.43 | 55.09 | <25 | 61.29 | 34.43 | 51.51 |
Brachythecium rutabulum | 53.49 | 61.64 | 25.04 | 34.93 | 45.40 | 55.36 | 51.95 | 53.89 | <25 | 35.30 | 46.79 | 54.92 |
Bryum argenteum | 47.79 | 80.09 | <25 | <25 | <25 | <25 | 36.11 | 54.52 | <25 | <25 | 35.95 | 41.26 |
Bryum caespiticium | 30.37 | 57.84 | <25 | <25 | <25 | 48.80 | 48.64 | 59.57 | <25 | <25 | 28.58 | 48.17 |
Bryum moravicum | <25 | 38.27 | <25 | <25 | <25 | 29.73 | 46.72 | 62.09 | 27.34 | 48.22 | 40.64 | 59.69 |
Calliergonella cuspidata | <25 | <25 | <25 | <25 | <25 | <25 | <25 | 32.79 | <25 | <25 | 39.02 | 49.49 |
Ceratodon purpureus | <25 | 26.67 | <25 | 32.49 | <25 | 28.88 | 30.67 | 42.00 | <25 | 35.18 | <25 | 28.48 |
Cirriphyllum piliferum | 51.34 | 67.39 | <25 | 42.24 | <25 | 31.19 | <25 | 28.32 | <25 | <25 | <25 | <25 |
Climacium dendroides | 52.79 | 63.79 | <25 | 32.63 | <25 | <25 | 56.79 | 64.89 | <25 | <25 | 55.46 | 57.16 |
Dicranum tauricum | <25 | <25 | <25 | 28.55 | <25 | 31.60 | 33.14 | 51.60 | <25 | 48.94 | 35.38 | 54.93 |
Encalypta streptocarpa | 76.66 | 61.32 | 34.04 | 87.90 | 25.72 | 44.08 | 54.46 | 72.90 | 73.72 | 80.12 | 33.22 | 33.27 |
Funaria hygrometrica | <25 | 39.84 | <25 | <25 | <25 | 36.21 | 48.44 | 62.88 | 25.66 | 51.06 | 46.44 | 53.18 |
Homalothecium lutescens | <25 | 37.79 | <25 | 31.59 | <25 | 30.29 | <25 | <25 | <25 | <25 | 28.74 | 30.64 |
Homalothecium philippeanum | 38.34 | 63.66 | <25 | 40.77 | 37.39 | 48.19 | 46.93 | 73.77 | 33.60 | 74.93 | 63.90 | 62.51 |
Hygroamblystegium tenax | <25 | 51.08 | <25 | 26.53 | 28.34 | 43.75 | 36.99 | 43.86 | <25 | <25 | 49.19 | 55.28 |
Leskea polycarpa | <25 | 29.00 | <25 | 37.18 | <25 | 25.71 | <25 | 31.32 | <25 | 35.02 | <25 | 37.07 |
Leucodon sciuroides | 26.00 | 43.88 | <25 | <25 | <25 | 34.43 | 42.48 | 61.74 | <25 | <25 | 28.88 | 39.63 |
Neckera besseri | 54.29 | 68.98 | <25 | <25 | 33.72 | 38.33 | 69.13 | 83.28 | <25 | 76.48 | 50.07 | 68.26 |
Orthotrichum diaphanum | <25 | 28.22 | <25 | <25 | <25 | <25 | 40.19 | 51.75 | 25.04 | 50.65 | 35.43 | 40.61 |
Oxyrrhynchium hians | <25 | 50.41 | <25 | 42.22 | 26.03 | 46.46 | 25.65 | 39.79 | <25 | 28.61 | 34.01 | 46.64 |
Paraleucobryum longifolium | <25 | 27.34 | <25 | <25 | <25 | <25 | 78.54 | 83.93 | 63.23 | 78.03 | 46.84 | 56.87 |
Plagiomnium affine | <25 | 41.79 | <25 | <25 | <25 | <25 | 42.41 | 55.53 | <25 | 42.11 | 42.49 | 56.05 |
Plagiomnium cuspidatum | 39.13 | 39.44 | 26.49 | 97.60 | <25 | 86.33 | <25 | <25 | <25 | 56.15 | <25 | 36.11 |
Plagiomnium rostratum | 26.01 | 60.72 | <25 | 44.99 | 28.68 | 36.26 | 46.52 | 60.22 | 43.23 | 67.06 | 45.56 | 54.59 |
Plagiomnium undulatum | 35.77 | 33.42 | <25 | 26.07 | 29.36 | 43.49 | <25 | <25 | <25 | 33.21 | <25 | 32.10 |
Pleurozium schreberi | 61.85 | 93.41 | 41.15 | 37.25 | <25 | 31.65 | 60.49 | 74.30 | <25 | 36.89 | 29.26 | 43.95 |
Pohlia nutans | <25 | <25 | <25 | <25 | <25 | <25 | 29.51 | 49.60 | <25 | <25 | <25 | <25 |
Polytrichastrum formosum | <25 | 34.69 | <25 | <25 | <25 | 28.85 | <25 | 34.18 | <25 | <25 | <25 | <25 |
Porella platyphylla | 31.89 | 79.22 | 48.22 | 83.33 | 48.94 | 64.37 | 35.69 | 47.36 | <25 | 41.93 | 29.33 | 47.86 |
