Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects
Abstract
:1. Introduction
2. Insulin Release Mechanism
Metabolic Events and Electrical Activity in β Cells
3. ATP Sensitive Potassium (KATP) Channels and Insulin Secretion
Inhibitors of KATP Channel Activity
4. Nav Channels and Insulin Secretion
5. Cav Channels and Insulin Secretion
6. Transient Receptor Potential (TRP) Channels and Insulin Secretion
7. Kv Channels and Insulin Secretion
8. Calcium as a Messenger for Insulin Secretion
9. Sulfonylureas and Diabetes
10. Natural Resources and Diabetes
11. Antidiabetic Agent from Lizard Venom: Exenaide
12. Peptides with Potential Utility in the Development of New Diabetes Therapeutics
13. Other Options: Peptides-ionic Channel Interaction
14. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bell, G.I.; Polonsky, K.S. Diabetes mellitus and genetically programmed defects in beta - cell function. Nature 2001, 414, 788–791. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–S69. [Google Scholar] [CrossRef]
- Chillarón, J.J.; Le-roux, J.A.F.; Benaiges, D.; Pedro-botet, J. Type 1 diabetes, metabolic syndrome and cardiovascular risk. Metab. Clin. Exp. 2014, 63, 181–187. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of Diabetes Mellitus. Diabetes Care 2014, 37, S81–S90. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in Diabetes. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Diabetes Statistics Report. 2017. Available online: https://www.cdc.gov/diabetes/data/statistics-report/index.html (accessed on 29 March 2018).
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef]
- Franks, P.W.; McCarthy, M.I. Exposing the exposures responsible for type 2 diabetes and obesity. Science 2016, 354, 69–73. [Google Scholar] [CrossRef]
- Mcgill, J.B.; Bakris, G.L.; Fonseca, V.; Raskin, P.; Messerli, F.H.; Phillips, R.A.; Katholi, R.E.; Wright, J.T., Jr.; Iyengar, M.; Anderson, K.M.; et al. beta-Blocker use and diabetes symptom score: results from the GEMINI study. Diabetes Obes. Metab. 2007, 9, 408–417. [Google Scholar] [CrossRef]
- Andrews, R.C.; Cooper, A.R.; Montgomery, A.A.; Norcross, A.J.; Peters, P.T.J.; Sharp, P.D.J.; Jackson, N.; Fitzsimons, K.; Mba, J.B.; Coulman, K.; et al. Diet or diet plus physical activity versus usual care in patients with newly diagnosed type 2 diabetes: the Early ACTID randomised controlled trial. Lancet 2011, 378, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Grant, P. The perfect diabetes review. Prim. Care Diabetes 2010, 4, 69–72. [Google Scholar] [CrossRef]
- Bloomgarden, Z.T. Diabetes Treatment. Diabetes Care 2009, 32, e25–e30. [Google Scholar] [CrossRef]
- Phung, O.J.; Scholle, J.M.; Talwar, M.; Coleman, C.I. Effect of Noninsulin Antidiabetic Drugs Added to Metformin Therapy on Glycemic Control, Weight Gain, and Hypoglycemia in Type 2 Diabetes. JAMA 2010, 303, 1410–1418. [Google Scholar] [CrossRef]
- Inman, T.R.; Plyushko, E.; Austin, N.P.; Johnson, J.L. The role of basal insulin and GLP-1 receptor agonist combination products in the management of type 2 diabetes. Ther. Adv. Endocrinol. Metab. 2018, 9, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, O.; Berman, D.M.; Kenyon, N.S.; Ricordi, C.; Berggren, P.-O.; Caicedo, A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 2006, 103, 2334–2339. [Google Scholar] [CrossRef] [Green Version]
- Hiriart, M.; Velasco, M.; Larqué, C.; Diaz-Garcia, C.M. Metabolic Syndrome and Ionic Channels in Pancreatic Beta Cells. In Vitamins and Hormones; Academic Press: Cambridge, MA, USA, 2014; Volume 95, pp. 87–114. ISBN 9780128001745. [Google Scholar]
- Rorsman, P.; Braun, M. Regulation of Insulin Secretion in Human Pancreatic Islets. Annu. Rev. Physiol. 2013, 75, 155–179. [Google Scholar] [CrossRef]
- ROSENBERG, B.; VANCAMP, L.; TROSKO, J.E.; MANSOUR, V.H. Platinum Compounds: a New Class of Potent Antitumour Agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef]
- Hiriart, M.; Aguilar-Bryan, L. Channel regulation of glucose sensing in the pancreatic β-cell. Am. J. Physiol. Metab. 2008, 295, E1298–E1306. [Google Scholar] [CrossRef]
- Clark, A.; Braun, M.; McCulloch, L.J.; van de Bunt, M.; Gloyn, A.L.; Frayn, K.N. GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: Implications for understanding genetic association signals at this locus. Mol. Genet. Metab. 2011, 104, 648–653. [Google Scholar]
- Thorens, B.; Sarkar, H.K.; Kaback, H.R.; Lodish, H.F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β-pancreatic islet cells. Cell 1988, 55, 281–290. [Google Scholar] [CrossRef]
- Johnson, J.H.; Newgard, C.B.; Milburn, J.L.; Lodish, H.F.; Thorens, B. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J. Biol. Chem. 1990, 265, 6548–6551. [Google Scholar]
- MacDonald, P.E.; Rorsman, P. Oscillations, Intercellular Coupling, and Insulin Secretion in Pancreatic β Cells. PLoS Biol. 2006, 4, e49. [Google Scholar] [CrossRef]
- Ashcroft, F.M. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest. 2005, 115, 2047–2058. [Google Scholar] [CrossRef] [Green Version]
- Nichols, C.G. KATP channels as molecular sensors of cellular metabolism. Nature 2006, 440, 470–476. [Google Scholar] [CrossRef]
- Velasco, M.; Diaz-Garcia, C.M.; Larque, C.; Hiriart, M. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells. Mol. Pharmacol. 2016, 90, 341–357. [Google Scholar] [CrossRef]
- Félix-Martínez, G.J.; Godínez-Fernández, J.R. Mathematical models of electrical activity of the pancreatic β-cell: A physiological review. Islets 2014, 6, e949195. [Google Scholar] [CrossRef]
- Gustafsson, A.J.; Ingelman-Sundberg, H.; Dzabic, M.; Awasum, J.; Hoa, N.K.; Östenson, C.-G.; Pierro, C.; Tedeschi, P.; Woolcott, O.; Chiounan, S.; et al. Ryanodine receptor-operated activation of TRP-like channels can trigger critical Ca 2+ signaling events in pancreatic β-cells. FASEB J. 2005, 19, 301–303. [Google Scholar] [CrossRef]
- Sharma, N.; Crane, A.; Clement, J.P.; Gonzalez, G.; Babenko, A.P.; Bryan, J.; Aguilar-Bryan, L. The C Terminus of SUR1 Is Required for Trafficking of K ATP Channels. J. Biol. Chem. 1999, 274, 20628–20632. [Google Scholar] [CrossRef]
- Zawalich, W.S.; Yamazaki, H.; Zawalich, K.C. Biphasic insulin secretion from freshly isolated or cultured, perifused rodent islets: comparative studies with rats and mice. Metabolism 2008, 57, 30–39. [Google Scholar] [CrossRef] [Green Version]
- CURRY, D.L.; BENNETT, L.L.; GRODSKY, G.M. Dynamics of Insulin Secretion by the Perfused Rat Pancreas. Endocrinology 1968, 83, 572–584. [Google Scholar] [CrossRef]
- Henquin, J.C. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 2000, 49, 1751–1760. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.L.; Hales, C.N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 1984, 311, 271–273. [Google Scholar] [CrossRef]
- Wollheim, C.B.; Sharp, G.W. Regulation of insulin release by calcium. Physiol. Rev. 1981, 61, 914–973. [Google Scholar] [CrossRef]
- Hoenig, M.; Sharp, G.W.G. Glucose induces insulin release and a rise in cytosolic calcium concentration in a transplantable rat insulinoma. Endocrinology 1986, 119, 2502–2507. [Google Scholar] [CrossRef]
- Taguchi, N.; Aizawa, T.; Sato, Y.; Ishihara, F.; Hashizume, K. Mechanism of glucose-induced biphasic insulin release: physiological role of adenosine triphosphate-sensitive K+ channel-independent glucose action. Endocrinology 1995, 136, 3942–3948. [Google Scholar] [CrossRef]
- Aizawa, T.; Komatsu, M.; Asanuma, N.; Sato, Y.; Sharp, G.W.G. Glucose action “beyond ionic events” in the pancreatic β cell. Trends Pharmacol. Sci. 1998, 19, 496–499. [Google Scholar] [CrossRef]
- Straub, S.G.; Sharp, G.W.G. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes. Metab. Res. Rev. 2002, 18, 451–463. [Google Scholar] [CrossRef]
- Braun, M.; Ramracheya, R.; Bengtsson, M.; Zhang, Q.; Karanauskaite, J.; Partridge, C.; Johnson, P.R.; Rorsman, P. Voltage-Gated Ion Channels in Human Pancreatic -Cells: Electrophysiological Characterization and Role in Insulin Secretion. Diabetes 2008, 57, 1618–1628. [Google Scholar] [CrossRef] [Green Version]
- Houamed, K.M.; Sweet, I.R.; Satin, L.S. BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic β-cells. J. Physiol. 2010, 588, 3511–3523. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, D.A.; Mendez, F.; Thompson, M.; Torres, J.; Cochet, O.; Philipson, L.H. Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J. Physiol. 2010, 588, 3525–3537. [Google Scholar] [CrossRef] [Green Version]
- Henquin, J.C.; Ravier, M.A.; Nenquin, M.; Jonas, J.C.; Gilon, P. Hierarchy of the beta-cell signals controlling insulin secretion. Eur. J. Clin. Invest. 2003, 33, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Henquin, J.-C. The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Res. Clin. Pract. 2011, 93, S27–S31. [Google Scholar] [CrossRef]
- Henquin, J.C. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia 2009, 52, 739–751. [Google Scholar] [CrossRef] [Green Version]
- Ashcroft, F.M.; Rorsman, P. Electrophysiology of the pancreatic β-cell. Prog. Biophys. Mol. Biol. 1989, 54, 87–143. [Google Scholar] [CrossRef]
- Fridlyand, L.E.; Jacobson, D.A.; Philipson, L.H. Ion channels and regulation of insulin secretion in human β-cells. Islets 2013, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Bryan, L. Molecular Biology of Adenosine Triphosphate-Sensitive Potassium Channels. Endocr. Rev. 1999, 20, 101–135. [Google Scholar]
- Tinker, A.; Aziz, Q.; Li, Y.; Specterman, M. ATP-Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. In Comprehensive Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 8, pp. 1463–1511. [Google Scholar]
- Inagaki, N.; Gonoi, T.; Clement, J.P.; Namba, N.; Inazawa, J.; Gonzalez, G.; Aguilar-Bryan, L.; Seino, S.; Bryan, J. Reconstitution of I(KATP): An Inward Rectifier Subunit Plus the Sulfonylurea Receptor. Science 1995, 270, 1166–1170. [Google Scholar] [CrossRef]
- Clement, J.P.; Kunjilwar, K.; Gonzalez, G.; Schwanstecher, M.; Panten, U.; Aguilar-Bryan, L.; Bryan, J. Association and Stoichiometry of KATP Channel Subunits. Neuron 1997, 18, 827–838. [Google Scholar] [CrossRef] [Green Version]
- Seino, S.; Miki, T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol. 2003, 81, 133–176. [Google Scholar] [CrossRef]
- Quayle, J.M.; Nelson, M.T.; Standen, N.B. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 1997, 77, 1165–1232. [Google Scholar] [CrossRef]
- Xie, L.H.; John, S.A.; Ribalet, B.; Weiss, J.N. Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): Interaction with other regulatory ligands. Prog. Biophys. Mol. Biol. 2007, 94, 320–335. [Google Scholar] [CrossRef]
- MATSUO, M.; KIMURA, Y.; UEDA, K. K ATP channel interaction with adenine nucleotides. J. Mol. Cell. Cardiol. 2005, 38, 907–916. [Google Scholar] [CrossRef]
- Markworth, E.; Schwanstecher, C.; Schwanstecher, M. Mediates Closure of Pancreatic Beta – Cell ATP- Sensitive Potassium by Interaction with 1 o f4 identical sites. Diabetes 2000, 49, 1413–1418. [Google Scholar] [CrossRef]
- Zingman, L.V.; Alekseev, A.E.; Bienengraeber, M.; Hodgson, D.; Karger, A.B.; Dzeja, P.P.; Terzic, A. Signaling in Channel/Enzyme Multimers: ATPase Transitions in SUR Module Gate ATP-Sensitive K+ Conductance. Neuron 2001, 31, 233–245. [Google Scholar] [CrossRef]
- Clark, R.; Proks, P. ATP-sensitive potassium channels in health and disease. In The Islets of Langerhans; Springer: Dordrecht, The Netherlands, 2010; pp. 165–192. [Google Scholar]
- Ashcroft, F.M.; Rorsman, P. KATP channels and islet hormone secretion: new insights and controversies. Nat. Rev. Endocrinol. 2013, 9, 660–669. [Google Scholar] [CrossRef] [Green Version]
- Ashcroft, S.J.H.; Ashcroft, F.M. Properties and functions of ATP-sensitive K-channels. Cell. Signal. 1990, 2, 197–214. [Google Scholar] [CrossRef]
- Rorsman, P.; Eliasson, L.; Kanno, T.; Zhang, Q.; Gopel, S. Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans. Prog. Biophys. Mol. Biol. 2011, 107, 224–235. [Google Scholar] [CrossRef]
- Olsen, H.L.; Theander, S.; Bokvist, K.; Buschard, K.; Wollheim, C.B.; Gromada, J. Glucose Stimulates Glucagon Release in Single Rat α-Cells by Mechanisms that Mirror the Stimulus-Secretion Coupling in β-Cells. Endocrinology 2005, 146, 4861–4870. [Google Scholar] [CrossRef] [Green Version]
- Gribble, F.M.; Tucker, S.J.; Seino, S.; Ashcroft, F.M. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes 1998, 47, 1412–1418. [Google Scholar] [CrossRef]
- Branstrom, R.; Aspinwall, C.A.; Valimaki, S.; Ostensson, C.-G.; Tibell, A.; Eckhard, M.; Brandhorst, H.; Corkey, B.E.; Berggren, P.-O.; Larsson, O. Long-Chain CoA esters activate human pancreatic beta-cell K ATP channels: potential role in Type 2 diabetes. Diabetologia 2004, 47, 277–283. [Google Scholar] [CrossRef]
- Tarasov, A.; Dusonchet, J.; Ashcroft, F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 2004, 53 (Suppl. 3), S113–S122. [Google Scholar] [CrossRef]
- Pratt, E.B.; Tewson, P.; Bruederle, C.E.; Skach, W.R.; Shyng, S.-L. N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP 2. J. Gen. Physiol. 2011, 137, 299–314. [Google Scholar] [CrossRef]
- Chang, N.; Liang, T.; Lin, X.; Kang, Y.; Xie, H.; Feng, Z.-P.; Gaisano, H.Y. Syntaxin-1A Interacts with Distinct Domains within Nucleotide-binding Folds of Sulfonylurea Receptor 1 to Inhibit β-Cell ATP-sensitive Potassium Channels. J. Biol. Chem. 2011, 286, 23308–23318. [Google Scholar] [CrossRef]
- Pasyk, E.A.; Kang, Y.; Huang, X.; Cui, N.; Sheu, L.; Gaisano, H.Y. Syntaxin-1A Binds the Nucleotide-binding Folds of Sulphonylurea Receptor 1 to Regulate the K ATP Channel. J. Biol. Chem. 2004, 279, 4234–4240. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Kang, Y.; He, Y.; Leung, Y.-M.; Xie, H.; Pasyk, E.A.; Gao, X.; Sheu, L.; Hansen, J.B.; Wahl, P.; et al. H3 Domain of Syntaxin 1A Inhibits K ATP Channels by Its Actions on the Sulfonylurea Receptor 1 Nucleotide-Binding Folds-1 and -2. J. Biol. Chem. 2004, 279, 53259–53265. [Google Scholar] [CrossRef] [PubMed]
- Holz, G.G.; Chepurny, O.G.; Leech, C.A. Leptin-stimulated K ATP channel trafficking. Islets 2013, 5, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Gavello, D.; Carbone, E.; Carabelli, V. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels 2016, 10, 282–296. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-H.; Ryu, S.-Y.; Yu, W.-J.; Han, Y.E.; Ji, Y.-S.; Oh, K.; Sohn, J.-W.; Lim, A.; Jeon, J.-P.; Lee, H.; et al. Leptin promotes KATP channel trafficking by AMPK signaling in pancreatic beta-cells. Proc. Natl. Acad. Sci. USA 2013, 110, 12673–12678. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shyng, S.-L.; Chen, P.-C. Concerted Trafficking Regulation of Kv2.1 and K ATP Channels by Leptin in Pancreatic β-Cells. J. Biol. Chem. 2015, 290, 29676–29690. [Google Scholar] [CrossRef]
- Shyng, S.; Nichols, C.G. Membrane Phospholipid Control of Nucleotide Sensitivity of KATP Channels. Science 1998, 282, 1138–1141. [Google Scholar] [CrossRef]
- Baukrowitz, T. PIP2 and PIP as Determinants for ATP Inhibition of KATP Channels. Science 1998, 282, 1141–1144. [Google Scholar] [CrossRef]
- Nakano, K.; Suga, S.; Takeo, T.; Ogawa, Y.; Suda, T.; Kanno, T.; Wakui, M. Intracellular Ca 2+ Modulation of ATP-Sensitive K + Channel Activity in Acetylcholine-Induced Activation of Rat Pancreatic β-Cells. Endocrinology 2002, 143, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Petit, P.; Hillaire-Buys, D.; Manteghetti, M.; Debrus, S.; Chapal, J.; Loubatières-Mariani, M.M. Evidence for two different types of P2 receptors stimulating insulin secretion from pancreatic B cell. Br. J. Pharmacol. 1998, 125, 1368–1374. [Google Scholar] [CrossRef] [Green Version]