Pseudoleskeella nervosa | 68.43 | 75.64 | <25 | <25 | 38.94 | 43.69 | 61.71 | 71.88 | <25 | 36.28 | 42.77 | 45.50 |
Pseudoscleropodium purum | <25 | 34.16 | <25 | <25 | <25 | <25 | 62.06 | 70.27 | <25 | 28.01 | 53.88 | 54.58 |
Rhytidiadelphus squarrosus | <25 | <25 | <25 | <25 | <25 | <25 | 43.99 | 53.66 | <25 | <25 | 40.31 | 51.65 |
Rhytidium rugosum | 32.34 | 56.50 | <25 | 36.29 | <25 | 25.80 | 30.20 | 39.48 | <25 | <25 | <25 | 27.52 |
Schistidium crassipilum | <25 | 33.32 | <25 | <25 | <25 | <25 | 27.52 | 53.09 | <25 | 72.36 | <25 | 38.36 |
Syntrichia ruralis | <25 | <25 | <25 | <25 | <25 | <25 | 27.05 | 33.02 | <25 | <25 | 30.49 | 39.25 |
Thamnobryum alopecurum | 29.98 | 57.12 | <25 | 26.75 | <25 | <25 | 34.35 | 53.87 | <25 | 51.91 | <25 | <25 |
Thuidium assimile | <25 | <25 | <25 | 29.18 | <25 | <25 | 43.36 | 57.09 | 34.62 | 58.86 | 65.70 | 56.12 |
Species | Extract C | Extract D | ||||||||||
HeLa | A2780 | T47D | HeLa | A2780 | T47D | |||||||
10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | 10 µg/mL | 30 µg/mL | |
Abietinella abietina | 35.25 | 52.48 | <25 | <25 | 38.22 | 49.01 | <25 | <25 | <25 | <25 | <25 | 30.04 |
Amblystegium serpens | 33.19 | 44.83 | <25 | 26.71 | 48.58 | 58.34 | <25 | <25 | <25 | <25 | 27.91 | 35.73 |
Anomodon viticulosus | <25 | 34.02 | <25 | <25 | <25 | 27.47 | <25 | <25 | <25 | <25 | <25 | <25 |
Atrichum undulatum | 29.14 | 41.65 | <25 | 46.14 | <25 | 37.95 | 33.37 | 36.14 | <25 | <25 | <25 | <25 |
Barbula unguiculata | 29.68 | 35.91 | <25 | <25 | <25 | 27.68 | 27.92 | 27.4 | <25 | <25 | <25 | <25 |
Brachytheciastrum velutinum | <25 | 32.09 | <25 | <25 | 27.26 | 34.7 | 34.9 | 34.68 | <25 | <25 | 38.53 | 38.46 |
Brachythecium rutabulum | <25 | 34.26 | <25 | <25 | <25 | 34.81 | <25 | <25 | <25 | <25 | <25 | <25 |
Bryum argenteum | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Bryum caespiticium | <25 | 35.57 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Bryum moravicum | <25 | 37.94 | <25 | <25 | <25 | 26.51 | <25 | <25 | <25 | <25 | <25 | <25 |
Calliergonella cuspidata | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Ceratodon purpureus | <25 | <25 | <25 | <25 | <25 | 31.86 | <25 | <25 | <25 | <25 | <25 | <25 |
Cirriphyllum piliferum | 28.18 | 42.07 | <25 | <25 | <25 | 26.85 | <25 | 32.27 | <25 | <25 | <25 | <25 |
Climacium dendroides | <25 | <25 | <25 | <25 | <25 | 27.68 | <25 | 27.42 | <25 | <25 | 27.38 | 37.52 |
Dicranum tauricum | <25 | 28.29 | <25 | <25 | 33.52 | 49.97 | 29.75 | 37.11 | <25 | <25 | 45.31 | 47.21 |
Encalypta streptocarpa | 28.01 | 39.61 | <25 | <25 | <25 | 32.5 | 27.05 | <25 | <25 | <25 | <25 | <25 |
Funaria hygrometrica | <25 | <25 | <25 | <25 | 42.27 | 48.22 | 25.11 | 38.47 | <25 | <25 | 35.4 | 45.16 |
Homalothecium lutescens | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | 27.6 |
Homalothecium philippeanum | <25 | 33.51 | <25 | 28.04 | 43.32 | 51 | <25 | <25 | <25 | <25 | 33.68 | 41.04 |
Hygroamblystegium tenax | 26.66 | 38.22 | <25 | <25 | 52.69 | 55.03 | <25 | 31.71 | <25 | <25 | 37.34 | 40.38 |