- Burnstock, G. Purinergic signalling in endocrine organs. Purinergic Signal. 2014, 10, 189–231. [Google Scholar] [CrossRef]
- Beguin, P. PKA-mediated phosphorylation of the human KATP channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. EMBO J. 1999, 18, 4722–4732. [Google Scholar] [CrossRef]
- Hu, K.; Huang, C.S.; Jan, Y.N.; Jan, L.Y. ATP-Sensitive Potassium Channel Traffic Regulation by Adenosine and Protein Kinase C. Neuron 2003, 38, 417–432. [Google Scholar] [CrossRef] [Green Version]
- Light, P.E.; Bladen, C.; Winkfein, R.J.; Walsh, M.P.; French, R.J. Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels. Proc. Natl. Acad. Sci. USA 2000, 97, 9058–9063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proks, P.; Reimann, F.; Green, N.; Gribble, F.; Frances, A. Sulfonylurea_stimulation_of_in.PDF. Am. Diabetes Assoc. 2002, 51, 368–377. [Google Scholar] [CrossRef]
- Gribble, F.M.; Ashcroft, F.M. Differential sensitivity of beta-cell and extrapancreatic K ATP channels to gliclazide. Diabetologia 1999, 42, 845–848. [Google Scholar] [CrossRef]
- Gribble, F.M.; Tucker, S.J.; Ashcroft, F.M. The Interaction of nucleotides with the tolbutamide block of cloned atp-sensitive k + channel currents expressed in xenopus oocytes: a reinterpretation. J. Physiol. 1997, 504, 35–45. [Google Scholar] [CrossRef]
- Ashcroft, F.M.; Gribble, F.M. Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci. 1998, 21, 288–294. [Google Scholar] [CrossRef]
- Ashfield, R.; Gribble, F.M.; Ashcroft, S.J.; Ashcroft, F.M. Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes 1999, 48, 1341–1347. [Google Scholar] [CrossRef]
- Mukai, E.; Ishida, H.; Horie, M.; Noma, A.; Seino, Y.; Takano, M. The Antiarrhythmic Agent Cibenzoline Inhibits KATPChannels by Binding to Kir6.2. Biochem. Biophys. Res. Commun. 1998, 251, 477–481. [Google Scholar] [CrossRef]
- Proks, P.; Ashcroft, F.M. Phentolamine block of KATP channels is mediated by Kir6.2. Proc. Natl. Acad. Sci. USA 1997, 94, 11716–11720. [Google Scholar] [CrossRef] [Green Version]
- Gribble, F.M.; Davis, T.M.E.; Higham, C.E.; Clark, A.; Ashcroft, F.M. The antimalarial agent mefloquine inhibits ATP-sensitive K-channels. Br. J. Pharmacol. 2000, 131, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Nosten, F.; ter Kuile, F.O.; Luxemburger, C.; Woodrow, C.; Chongsuphajaisiddhi, T.; White, N.J.; Kyle, D.E. Cardiac effects of antimalarial treatment with halofantrine. Lancet 1993, 341, 1054–1056. [Google Scholar] [CrossRef]
- Bokvist, K.; Rorsman, P.; Smith, P.A. Block of ATP-regulated and Ca2(+)-activated K+ channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine. J. Physiol. 1990, 423, 327–342. [Google Scholar] [CrossRef]
- López-Izquierdo, A.; Ponce-Balbuena, D.; Moreno-Galindo, E.G.; Aréchiga-Figueroa, I.A.; Rodríguez-Martínez, M.; Ferrer, T.; Rodríguez-Menchaca, A.A.; Sánchez-Chapula, J.A. The Antimalarial Drug Mefloquine Inhibits Cardiac Inward Rectifier K+ Channels: Evidence for Interference in PIP2-Channel Interaction. J. Cardiovasc. Pharmacol. 2011, 57, 407–415. [Google Scholar]
- Enkvetchakul, D.; Nichols, C.G. Gating Mechanism of K ATP Channels. J. Gen. Physiol. 2003, 122, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, D.E.; Jin, T.; Lupyan, D.; Rosenhouse-Dantsker, A. Phosphoinositide-mediated gating of inwardly rectifying K+ channels. Pflügers Arch. - Eur. J. Physiol. 2007, 455, 83–95. [Google Scholar] [CrossRef]
- Lopes, C.M.B.; Zhang, H.; Rohacs, T.; Jin, T.; Yang, J.; Logothetis, D.E. Alterations in Conserved Kir Channel-PIP2 Interactions Underlie Channelopathies. Neuron 2002, 34, 933–944. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.-H.; John, S.A.; Ribalet, B.; Weiss, J.N. Phosphatidylinositol-4,5-bisphosphate (PIP 2) regulation of strong inward rectifier Kir2.1 channels: multilevel positive cooperativity. J. Physiol. 2008, 586, 1833–1848. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Higdon, N.R.; Hester, J.B.; Meisheri, K.D. Pharmacological characterization of novel cyanoguanidines as vascular KATP channel blockers. J. Pharmacol. Exp. Ther. 1997, 283, 1207–1213. [Google Scholar] [PubMed]
- Meisheri, K.D.; Humphrey, S.J.; Khan, S.A.; Cipkus-Dubray, L.A.; Smith, M.P.; Jones, A.W. 4-morpholinecarboximidine-N-1-adamantyl-N’-cyclohexylhydrochloride (U-37883A): pharmacological characterization of a novel antagonist of vascular ATP-sensitive K+ channel openers. J. Pharmacol. Exp. Ther. 1993, 266, 655–665. [Google Scholar]
- Wellman, G.C.; Barrett-Jolley, R.; Köppel, H.; Everitt, D.; Quayle, J.M. Inhibition of vascular K ATP channels by U-37883A: a comparison with cardiac and skeletal muscle. Br. J. Pharmacol. 1999, 128, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Kovalev, H.; Quayle, J.M.; Kamishima, T.; Lodwick, D. Molecular analysis of the subtype-selective inhibition of cloned K ATP channels by PNU-37883A. Br. J. Pharmacol. 2004, 141, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Tinker, A.; Clapp, L.H. Different molecular sites of action for the K ATP channel inhibitors, PNU-99963 and PNU-37883A. Br. J. Pharmacol. 2003, 139, 122–128. [Google Scholar] [CrossRef]
- Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Plant, T.D. Na+ currents in cultured mouse pancreatic B-cells. Pflugers Arch. Eur. J. Physiol. 1988, 411, 429–435. [Google Scholar] [CrossRef]
- Ahern, C.A.; Payandeh, J.; Bosmans, F.; Chanda, B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 2016, 147, 1–24. [Google Scholar] [CrossRef]
- Hiriart, M. Na channels and two types of Ca channels in rat pancreatic B cells identified with the reverse hemolytic plaque assay. J. Gen. Physiol. 1988, 91, 617–639. [Google Scholar] [CrossRef] [Green Version]
- Vidaltamayo, R.; Sánchez-Soto, M.C.; Hiriart, M. Nerve growth factor increases sodium channel expression in pancreatic beta cells: implications for insulin secretion. FASEB J. 2002, 16, 891–892. [Google Scholar] [CrossRef]
- Barnett, D.W.; Pressel, D.M.; Misler, S. Voltage-dependent Na+ and Ca2+ currents in human pancreatic islet β-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflügers Arch. Eur. J. Physiol. 1995, 431, 272–282. [Google Scholar] [CrossRef]
- Göpel, S.; Kanno, T.; Barg, S.; Galvanovskis, J.; Rorsman, P. Voltage-gated and resting membrane currents recorded from B-cells in intact mouse pancreatic islets. J. Physiol. 1999, 521, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.-L.; Yu, X.; Chen, X.-K.; Duan, K.-L.; He, L.-M.; Qu, A.-L.; Xu, T.; Zhou, Z. Na+ channel inactivation: a comparative study between pancreatic islet -cells and adrenal chromaffin cells in rat. J. Physiol. 2003, 548, 191–202. [Google Scholar] [CrossRef]
- Diaz-Garcia, C.M.; Sanchez-Soto, C.; Hiriart, M. Toxins that Modulate Ionic Channels as Tools for Exploring Insulin Secretion. Cell. Mol. Neurobiol. 2010, 30, 1275–1281. [Google Scholar] [CrossRef]
- Vignali, S.; Leiss, V.; Karl, R.; Hofmann, F.; Welling, A. Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic A- and B-cells. J. Physiol. 2006, 572, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chibalina, M.V.; Bengtsson, M.; Groschner, L.N.; Ramracheya, R.; Rorsman, N.J.G.; Leiss, V.; Nassar, M.A.; Welling, A.; Gribble, F.M.; et al. Na + current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression. J. Physiol. 2014, 592, 4677–4696. [Google Scholar] [CrossRef]
- Ernst, S.J.; Aguilar-Bryan, L.; Noebels, J.L. Sodium Channel β1 Regulatory Subunit Deficiency Reduces Pancreatic Islet Glucose-Stimulated Insulin and Glucagon Secretion. Endocrinology 2009, 150, 1132–1139. [Google Scholar] [CrossRef]
- Henquin, J.C. Regulation of Insulin Release by Ionic and Electrical Events in B Cells. Horm. Res. 1987, 27, 168–178. [Google Scholar] [CrossRef]