Leskea polycarpa | 25.62 | 31.09 | <25 | <25 | <25 | 34.12 | <25 | <25 | <25 | <25 | <25 | <25 |
Leucodon sciuroides | <25 | 29.98 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Neckera besseri | 37.13 | 41.25 | <25 | <25 | 54.5 | 55.63 | <25 | <25 | <25 | <25 | 32.28 | 43.28 |
Orthotrichum diaphanum | <25 | 40.79 | <25 | <25 | <25 | 28.2 | <25 | <25 | <25 | <25 | <25 | <25 |
Oxyrrhynchium hians | <25 | <25 | <25 | <25 | <25 | 29.53 | <25 | <25 | <25 | <25 | <25 | <25 |
Paraleucobryum longifolium | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Plagiomnium affine | 42.04 | 50.67 | <25 | 26.86 | 53.3 | 57.53 | <25 | <25 | <25 | <25 | <25 | <25 |
Plagiomnium cuspidatum | 35.49 | 46.35 | <25 | <25 | 33.53 | 45.9 | <25 | <25 | <25 | <25 | <25 | 27.79 |
Plagiomnium rostratum | 40.44 | 51.65 | <25 | 42.42 | 33.23 | 45.84 | <25 | <25 | <25 | <25 | <25 | <25 |
Plagiomnium undulatum | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Pleurozium schreberi | <25 | 32.99 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Pohlia nutans | <25 | 32.63 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Polytrichastrum formosum | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Porella platyphylla | <25 | 41.69 | <25 | <25 | <25 | 27.66 | <25 | <25 | <25 | <25 | <25 | <25 |
Pseudoleskeella nervosa | 60.51 | 65.03 | <25 | 26.27 | 49.89 | 54.5 | <25 | <25 | <25 | <25 | <25 | 25.43 |
Pseudoscleropodium purum | <25 | 28.06 | <25 | <25 | <25 | 31.29 | <25 | 29.89 | <25 | <25 | 32.22 | 40.05 |
Rhytidiadelphus squarrosus | <25 | 26.56 | <25 | <25 | <25 | 33.78 | <25 | <25 | <25 | <25 | <25 | <25 |
Rhytidium rugosum | <25 | 33.67 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Schistidium crassipilum | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 |
Syntrichia ruralis | <25 | <25 | <25 | <25 | <25 | <25 | 30.83 | 41.17 | <25 | <25 | 57.42 | 59.35 |
Thamnobryum alopecurum | <25 | 31.9 | <25 | <25 | <25 | <25 | 26.26 | 40.68 | <25 | <25 | <25 | <25 |
Thuidium assimile | <25 | <25 | <25 | 34.23 | 29.78 | 43.24 | <25 | <25 | <25 | <25 | 32.28 | 44.58 |
Species | Extract | MRSA | S. aureus | S. epidermidis | B. subtilis | S. pyogenes | S. pneumoniae | S. agalactiae | M. catarrhalis |
---|---|---|---|---|---|---|---|---|---|
ATCC 43300 | ATCC 29213 | ATCC 12228 | ATCC 6633 | ATCC 19615 | ATCC 49619 | ATCC 13813 | ATCC 43617 | ||
Amblystegium serpens | B | — | — | — | — | — | — | — | 9.0 |
Brachythecium rutabulum | B | 9.0 | 9.0 | — | — | — | — | — | — |
Calliergonella cuspidata | A | — | 7.3 | — | — | — | — | — | — |
B | — | 7.0 | — | — | — | — | — | — | |
Cirriphyllum piliferum | B | — | — | — | — | — | 7.0 | — | — |
Climacium dendroides | A | — | 7.3 | — | — | — | — | — | — |
Dicranum tauricum | B | — | — | — | — | — | 8.0 | — | — |
Oxyrrhynchium hians | A | 8.6 | 8.6 | — | — | — | — | — | — |
B | — | 8.0 | — | — | — | — | — | — | |
Paraleucobryum longifolium | B | 9.6 | 9.6 | — | — | 11.6 | — | — | — |
Plagiomnium affine | B | — | — | — | 8.0 | — | 8.5 | — | — |
Plagiomnium cuspidatum | A | 11.3 | 10.7 | 9.0 | 9.0 | 10.0 | 12.0 | 10.0 | 10.0 |
B | 7.6 | 7.6 | — | — | — | — | — | — | |
Plagiomnium undulatum | A | 7.0 | 8.0 | — | — | — | — | — | — |
B | — | 8.0 | — | — | — | — | — | — | |
Pseudoscleropodium purum | A | — | 7.3 | — | — | — | — | — | — |
Rhytidium rugosum | B | — | — | — | 7.5 | — | 8.0 | — | 7.5 |
Schistidium crassipilum | B | 8.0 | 7.0 | — | 9.0 | — | 11.5 | — | 7.7 |
Species (Family) | Bioactivity | |
---|---|---|
Abietinella abietina (Hedw.) M. Fleisch. (Thuidiaceae) | C | Fatty acids (main components: oleic, palmitic, and linoleic acid) [67]; sterols (sitosterol, stigmasterol, and campesterol) [67,68] |
B | Antimicrobial effect with MIC (minimum inhibitory concentration) values of 1.25–10 mg/mL against Gram-positive (Staphylococcus aureus, Micrococcus flavus, and Bacillus cereus) and Gram-negative (Escherichia coli and Salmonella typhimurium) bacteria and fungi (Trichoderma viride, Penicillium funiculosum, Penicillium ochrochloron, Aspergillus flavus, A. niger, and A. fumigatus) [69] | |
Anomodon viticulosus (Hedw.) Hook. & Taylor (Thuidiaceae) | C | Fatty acids (linoleic acid, nonadecanoic acid, palmitic acid, and behenic acid) [37,38] |
Atrichum undulatum (Hedw.) P. Beauv. (Polytrichaceae) | C | Sterols (major: 24-methylcholesterol and 24-ethyl-22-dehydrocholesterol) [38]; carotenoids (β-carotene, lutein, violaxanthin, and neoxanthin) [38]; fatty acids (major: linoleic acid, α -linolenic acid, palmitic acid, oleic acid, and arachidonic acid) [39]; coumarin glycosides [40] |
B | Antimicrobial effect of DMSO extracts with MIC values of 0.5–3.0 mg/mL against eight bacterial species (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Enterobacter cloacae, Listeria monocytogenes, Bacillus cereus, Micrococcus flavus, and Staphylococcus aureus) [41]; aqueous extract active against Staphylococcus aureus [42]; weak antioxidant activity in vitro [70] | |
Brachythecium rutabulum (Hedw.) Schimp. (Brachytheciaceae) | C | Polyunsaturated fatty acids [71] |
B | The EtOH extract active against the bacteria Micrococcus luteus, Bacillus subtilis, Bacillus cereus, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhimurium, and Streptococcus pneumoniae and the fungi Candida albicans, Cryptococcus albidus, Trichophyton rubrum, Aspergillus niger, and Aspergillus flavus with MIC values of 0.19–1.56 μg/mL [44]; antioxidant activity [50] | |
Brachytheciastrum velutinum (Hedw.) Ignatov & Huttunen (Brachytheciaceae) | C | Phenolic acids (4-O-caffeoylquinic, 5-O-caffeoylquinic, and caffeic and ellagic acids) and flavonoids (apigenin-7-O-glucoside, luteolin, and apigenin) [43] |
Bryum argenteum Hedw. (Bryaceae) | C | Major flavonoid glycosides in Antarctic B. argenteum samples apigenin and luteolin glucosides and their 6″-malonyl esters, and the 7-O-glucosides of 8-hydroxyapigenin and 8-hydroxyluteolin [45]; luteolin and apigenin content between 0.1 and 0.6 mg/g [46] |