- Bratanova-Tochkova, T.K.; Cheng, H.; Daniel, S.; Gunawardana, S.; Liu, Y.-J.; Mulvaney-Musa, J.; Schermerhorn, T.; Straub, S.G.; Yajima, H.; Sharp, G.W.G. Triggering and Augmentation Mechanisms, Granule Pools, and Biphasic Insulin Secretion. Diabetes 2002, 51, S83–S90. [Google Scholar] [CrossRef] [Green Version]
- Rorsman, P.; Renstrom, E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 2003, 46, 1029–1045. [Google Scholar] [CrossRef] [Green Version]
- Suckale, J.; Solimena, M. The insulin secretory granule as a signaling hub. Trends Endocrinol. Metab. 2010, 21, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Rorsman, P.; Trube, G. Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J. Physiol. 1986, 374, 531–550. [Google Scholar] [CrossRef]
- Satin, L.S.; Tavalin, S.J.; Smolen, P.D. Inactivation of HIT cell Ca2+ current by a simulated burst of Ca2+ action potentials. Biophys. J. 1994, 66, 141–148. [Google Scholar] [CrossRef]
- Gonçalves, A.A.; Toyama, M.H.; Carneiro, E.M.; Marangoni, S.; Arantes, E.C.; Giglio, J.R.; Boschero, A.C. Participation of Na+channels in the potentiation by Tityus serrulatus α-toxin TsTx-V of glucose-induced electrical activity and insulin secretion in rodent islet β-cells. Toxicon 2003, 41, 1039–1045. [Google Scholar] [CrossRef]
- Pace, C.S. Activation of Na channels in islet cells: metabolic and secretory effects. Am. J. Physiol. Metab. 1979, 237, E130. [Google Scholar] [CrossRef] [PubMed]
- Zou, N.; Wu, X.; Jin, Y.-Y.; He, M.-Z.; Wang, X.-X.; Su, L.-D.; Rupnik, M.; Wu, Z.-Y.; Liang, L.; Shen, Y. ATP Regulates Sodium Channel Kinetics in Pancreatic Islet Beta Cells. J. Membr. Biol. 2013, 246, 101–107. [Google Scholar] [CrossRef]
- Godazgar, M.; Zhang, Q.; Chibalina, M.V.; Rorsman, P. Biphasic voltage-dependent inactivation of human Na V 1.3, 1.6 and 1.7 Na + channels expressed in rodent insulin-secreting cells. J. Physiol. 2018, 596, 1601–1626. [Google Scholar] [CrossRef]
- Meyer-Hermann, M.E. The Electrophysiology of the β-Cell Based on Single Transmembrane Protein Characteristics. Biophys. J. 2007, 93, 2952–2968. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, S.; Hu, Q.; Zeng, L.; Peng, H.; Liu, C.; Huang, L.P.; Song, H.; Li, Y.; Yao, L.H.; et al. Voltage-gated Na+ channels are modulated by glucose and involved in regulating cellular insulin content of INS-1 Cells. Cell. Physiol. Biochem. 2018, 45, 446–457. [Google Scholar] [CrossRef]
- Navarro-Tableros, V.; Sanchez-Soto, M.C.; Garcia, S.; Hiriart, M. Autocrine Regulation of Single Pancreatic -Cell Survival. Diabetes 2004, 53, 2018–2023. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Tableros, V.; Fiordelisio, T.; Hernández-Cruz, A.; Hiriart, M. Physiological development of insulin secretion, calcium channels, and GLUT2 expression of pancreatic rat β-cells. Am. J. Physiol. Metab. 2007, 292, E1018–E1029. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, T.; Sanchez-Soto, M.C.; Hiriart, M. Nerve Growth Factor Increases Insulin Secretion and Barium Current in Pancreatic Beta-Cells. Diabetes 2001, 50, 1755–1762. [Google Scholar] [CrossRef]
- Yang, S.-N.; Berggren, P.-O. CaV2.3 channel and PKCλ: new players in insulin secretion. J. Clin. Invest. 2005, 115, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.N.; Berggren, P.O. The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocr. Rev. 2006, 27, 621–676. [Google Scholar] [CrossRef]
- Reinbothe, T.M.; Alkayyali, S.; Ahlqvist, E.; Tuomi, T.; Isomaa, B.; Lyssenko, V.; Renström, E. The human L-type calcium channel Cav1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 2013, 56, 340–349. [Google Scholar] [CrossRef]
- Rajagopal, S.; Fields, B.L.; Burton, B.K.; On, C.; Reeder, A.A.; Kamatchi, G.L. Inhibition of protein kinase C (PKC) response of voltage-gated calcium (Cav)2.2 channels expressed in Xenopus oocytes by Cavβ subunits. Neuroscience 2014, 280, 1–9. [Google Scholar] [CrossRef]
- Yang, S.-N.; Shi, Y.; Yang, G.; Li, Y.; Yu, J.; Berggren, P.-O. Ionic mechanisms in pancreatic β cell signaling. Cell. Mol. Life Sci. 2014, 71, 4149–4177. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, P.; Wang, T.; Chen, K.; Zhu, W.; Wang, H. Inhibition of Calcium Influx Reduces Dysfunction and Apoptosis in Lipotoxic Pancreatic β-Cells via Regulation of Endoplasmic Reticulum Stress. PLoS ONE 2015, 10, e0132411. [Google Scholar] [CrossRef] [PubMed]
- Kitaguchi, T.; Oya, M.; Wada, Y.; Tsuboi, T.; Miyawaki, A. Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells. Biochem. J. 2013, 450, 365–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davalli, A.M.; Biancardi, E.; Pollo, A.; Socci, C.; Pozza, G.; Clementi, F.; Sher, E.; Carbone, E. Dihydropyridine-sensitive and -insensitive voltage-operated calcium channels participate in the control of glucose-induced insulin release from human pancreatic beta cells. J. Endocrinol. 1996, 150, 195–203. [Google Scholar] [CrossRef]
- Iwashima, Y.; Pugh, W.; Depaoli, A.M.; Takeda, J.; Seino, S.; Bell, G.I.; Polonsky, K.S. Expression of Calcium Channel mRNAs in Rat Pancreatic Islets and Downregulation After Glucose Infusion. Diabetes 1993, 42, 948–955. [Google Scholar] [CrossRef]
- Scholze, A.; Plant, T.D.; Dolphin, A.C.; Nürnberg, B. Functional Expression and Characterization of a Voltage-Gated Ca V 1.3 (α 1D ) Calcium Channel Subunit from an Insulin-Secreting Cell Line. Mol. Endocrinol. 2001, 15, 1211–1221. [Google Scholar]
- Rorsman, P.; Braun, M.; Zhang, Q. Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium 2012, 51, 300–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.T.; Huang, L.; Keyser, B.M.; Zhuang, H.; Clarkson, C.W.; Li, M. Role of high-voltage-activated calcium channels in glucose-regulated β-cell calcium homeostasis and insulin release. Am. J. Physiol. Metab. 2005, 289, E900–E908. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Li, D.-Q.; Olofsson, C.S.; Salehi, A.; Surve, V.V.; Caballero, J.; Ivarsson, R.; Lundquist, I.; Pereverzev, A.; Schneider, T.; et al. CaV2.3 calcium channels control second-phase insulin release. J. Clin. Invest. 2005, 115, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henquin, J.-C.; Meissner, H.P. Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B cells. Biochem. Biophys. Res. Commun. 1983, 112, 614–620. [Google Scholar] [CrossRef]
- HENQUIN, J.C.; MEISSNER, H.P. The Ionic, Electrical, and Secretory Effects of Endogenous Cyclic Adenosine Monophosphate in Mouse Pancreatic B Cells: Studies with Forskolin. Endocrinology 1984, 115, 1125–1134. [Google Scholar] [CrossRef]
- Gillis, K.D.; Misler, S. Enhancers of cytosolic cAMP augment depolarization-induced exocytosis from pancreatic B-cells: evidence for effects distal to Ca2+ entry. Pflügers Arch. Eur. J. Physiol. 1993, 424, 195–197. [Google Scholar] [CrossRef]
- Kanno, T.; Suga, S.; Wu, J.; Kimura, M.; Wakui, M. Intracellular cAMP potentiates voltage-dependent activation of L -type Ca 2+ channels in rat islet β-cells. Pflugers Arch. Eur. J. Physiol. 1998, 435, 578–580. [Google Scholar] [CrossRef]
- Cui, X.; Yang, G.; Pan, M.; Zhang, X.-N.; Yang, S.-N. Akt Signals Upstream of L-Type Calcium Channels to Optimize Insulin Secretion. Pancreas 2012, 41, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Dadi, P.K.; Vierra, N.C.; Ustione, A.; Piston, D.W.; Colbran, R.J.; Jacobson, D.A. Inhibition of Pancreatic β-Cell Ca 2+ /Calmodulin-dependent Protein Kinase II Reduces Glucose-stimulated Calcium Influx and Insulin Secretion, Impairing Glucose Tolerance. J. Biol. Chem. 2014, 289, 12435–12445. [Google Scholar] [CrossRef]
- Schwetz, T.A.; Ustione, A.; Piston, D.W. Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms. Am. J. Physiol. Metab. 2013, 304, E211–E221. [Google Scholar] [CrossRef]