B | In vitro antimicrobial effects of different extracts against Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Enterobacter aerogenes, and Proteus mirabilis. Highest activity against E. coli and S. aureus (MICs of 30–70 μg/mL) [47]; no activity of different extracts against Staphylococcus aureus, Salmonella pullorum, Phytomonas phaseoli, Candida albicans, Salmonella paratyphi, Micrococcus flavus, Shigella flexneri, Micrococcus rubens, or Streptococcus pyogenes [8]; an EtOH extract exerted antimicrobial activity on Escherichia coli, Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Aspergillus niger, Penicilliumo chrochloron, Candida albicans, and Trichophyton mentagrophyes with MICs of 0.10–0.41 mg/mL [48] | |
Bryum moravicum Podp. (Bryaceae) | C | High α-linolenic acid content [72] |
B | Moderate antioxidant activity in vitro [73] | |
Calliergonella cuspidata (Hedw.) Loeske (Hypnaceae) | C | Fatty acids (major: palmitic acid, stearic acid, oleic acid, and linolenic acid [49] |
B | Weak antioxidant activity in vitro [50] | |
Ceratodon purpureus (Hedw.) Brid. (Ditrichaceae) | C | Flavonoid (lutelolin) [74]; polyacetylenes [75]; fatty acids (Ω-3 and -6) [38]; five new isopimarane diterpenes—smardaesidins A–E—and two new 20-nor-isopimarane diterpenes—smardaesidins F and G—together with sphaeropsidins A and C–F were isolated from an endophytic fungal strain, Smardaea sp. AZ0432, obtained from Ceratodon purpureus [76] |
B | A MeOH extract with moderate effect against methicillin-resistant Staphylococcus aureus [59]; moderate antioxidant activity of the EtOH extract, independent from the total phenolic content [77]; sphaeropsidin A and D cytotoxic on different cancer cell lines, and sphaeropsidin A inhibited the migration of metastatic breast adenocarcinoma (MDA-MB-231) cells at subcytotoxic concentration [76] | |
Climacium dendroides (Hedw.) F. Weber & D. Mohr(Climaciaceae) | C | Sterols (major: sitosterol, stigmasterol, and campesterol) [67]; organic acids and flavonoid (apigenin) [51]; chromenone derivatives and flavonoids (kaempferol and quercetin glycosides) [52] |
B | EtOH extract with weak antiproliferative effect on different animal and human cancer cell lines and remarkable antimicrobial activity against Escherichia coli, Bacillus cereus, and Staphylococcus aureus [51] | |
Funaria hygrometrica Hedw. (Funariaceae) | C | Bracteatin, as the first higher plant pigment in mosses, was isolated from this species [78] |
B | Different extracts had weak antimicrobial activities against Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus [79] | |
Homalothecium lutescens (Hedw.) H. Rob. (Brachytheciaceae) | C | Flavonoids (3′,3″′-binaringenin and the newly discovered 2,3-dihydro 3′,3″′-biapigenin) [80] |
B | The essential oil was active against the fungi Candida albicans and Saccharomyces cerevisiae [81] | |
Homalothecium philippeanum (Spruce) Schimp. (Brachytheciaceae) | B | MeOH extract had antibacterial activity against Staphylococcus aureus, Escherichia coli, Micrococcus flavus, and Salmonella typhimurium (MICs of 5 mg/mL) and antifungal activity against Aspergillus niger, A. ochraceus, A. versicolor, Penicillium funiculosum, Trichoderma viride, and Candida albicans (MICs of 0.5–2.5 mg/mL) [53] |
Leucodon sciuroides (Hedw.) Schwägr. (Leucodontaceae) | C | Oxylipins (oct-1-en-3-ol, (Z)-octa-1,5-dien-3-ol, (Z)-non-2-enal, (E)-non-2-enal, (Z)-non-3-enal, and 16-(2E,6Z)-nona-2,6-dienal); essential oil with nonanal and heptanal as main constituents [82] |
B | The MeOH extract had weak to moderate antimicrobial effect against the bacteria Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, Streptococcus pyogenes, and Mycobacterium smegmatis and the fungi Candida albicans, Rhodotorula rubra, and Kluyveromyces fragilis [83]; essential oil showed activity against Candida albicans [82] | |
Plagiomnium affine (Blandow ex Funck) T. J. Kop. (Mniaceae) | C | Flavonoids (apigenin, vitexin [55], isoorientin, isoorientin 3′-O-sophoroside, and isoorientin 3′-O-neohesperidoside [54]) |
Plagiomnium cuspidatum (Hedw.) T. J. Kop. (Mniaceae) | C | Flavonoids (saponarine [55]; the 6-C-glucosyl-7-O-glucosides of apigenin, luteolin, and chrysoeriol; and apigenin-7-O-neohesperidoside [56]) and the new dihydrobiflavone 2,3-dihydro-5′-hydroxyamentoflavone, 2,3-dihydro-5′,3′″-dihydroxyamentoflavone, and 2,3-dihydro-5′-hydroxyrobustaflavone [56] |
Plagiomnium undulatum (Hedw.) T. J. Kop. (Mniaceae) | C | Flavonoids (the biflavonoids 2,3-dihydro-5′-hydroxyrobustaflavone and 2,3-dihydro-5′-hydroxyamentoflavone; the new 3′″-desoxydicranolomin, 2,3-dihydro-3′″-desoxydicranolomin, and 2,3-dihydro-5′,3′″-dihydroxyrobustaflavone [57]; the flavone di-C-glycosides schaftoside, isoschaftoside, neoschaftoside, neosisoschaftoside, vicenin-2, and a chrysoeriol 6-C-arabinosyl-8-C-hexoside [58]); essential oil with sesquiterpene hydrocarbons, including γ-elemene as major constituent [84] |
Pleurozium schreberi (Willd. ex Brid.) Mitt. Hylocomiaceae | C | Apigenin and apigenin-7-rhamnoglucoside [85] |
B | The MeOH extract had weak to moderate activity against Staphylococcus aureus, methicilline-resistant Staphylococcus aureus, Bacillus subtilis, and Enterococcus faecalis [59] The MeOH extract was moderately active against Staphylococcus aureus, S. epidermidis, Micrococcus flavus, Bacillus subtilis, Escherichia coli, Enterobacter cloacae, and Salmonella typhimurium (MICs of 10-25 mg/mL) and had strong antifungal activity (MIC of 0.5 mg/mL and minimal bactericidal concentration of 2.5–5.0 mg/mL) against Aspergillus niger, A. ochraceus, A. versicolor, A. flavus, Penicillium funiculosum, Trichoderma viride, and Candida albicans [53]; the EtOH extract had weak antioxidant activities in different test systems [70] | |
Pohlia nutans (Hedw.) Lindb. (Bryaceae) | C | Essential oil with nonanal and 2E-tetradecen-1-ol as major constituents [81] |
Polytrichastrum formosum (Hedw.) G. L. Sm. (Polytrichaceae) | B | Insecticidal activity of the hexane extract against Sitophilus granaries [86] |
Porella platyphylla (L.) Pfeiff. (Porellaceae) | C | Three new pinguisane-type sesquiterpenes (pinguisanin, pinguisanolide, and β-pinguisenediol) and the previously known deoxopinguisone [60]; a new pinguisanoic acid sesquiterpenoid derivative—methyl 2a-hydroxy-6-oxo-11-pinguisanoate—and a new sacculatane diterpenoid hemiacetal—(5S,9S, 10R,13S)-ll,13-epoxy-8(12),17-sacculatadiene-13β,15ζ-diol[(13S)-15 ζ-hydroxysacculaporellin]—as well as three known pinguisanes (pinguisanin, β-pinguisenediol, and porellapinguisanolide) and the known sacculataneperrottetianal B [61]; flavonoids (isovitexin, saponarin, apigenin-6,8-di-C-glycoside [62], schaftoside, vicenin, and isovitexin [63]); perrottetianal B, phytol, and stigmasterol l [87] |