- Prentki, M.; Glennon, M.C.; Geschwind, J.-F.; Matschinsky, F.M.; Corkey, B.E. Cyclic AMP raises cytosolic Ca 2+ and promotes Ca 2+ influx in a clonal pancreatic β-cell line (HIT T-15). FEBS Lett. 1987, 220, 103–107. [Google Scholar] [CrossRef]
- Jacobo, S.M.P.; Guerra, M.L.; Jarrard, R.E.; Przybyla, J.A.; Liu, G.; Watts, V.J.; Hockerman, G.H. The Intracellular II-III Loops of Cav1.2 and Cav1.3 Uncouple L-Type Voltage-Gated Ca2+ Channels from Glucagon-Like Peptide-1 Potentiation of Insulin Secretion in INS-1 Cells via Displacement from Lipid Rafts. J. Pharmacol. Exp. Ther. 2009, 330, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Gilon, P.; Yakel, J.; Gromada, J.; Zhu, Y.; Henquin, J.C.; Rorsman, P. G protein-dependent inhibition of L-type Ca2+ currents by acetylcholine in mouse pancreatic B-cells. J. Physiol. 1997, 499, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Colsoul, B.; Vennekens, R.; Nilius, B. Transient Receptor Potential Cation Channels in Pancreatic β Cells. In Reviews of Physiology, Biochemistry and Pharmacology 161; Springer: Berlin/Heidelberg, Germany, 2011; Volume 159, pp. 87–110. ISBN 978-3-540-73800-8. [Google Scholar]
- Jacobson, D.A.; Philipson, L.H. Action potentials and insulin secretion: new insights into the role of Kv channels. Diabetes Obes. Metab. 2007, 9, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marigo, V.; Courville, K.; Hsu, W.H.; Feng, J.M.; Cheng, H. TRPM4 impacts on Ca2+ signals during agonist-induced insulin secretion in pancreatic β-cells. Mol. Cell. Endocrinol. 2009, 299, 194–203. [Google Scholar] [CrossRef]
- Jacobson, D.A.; Philipson, L.H. TRP Channels of the Pancreatic Beta Cell. In Transient Receptor Potential (TRP) Channels; Springer: Berlin/Heidelberg, Germany, 2007; Volume 179, pp. 409–424. ISBN 9783540348894. [Google Scholar]
- Benemei, S.; Patacchini, R.; Trevisani, M.; Geppetti, P. TRP channels. Curr. Opin. Pharmacol. 2015, 22, 18–23. [Google Scholar] [CrossRef]
- Dong, X.-P.; Wang, X.; Xu, H. TRP channels of intracellular membranes. J. Neurochem. 2010, 113, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yu, Y.; Yang, J. Structural biology of TRP channels. Advances in Experimental. Med. Biol. 2011, 704, 1–23. [Google Scholar]
- Nilius, B.; Owsianik, G.; Voets, T. Transient receptor potential channels meet phosphoinositides. EMBO J. 2008, 27, 2809–2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jara-Oseguera, A.; Llorente, I.; Rosenbaum, T.; Islas, L.D. Properties of the Inner Pore Region of TRPV1 Channels Revealed by Block with Quaternary Ammoniums. J. Gen. Physiol. 2008, 132, 547–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siemens, J.; Zhou, S.; Piskorowski, R.; Nikai, T.; Lumpkin, E.A.; Basbaum, A.I.; King, D.; Julius, D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 2006, 444, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Togashi, K.; Hara, Y.; Tominaga, T.; Higashi, T.; Konishi, Y.; Mori, Y.; Tominaga, M. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 2006, 25, 1804–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, K.; Dezaki, K.; Damdindorj, B.; Inada, H.; Shiuchi, T.; Mori, Y.; Yada, T.; Minokoshi, Y.; Tominaga, M. Lack of TRPM2 Impaired Insulin Secretion and Glucose Metabolisms in Mice. Diabetes 2011, 60, 119–126. [Google Scholar] [CrossRef]
- Uchida, K.; Tominaga, M. TRPM2 modulates insulin secretion in pancreatic β-cells. Islets 2011, 3, 209–211. [Google Scholar] [CrossRef] [Green Version]
- Colsoul, B.; Schraenen, A.; Lemaire, K.; Quintens, R.; Van Lommel, L.; Segal, A.; Owsianik, G.; Talavera, K.; Voets, T.; Margolskee, R.F.; et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc. Natl. Acad. Sci. USA 2010, 107, 5208–5213. [Google Scholar] [CrossRef]
- Shigeto, M.; Ramracheya, R.; Tarasov, A.I.; Cha, C.Y.; Chibalina, M.V.; Hastoy, B.; Philippaert, K.; Reinbothe, T.; Rorsman, N.; Salehi, A.; et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J. Clin. Invest. 2015, 125, 4714–4728. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, Y.; Nagasawa, M.; Yamada, S.; Hara, A.; Mogami, H.; Nikolaev, V.O.; Lohse, M.J.; Shigemura, N.; Ninomiya, Y.; Kojima, I. Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion. PLoS ONE 2009, 4, e5106. [Google Scholar] [CrossRef]
- Brixel, L.R.; Monteilh-Zoller, M.K.; Ingenbrandt, C.S.; Fleig, A.; Penner, R.; Enklaar, T.; Zabel, B.U.; Prawitt, D. TRPM5 regulates glucose-stimulated insulin secretion. Pflügers Arch. - Eur. J. Physiol. 2010, 460, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yan, Z.; Zhong, J.; Chen, J.; Ni, Y.; Li, L.; Ma, L.; Zhao, Z.; Liu, D.; Zhu, Z. Transient Receptor Potential Vanilloid 1 Activation Enhances Gut Glucagon-Like Peptide-1 Secretion and Improves Glucose Homeostasis. Diabetes 2012, 61, 2155–2165. [Google Scholar] [CrossRef] [Green Version]
- Gyulkhandanyan, A.V.; Lee, S.C.; Bikopoulos, G.; Dai, F.; Wheeler, M.B. The Zn 2+ -transporting Pathways in Pancreatic β-Cells. J. Biol. Chem. 2006, 281, 9361–9372. [Google Scholar] [CrossRef]
- Wagner, T.F.J.; Loch, S.; Lambert, S.; Straub, I.; Mannebach, S.; Mathar, I.; Düfer, M.; Lis, A.; Flockerzi, V.; Philipp, S.E.; et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat. Cell Biol. 2008, 10, 1421–1430. [Google Scholar] [CrossRef]
- Held, K.; Kichko, T.; De Clercq, K.; Klaassen, H.; Van Bree, R.; Vanherck, J.-C.; Marchand, A.; Reeh, P.W.; Chaltin, P.; Voets, T.; et al. Activation of TRPM3 by a potent synthetic ligand reveals a role in peptide release. Proc. Natl. Acad. Sci. USA 2015, 112, E1363–E1372. [Google Scholar] [CrossRef] [Green Version]
- Casas, S.; Novials, A.; Reimann, F.; Gomis, R.; Gribble, F.M. Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 2008, 51, 2252–2262. [Google Scholar] [CrossRef] [Green Version]
- Skrzypski, M.; Kakkassery, M.; Mergler, S.; Grötzinger, C.; Khajavi, N.; Sassek, M.; Szczepankiewicz, D.; Wiedenmann, B.; Nowak, K.W.; Strowski, M.Z. Activation of TRPV4 channel in pancreatic INS-1E beta cells enhances glucose-stimulated insulin secretion via calcium-dependent mechanisms. FEBS Lett. 2013, 587, 3281–3287. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S. TRP Channels of Islets. In Encyclopedia of Biological Chemistry; Elsevier: Amsterdam, The Netherlands, 2011; pp. 811–830. ISBN 9780123786319. [Google Scholar]
- Zhu, Z.; Luo, Z.; Ma, S.; Liu, D. TRP channels and their implications in metabolic diseases. Pflügers Arch. - Eur. J. Physiol. 2011, 461, 211–223. [Google Scholar] [CrossRef]
- Diaz-Garcia, C.; Sanchez-Soto, C.; Hiriart, M. TRPM Channels Phosphorylation as a Potential Bridge Between Old Signals and Novel Regulatory Mechanisms of Insulin Secretion. Curr. Diabetes Rev. 2013, 9, 117–125. [Google Scholar] [CrossRef]
- MacDonald, P.E.; Sewing, S.; Wang, J.; Joseph, J.W.; Smukler, S.R.; Sakellaropoulos, G.; Wang, J.; Saleh, M.C.; Chan, C.B.; Tsushima, R.G.; et al. Inhibition of Kv2.1 Voltage-dependent K + Channels in Pancreatic β-Cells Enhances Glucose-dependent Insulin Secretion. J. Biol. Chem. 2002, 277, 44938–44945. [Google Scholar] [CrossRef]
- Smith, P.A.; BOKVIST, K.; ARKHAMMAR, P.; BERGGREN, P.-O.; RORSMAN, P. Delayed rectifying and calcium-activated K+ channels and their significance for action potential repolarization in mouse pancreatic beta-cells. J. Gen. Physiol. 1990, 95, 1041–1059. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Tsuk, S.; Salapatek, A.M.F.; Huang, X.; Chikvashvili, D.; Pasyk, E.A.; Kang, Y.; Sheu, L.; Tsushima, R.; Diamant, N.; et al. The 25-kDa synaptosome-associated protein (SNAP-25) binds and inhibits delayed rectifier potassium channels in secretory cells. J. Biol. Chem. 2002, 277, 20195–20204. [Google Scholar] [CrossRef]