B | Antinociceptive effect of the ether extract (main components: pinguisanin and spiropinguisanine) [88] | |
Pseudoscleropodium purum (Hedw.) M. Fleisch.(Brachytheciaceae) | C | Sterols (24-methyl-5-cholestenol, 24-ethyl-5-cholestenol, and 24-ethyl-5,22-cholestadienol) [64], cyclolaudenol, 31-norcyclolaudenol, campesterol, stigmasterol, and β-sitosterol; the triterpenes hopene, 22(29)-hopene, and ursolic acid [65]; essential oil with the major components α-pinene, β-longipinene, and heptanal [66] |
Rhytidiadelphus squarrosus (Hedw.) Warnst. (Hylocomiaceae) | C | Sterols (24-methyl-5-cholestenol, 24-ethyl-5-cholestenol, and 24-ethyl-5,22-cholestadienol) [64]; flavonoids (the new biflavone 5′-hydroxyrobusta-flavone and the biflavonoids 5′-hydroxyamentoflavone,5′,3′″-dihydroxyamento-flavone and 2,3-dihydro-5′-hydroxyamentoflavone) [89] |
B | The EtOH extract inhibited the growth of Staphylococcus aureus in vitro [89] | |
Rhytidium rugosum (Hedw.) Kindb. (Hylocomiaceae) | C | The major compounds of the essential oil were n-hexadecanoic acid, linolenic acid, and cis-9- and cis-12-octadecadienoic acid. In the diethyl ether extract, ethyl oleate and τ-sitosterol were the most abundant [90] |
B | The MeOH extract exhibited antibacterial effect on Staphylococcus aureus and Micrococcus flavus (MIC of 5 mg/mL) and antifungal activity against Aspergillus niger, A. ochraceus, A. versicolor, A. flavus, Penicillium funiculosum, Trichoderma viride, and Candida albicans with MIC values of 0.5–2.5 mg/mL [53]. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vollár, M.; Gyovai, A.; Szűcs, P.; Zupkó, I.; Marschall, M.; Csupor-Löffler, B.; Bérdi, P.; Vecsernyés, A.; Csorba, A.; Liktor-Busa, E.; et al. Antiproliferative and Antimicrobial Activities of Selected Bryophytes. Molecules 2018, 23, 1520. https://doi.org/10.3390/molecules23071520
Vollár M, Gyovai A, Szűcs P, Zupkó I, Marschall M, Csupor-Löffler B, Bérdi P, Vecsernyés A, Csorba A, Liktor-Busa E, et al. Antiproliferative and Antimicrobial Activities of Selected Bryophytes. Molecules. 2018; 23(7):1520. https://doi.org/10.3390/molecules23071520
Chicago/Turabian StyleVollár, Martin, András Gyovai, Péter Szűcs, István Zupkó, Marianna Marschall, Boglárka Csupor-Löffler, Péter Bérdi, Anikó Vecsernyés, Attila Csorba, Erika Liktor-Busa, and et al. 2018. "Antiproliferative and Antimicrobial Activities of Selected Bryophytes" Molecules 23, no. 7: 1520. https://doi.org/10.3390/molecules23071520
APA StyleVollár, M., Gyovai, A., Szűcs, P., Zupkó, I., Marschall, M., Csupor-Löffler, B., Bérdi, P., Vecsernyés, A., Csorba, A., Liktor-Busa, E., Urbán, E., & Csupor, D. (2018). Antiproliferative and Antimicrobial Activities of Selected Bryophytes. Molecules, 23(7), 1520. https://doi.org/10.3390/molecules23071520