- Finol-Urdaneta, R.K.; Remedi, M.S.; Raasch, W.; Becker, S.; Clark, R.B.; Strüver, N.; Pavlov, E.; Nichols, C.G.; French, R.J.; Terlau, H. Block of K v 1.7 potassium currents increases glucose-stimulated insulin secretion. EMBO Mol. Med. 2012, 4, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Herrington, J.; Sanchez, M.; Wunderler, D.; Yan, L.; Bugianesi, R.M.; Dick, I.E.; Clark, S.A.; Brochu, R.M.; Priest, B.T.; Kohler, M.G.; et al. Biophysical and pharmacological properties of the voltage-gated potassium current of human pancreatic β-cells. J. Physiol. 2005, 567, 159–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrington, J.; Zhou, Y.-P.; Bugianesi, R.M.; Dulski, P.M.; Feng, Y.; Warren, V.A.; Smith, M.M.; Kohler, M.G.; Garsky, V.M.; Sanchez, M.; et al. Blockers of the delayed-rectifier potassium current in pancreatic beta-cells enhance glucose-dependent insulin secretion. Diabetes 2006, 55, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Herrington, J. Gating modifier peptides as probes of pancreatic β-cell physiology. Toxicon 2007, 49, 231–238. [Google Scholar] [CrossRef]
- MacDonald, P.E.; Ha, X.F.; Wang, J.; Smukler, S.R.; Sun, A.M.; Gaisano, H.Y.; Salapatek, A.M.F.; Backx, P.H.; Wheeler, M.B. Members of the Kv1 and Kv2 Voltage-Dependent K + Channel Families Regulate Insulin Secretion. Mol. Endocrinol. 2001, 15, 1423–1435. [Google Scholar] [CrossRef]
- Roe, M.W.; Worley, J.F.; Mittal, A.A.; Kuznetsov, A.; DasGupta, S.; Mertz, R.J.; Witherspoon, S.M.; Blair, N.; Lancaster, M.E.; McIntyre, M.S.; et al. Expression and Function of Pancreatic β-Cell Delayed Rectifier K + Channels. J. Biol. Chem. 1996, 271, 32241–32246. [Google Scholar] [CrossRef]
- Jacobson, D.A.; Kuznetsov, A.; Lopez, J.P.; Kash, S.; Ämmälä, C.E.; Philipson, L.H. Kv2.1 Ablation Alters Glucose-Induced Islet Electrical Activity, Enhancing Insulin Secretion. Cell Metab. 2007, 6, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, M.J.; Ämmälä, C.; Straub, S.G.; Sharp, G.W.G. Electrophysiology of the β Cell and Mechanisms of Inhibition of Insulin Release. In Comprehensive Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kalman, K.; Nguyen, A.; Tseng-Crank, J.; Dukes, I.D.; Chandy, G.; Hustad, C.M.; Copeland, N.G.; Jenkins, N.A.; Mohrenweiser, H.; Brandriff, B.; et al. Genomic Organization, Chromosomal Localization, Tissue Distribution, and Biophysical Characterization of a Novel Mammalian Shaker -related Voltage-gated Potassium Channel, Kv1.7. J. Biol. Chem. 1998, 273, 5851–5857. [Google Scholar] [CrossRef]
- Kashuba, V.I.; Kvasha, S.M.; Protopopov, A.I.; Gizatullin, R.Z.; Rynditch, A.V.; Wahlestedt, C.; Wasserman, W.W.; Zabarovsky, E.R. Initial isolation and analysis of the human Kv1.7 ( KCNA7 ) gene, a member of the voltage-gated potassium channel gene family. Gene 2001, 268, 115–122. [Google Scholar] [CrossRef]
- MacDonald, P.E.; Wheeler, M.B. Voltage-dependent K + channels in pancreatic beta cells: Role, regulation and potential as therapeutic targets. Diabetologia 2003, 46, 1046–1062. [Google Scholar] [CrossRef] [Green Version]
- Atwater, B.Y.I.; Ribalet, B.; Rojas, E. MOUSE PANCREATIC f-CELLS: TETRAETHYLAMMONIUM BLOCKAGE OF THE POTASSIUM PERMEABILITY INCREASE INDUCED BY DEPOLARIZATION. J. Physiol. 1979, 288, 561–574. [Google Scholar]
- Henquin, J.-C. Tetraethylammonium potentiation of insulin release and inhibition of rubidium efflux in pancreatic islets. Biochem. Biophys. Res. Commun. 1977, 77, 551–556. [Google Scholar] [CrossRef]
- Islam, M.S. The Ryanodine Receptor Calcium Channel of -Cells: Molecular Regulation and Physiological Significance. Diabetes 2002, 51, 1299–1309. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhong, X.; Ding, Y.; Ren, L.; Bai, T.; Liu, M.; Liu, Z.; Guo, Y.; Guo, Q.; Zhang, Y.; et al. Inhibition of voltage-dependent potassium channels mediates cAMP-potentiated insulin secretion in rat pancreatic β cells. Islets 2017, 9, 11–18. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, P.E.; Wang, X.; Xia, F.; El-kholy, W.; Targonsky, E.D.; Tsushima, R.G.; Wheeler, M.B. Antagonism of Rat β-Cell Voltage-dependent K + Currents by Exendin 4 Requires Dual Activation of the cAMP/Protein Kinase A and Phosphatidylinositol 3-Kinase Signaling Pathways. J. Biol. Chem. 2003, 278, 52446–52453. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, Y.; Zhong, X.; Guo, Q.; Wang, H.; Gao, J.; Bai, T.; Ren, L.; Guo, Y.; Jiao, X.; et al. Geniposide acutely stimulates insulin secretion in pancreatic β-cells by regulating GLP-1 receptor/cAMP signaling and ion channels. Mol. Cell. Endocrinol. 2016, 430, 89–96. [Google Scholar] [CrossRef]
- Gutman, G.A. International Union of Pharmacology. LIII. Nomenclature and Molecular Relationships of Voltage-Gated Potassium Channels. Pharmacol. Rev. 2005, 57, 473–508. [Google Scholar] [CrossRef] [Green Version]
- Hardy, A.B.; Fox, J.E.M.; Giglou, P.R.; Wijesekara, N.; Bhattacharjee, A.; Sultan, S.; Gyulkhandanyan, A.V.; Gaisano, H.Y.; MacDonald, P.E.; Wheeler, M.B. Characterization of Erg K + Channels in α- and β-Cells of Mouse and Human Islets. J. Biol. Chem. 2009, 284, 30441–30452. [Google Scholar] [CrossRef]
- ROSATI, B.; MARCHETTI, P.; CROCIANI, O.; LECCHI, M.; LUPI, R.; ARCANGELI, A.; OLIVOTTO, M.; WANKE, E. Glucose- and arginine-induced insulin secretion by human pancreatic β-cells: the role of HERG K + channels in firing and release. FASEB J. 2000, 14, 2601–2610. [Google Scholar] [CrossRef]
- Liu, S.; Rasmusson, R.L.; Campbell, D.L.; Wang, S.; Strauss, H.C. Activation and inactivation kinetics of an E-4031-sensitive current from single ferret atrial myocytes. Biophys. J. 1996, 70, 2704–2715. [Google Scholar] [CrossRef]
- Sanguinetti, M.C.; Jiang, C.; Curran, M.E.; Keating, M.T. A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel. Cell 1995, 81, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef]
- Gilon, P.; Chae, H.-Y.; Rutter, G.A.; Ravier, M.A. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 2014, 56, 340–361. [Google Scholar] [CrossRef]
- Blaustein, M.P.; Lederer, W.J. Sodium/Calcium Exchange: Its Physiological Implications. Physiol. Rev. 1999, 79, 763–854. [Google Scholar] [CrossRef]
- Carafoli, E. [1] Membrane transport of calcium: An overview. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1988; Volume 157, pp. 3–11. [Google Scholar]
- BLAUSTEIN, M.P.; GOLDMAN, W.F.; FONTANA, G.; KRUEGER, B.K.; SANTIAGO, E.M.; STEELE, T.D.; WEISS, D.N.; YAROWSKY, P.J. Physiological Roles of the Sodium-Calcium Exchanger in Nerve and Muscle. Ann. N. Y. Acad. Sci. 1991, 639, 254–274. [Google Scholar] [CrossRef]
- Rutter, G.A.; Hodson, D.J.; Chabosseau, P.; Haythorne, E.; Pullen, T.J.; Leclerc, I. Local and regional control of calcium dynamics in the pancreatic islet. Diabetes Obes. Metab. 2017, 19, 30–41. [Google Scholar] [CrossRef] [Green Version]
- DiPolo, R.; Beaugé, L. Ca2+ transport in nerve fibers. Biochim. Biophys. Acta - Rev. Biomembr. 1988, 947, 549–569. [Google Scholar] [CrossRef]
- Plasman, P.O.; Lebrun, P.; Herchuelz, A. Characterization of the process of sodium-calcium exchange in pancreatic islet cells. Am. J. Physiol. Metab. 1990, 259, E844–E850. [Google Scholar] [CrossRef]
- Van Eylen, F.; Horta, O.D.; Barez, A.; Kamagate, A.; Flatt, P.R.; Macianskiene, R.; Mubagwa, K.; Herchuelz, A. Overexpression of the Na/Ca Exchanger Shapes Stimulus-Induced Cytosolic Ca2+ Oscillations in Insulin-Producing BRIN-BD11 Cells. Diabetes 2002, 51, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Herchuelz, A.; Lebrun, P. A role for Na/Ca exchange in the pancreatic B cell. Biochem. Pharmacol. 1993, 45, 7–11. [Google Scholar] [CrossRef]
- Van Eylen, F.; Lebeau, C.; Albuquerque-Silva, J.; Herchuelz, A. Contribution of Na/Ca exchange to Ca2+ outflow and entry in the rat pancreatic beta-cell: studies with antisense oligonucleotides. Diabetes 1998, 47, 1873–1880. [Google Scholar] [CrossRef]
- Thams, P.; Anwar, M.R.; Capito, K. Glucose triggers protein kinase A-dependent insulin secretion in mouse pancreatic islets through activation of the K+ATP channel-dependent pathway. Eur. J. Endocrinol. 2005, 152, 671–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.A.; Duchen, M.R.; Ashcroft, F.M. A fluorimetric and amperometric study of calcium and secretion in isolated mouse pancreatic beta-cells. Pflugers Arch. Eur. J. Physiol. 1995, 430, 808–818. [Google Scholar] [CrossRef]
- Renström, E.; Eliasson, L.; Rorsman, P. Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells. J. Physiol. 1997, 502, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Gromada, J.; Dissing, S.; Bokvist, K.; Renstrom, E.; Frokjaer-Jensen, J.; Wulff, B.S.; Rorsman, P. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization. Diabetes 1995, 44, 767–774. [Google Scholar] [CrossRef]
- Holz, G.G.; Leech, C.A.; Heller, R.S.; Castonguay, M.; Habener, J.F. cAMP-dependent Mobilization of Intracellular Ca 2+ Stores by Activation of Ryanodine Receptors in Pancreatic β-Cells. J. Biol. Chem. 1999, 274, 14147–14156. [Google Scholar] [CrossRef] [PubMed]
- Holz IV, G.G.; Kiihtreiber, W.M.; Habener, J.F. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993, 361, 362–365. [Google Scholar] [CrossRef] [Green Version]
- Britsch, S.; Krippeitdrews, P.; Lang, F.; Gregor, M.; Drews, G. Glucagon-like Peptide-1 Modulates Ca2+ Current But Not K+ATP Current in Intact Mouse Pancreatic B-Cells. Biochem. Biophys. Res. Commun. 1995, 207, 33–39. [Google Scholar] [CrossRef]
- Leech, C.A.; Habener, J.F. Insulinotropic Glucagon-like Peptide-1-mediated Activation of Non-selective Cation Currents in Insulinoma Cells Is Mimicked by Maitotoxin. J. Biol. Chem. 1997, 272, 17987–17993. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.S.; de Almeida, A.A.; Borges, A.F.; Vannucci Campos, D. Treatments for diabetes mellitus type II: New perspectives regarding the possible role of calcium and cAMP interaction. Eur. J. Pharmacol. 2018, 830, 9–16. [Google Scholar] [CrossRef]
- Bergantin, L.B.; Caricati-Neto, A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: Implications of the Ca 2+ /cAMP intracellular signalling interaction. Eur. J. Pharmacol. 2016, 788, 255–260. [Google Scholar] [CrossRef]
- Tengholm, A.; Gylfe, E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes. Metab. 2017, 19, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Tucker, S.J.; Gribble, F.M.; Zhao, C.; Trapp, S.; Ashcroft, F.M. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 1997, 387, 179–183. [Google Scholar] [CrossRef]
- Deacon, C.F.; Lebovitz, H.E. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diabetes Obes. Metab. 2016, 18, 333–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaines, K.L.; Hamilton, S.; Boyd, A.E. Characterization of the sulfonylurea receptor on beta cell membranes. J. Biol. Chem. 1988, 263, 2589–2592. [Google Scholar]
- Aguilar-Bryan, L.; Nichols, C.; Wechsler, S.; Clement, J.; Boyd, A.; Gonzalez, G.; Herrera-Sosa, H.; Nguy, K.; Bryan, J.; Nelson, D. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 1995, 268, 423–426. [Google Scholar] [CrossRef]
- Costello, R.A.; Shivkumar, A. Sulfonylureas; StatPearls Publishing: Tampa, FL, USA; St. Petersburg, FL, USA, 2018. [Google Scholar]
- Colagiuri, S.; Matthews, D.; Leiter, L.A.; Chan, S.P.; Sesti, G.; Marre, M. The place of gliclazide MR in the evolving type 2 diabetes landscape: A comparison with other sulfonylureas and newer oral antihyperglycemic agents. Diabetes Res. Clin. Pract. 2018, 143, 1–14. [Google Scholar] [CrossRef]
- Babenko, A.P.; Gonzalez, G.; Bryan, J. Pharmaco-topology of Sulfonylurea Receptors: SEPARATE DOMAINS OF THE REGULATORY SUBUNITS OFK ATP CHANNEL ISOFORMS ARE REQUIRED FOR SELECTIVE INTERACTION WITH K+ CHANNEL OPENERS. J. Biol. Chem. 2000, 275, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Bonfanti, D.H.; Alcazar, L.P.; Arakaki, P.A.; Martins, L.T.; Agustini, B.C.; de Moraes Rego, F.G.; Frigeri, H.R. ATP-dependent potassium channels and type 2 diabetes mellitus. Clin. Biochem. 2015, 48, 476–482. [Google Scholar] [CrossRef]
- Bryan, J.; Crane, A.; Vila-Carriles, W.H.; Babenko, A.P.; Aguilar-Bryan, L. Insulin secretagogues, sulfonylurea receptors and K(ATP) channels. Curr. Pharm. Des. 2005, 11, 2699–2716. [Google Scholar] [CrossRef] [PubMed]
- Sturgess, N.; Cook, D.; Ashford, M.; Hales, C.N. THE SULPHONYLUREA RECEPTOR MAY BE AN ATP-SENSITIVE POTASSIUM CHANNEL. Lancet 1985, 326, 474–475. [Google Scholar] [CrossRef] [Green Version]
- King, G.F. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther. 2011, 11, 1469–1484. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.J.; Garcia, M.L. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, V.O.; Pasqualoto, K.F.M.; Picolo, G.; Chudzinski-Tavassi, A.M.; Cury, Y. Harnessing the knowledge of animal toxins to generate drugs. Pharmacol. Res. 2016, 112, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Eng, J.; Andrews, P.C.; Kleinman, W.A.; Singh, L.; Raufman, J.P. Purification and structure of exendin-3, a new pancreatic secretagogue isolated from Heloderma horridum venom. J. Biol. Chem. 1990, 265, 20259–20262. [Google Scholar]
- Raufman, J.P.; Singh, L.; Eng, J. Exendin-3, a novel peptide from Heloderma horridum venom, interacts with vasoactive intestinal peptide receptors and a newly described receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. 1991, 266, 2897–2902. [Google Scholar]
- Malhotra, R.; Singh, L.; Eng, J.; Raufman, J.-P. Exendin-4, a new peptide from Heloderma suspectum venom, potentiates cholecystokinin-induced amylase release from rat pancreatic acini. Regul. Pept. 1992, 41, 149–156. [Google Scholar] [CrossRef]
- Göke, R.; Fehmann, H.C.; Linn, T.; Schmidt, H.; Krause, M.; Eng, J.; Göke, B. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J. Biol. Chem. 1993, 268, 19650–19655. [Google Scholar]
- Parkes, D.G.; Pittner, R.; Jodka, C.; Smith, P.; Young, A. Insulinotropic actions of exendin-4 and glucagon-like peptide-1 in vivo and in vitro. Metabolism 2001, 50, 583–589. [Google Scholar] [CrossRef]
- Koole, C.; Savage, E.E.; Christopoulos, A.; Miller, L.J.; Sexton, P.M.; Wootten, D. Minireview: Signal Bias, Allosterism, and Polymorphic Variation at the GLP-1R: Implications for Drug Discovery. Mol. Endocrinol. 2013, 27, 1234–1244. [Google Scholar] [CrossRef] [Green Version]
- Yosida, M.; Dezaki, K.; Uchida, K.; Kodera, S.; Lam, N.V.; Ito, K.; Rita, R.S.; Yamada, H.; Shimomura, K.; Ishikawa, S.-e.; et al. Involvement of cAMP/EPAC/TRPM2 Activation in Glucose- and Incretin-Induced Insulin Secretion. Diabetes 2014, 63, 3394–3403. [Google Scholar] [CrossRef] [Green Version]
- Tsend-Ayush, E.; He, C.; Myers, M.A.; Andrikopoulos, S.; Wong, N.; Sexton, P.M.; Wootten, D.; Forbes, B.E.; Grutzner, F. Monotreme glucagon-like peptide-1 in venom and gut: one gene – two very different functions. Sci. Rep. 2016, 6, 37744. [Google Scholar] [CrossRef] [Green Version]
- Marenah, L.; Shaw, C.; Orr, D.F.; Mcclean, S.; Flatt, P.R. Isolation and characterisation of an unexpected class of insulinotropic peptides in the skin of the frog Agalychnis litodryas. Regul. Pept. 2004, 120, 33–38. [Google Scholar] [CrossRef]
- Toyama, M.; Carneiro, E.M.; Marangoni, S.; Barbosa, R.L.; Corso, G.; Boschero, A.C. Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets. Biochim. Biophys. Acta - Gen. Subj. 2000, 1474, 56–60. [Google Scholar] [CrossRef]
- Toyama, D.O.; Boschero, A.C.; Martins, M.A.; Fonteles, M.C.; Monteiro, H.S.; Toyama, M.H. Structure-Function Relationship of New Crotamine Isoform from the Crotalus durissus cascavella. Protein J. 2005, 24, 9–19. [Google Scholar] [CrossRef]
- Tamarina, N.A.; Kuznetsov, A.; Fridlyand, L.E.; Philipson, L.H. Delayed-rectifier (K V 2.1) regulation of pancreatic β-cell calcium responses to glucose: inhibitor specificity and modeling. Am. J. Physiol. Metab. 2005, 289, E578–E585. [Google Scholar]
- Nguyen, T.T.N.; Folch, B.; Létourneau, M.; Vaudry, D.; Truong, N.H.; Doucet, N.; Chatenet, D.; Fournier, A. Cardiotoxin-I: An Unexpectedly Potent Insulinotropic Agent. ChemBioChem 2012, 13, 1805–1812. [Google Scholar] [CrossRef]
- Abdel-wahab, Y.H.A.; Marenah, L.; Flatt, P.R.; Conlon, J.M. Insulin Releasing Properties of the Temporin Family of Antimicrobial Peptides. Protein Pept. Lett. 2007, 14, 702–707. [Google Scholar] [CrossRef]
- Abdel-Wahab, Y.H.A.; Power, G.J.; Ng, M.T.; Flatt, P.R.; Conlon, J.M. Insulin-releasing properties of the frog skin peptide pseudin-2 and its [Lys18]-substituted analoguee. Biol. Chem. 2008, 389, 143–149. [Google Scholar] [CrossRef]
- Abdel-wahab, Y.H.A.; Marenah, L.; Orr, D.F.; Shaw, C.; Flatt, P.R. Isolation and structural characterisation of a novel 13-amino acid insulin-releasing peptide from the skin secretion of Agalychnis calcarifer. Biol. Chem. 2005, 386, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Abdel-wahab, Y.H.A.; Patterson, S.; Flatt, P.R.; Conlon, J.M. Brevinin-2-related Peptide and its [D4K] Analogue Stimulate Insulin Brevinin-2-related Peptide and its [D4K] Analogue Stimulate Insulin Release In Vitro and Improve Glucose Tolerance in Mice Fed a High Fat Diet. Horm. Metab. Res. 2010, 42, 652–656. [Google Scholar] [CrossRef]
- Conlon, J.M.; Al-ghaferi, N.; Ahmed, E.; Meetani, M.A.; Leprince, J.; Nielsen, P.F. Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae). Peptides 2010, 31, 989–994. [Google Scholar] [CrossRef]
- Ojo, O.O.; Conlon, J.M.; Flatt, P.R.; Abdel-wahab, Y.H.A. Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells. Biochem. Bioph. Res. Commun. 2013, 431, 14–18. [Google Scholar] [CrossRef]
- Owolabi, B.O.; Ojo, O.O.; Srinivasan, D.K.; Conlon, J.M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. In vitro and in vivo insulinotropic properties of the multifunctional frog skin peptide hymenochirin-1B: a structure-activity study. Amino Acids 2016, 48, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Zahid, O.K.; Mechkarska, M.; Ojo, O.O.; Abdel-wahab, Y.H.A.; Flatt, P.R.; Meetani, M.A.; Michael, J. Caerulein-and xenopsin-related peptides with insulin-releasing activities from skin secretions of the clawed frogs, Xenopus borealis and Xenopus amieti (Pipidae). Gen. Comp. Endocrinol. 2011, 172, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Marenah, L.; Flatt, P.R.; Orr, D.F.; Shaw, C. Skin secretions of Rana saharica frogs reveal antimicrobial peptides esculentins-1 and -1B and brevinins-1E and -2EC with novel insulin releasing activity. J. Endocrinol. 2006, 188, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Baptista-Saidemberg, N.B.; Saidemberg, D.M.; Ribeiro, R.A.; Arcuri, H.A.; Palma, M.S.; Carneiro, E.M. Agelaia MP-I: A peptide isolated from the venom of the social wasp, Agelaia pallipes pallipes, enhances insulin secretion in mice pancreatic islets. Toxicon 2012, 60, 596–602. [Google Scholar] [CrossRef] [Green Version]
- Safavi-Hemami, H.; Gajewiak, J.; Karanth, S.; Robinson, S.D.; Ueberheide, B.; Douglass, A.D.; Schlegel, A.; Imperial, J.S.; Watkins, M.; Bandyopadhyay, P.K.; et al. Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proc. Natl. Acad. Sci. USA 2015, 112, 1743–1748. [Google Scholar] [CrossRef] [Green Version]
- Menting, J.G.; Gajewiak, J.; MacRaild, C.A.; Chou, D.H.-C.; Disotuar, M.M.; Smith, N.A.; Miller, C.; Erchegyi, J.; Rivier, J.E.; Olivera, B.M.; et al. A minimized human insulin-receptor-binding motif revealed in a Conus geographus venom insulin. Nat. Struct. Mol. Biol. 2016, 23, 916–920. [Google Scholar] [CrossRef]
- Martins, R.D.; Alves, R.S.; Martins, A.M.C.; Barbosa, P.S.F.; Evangelista, J.S.A.M.; Evangelista, J.J.F.; Ximenes, R.M.; Toyama, M.H.; Toyama, D.O.; Souza, A.J.F.; et al. Purification and characterization of the biological effects of phospholipase A2 from sea anemone Bunodosoma caissarum. Toxicon 2009, 54, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Morgan, N.G.; Montague, W. Stimulation of insulin secretion from isolated rat islets of Langerhans by melittin. Biosci. Rep. 1984, 4, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Morgan, N.G.; Rumford, G.M.; Montague, W. Studies on the mechanism by which melittin stimulates insulin secretion from isolated rat islets of Langerhans. Biochim. Biophys. Acta - Mol. Cell Res. 1985, 845, 526–532. [Google Scholar] [CrossRef]
- Metz, S.A. Lack of specificity of melittin as a probe for insulin release mediated by endogenous phospholipase A2 or lipoxygenase. Biochem. Pharmacol. 1986, 35, 3371–3381. [Google Scholar] [CrossRef]
- Fagundes, F.H.R.; Aparício, R.; dos Santos, M.L.; Diz Filho, E.B.S.; Oliveira, S.C.B.; Toyama, D.O.; Toyama, M.H. A catalytically inactive Lys49 PLA2 isoform from Bothrops jararacussu venom that stimulates insulin secretion in pancreatic beta cells. Protein Pept. Lett. 2011, 18, 1133–1139. [Google Scholar] [CrossRef]
- Juhl, K.; Efanov, A.M.; Olsen, H.L.; Gromada, J. Secretory phospholipase A 2 is released from pancreatic. Biochem. Bioph. Res. Commun. 2003, 310, 274–279. [Google Scholar] [CrossRef]
- Ojo, O.O.; Abdel-wahab, Y.H.A.; Flatt, P.R.; Conlon, J.M. Insulinotropic Actions of the Frog Skin Host-Defense Peptide Alyteserin-2a: A Structure – Activity Study. Chem. Biol. Drug. Des. 2013, 82, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.O.; Srinivasan, D.K.; Owolabi, B.O.; Vasu, S. Esculentin-2CHa-Related Peptides Modulate Islet Cell Function and Improve Glucose Tolerance in Mice with Diet-Induced Obesity and Insulin Resistance. PLoS ONE 2015, 1–17. [Google Scholar] [CrossRef]
- Toyama, M.H.; Carneiro, E.M.; Marangoni, S.; Amaral, M.E.C.; Velloso, L.A.; Boschero, A.C. Isolation and characterization of a convulxin-like protein from Crotalus durissus collilineatus venom. J. Protein Chem. 2001, 20, 585–591. [Google Scholar] [CrossRef]
- Lang, J. Ca2+-independent insulin exocytosis induced by alpha -latrotoxin requires latrophilin, a G protein-coupled receptor. EMBO J. 1998, 17, 648–657. [Google Scholar] [CrossRef]
- Silva, A.M.; Liu-Gentry, J.; Dickey, A.S.; Barnett, D.W.; Misler, S. α-Latrotoxin increases spontaneous and depolarization-evoked exocytosis from pancreatic islet β-cells. J. Physiol. 2005, 565, 783–799. [Google Scholar] [CrossRef] [PubMed]
- Lajus, S.; Vacher, P.; Huber, D.; Dubois, M.; Benassy, M.-N.; Ushkaryov, Y.; Lang, J. α-Latrotoxin Induces Exocytosis by Inhibition of Voltage-dependent K + Channels and by Stimulation of L-type Ca 2+ Channels via Latrophilin in β-Cells. J. Biol. Chem. 2006, 281, 5522–5531. [Google Scholar] [CrossRef]
- Jones, P.M.; Mann, F.M.; Persaud, S.J.; Wheeler-Jones, C.P.D. Mastoparan stimulates insulin secretion from pancreatic β-cells by effects at a late stage in the secretory pathway. Mol. Cell. Endocrinol. 1993, 94, 97–103. [Google Scholar] [CrossRef]
- Komatsu, M.; McDermott, A.M.; Gillison, S.L.; Sharp, G.W.G. Mastoparan stimulates exocytosis at a Ca2+-independent late site in stimulus-secretion coupling. Studies with the RINm5F β-cell line. J. Biol. Chem. 1993, 268, 23297–23306. [Google Scholar]
- Eddlestone, G.T.; Komatsu, M.; Shen, L.; Sharp, G.W. Mastoparan increases the intracellular free calcium concentration in two insulin-secreting cell lines by inhibition of ATP-sensitive potassium channels. Mol. Pharmacol. 1995, 47, 787–797. [Google Scholar] [PubMed]
- Straub, S.G.; James, R.F.L.; Dunne, M.J.; Sharp, G.W.G. Glucose augmentation of mastoparan-stimulated insulin secretion in rat and human pancreatic islets. Diabetes 1998, 47, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Noda, M.; Cerione, R.A.; Sharp, G.W.G. A Link between Cdc42 and Syntaxin Is Involved in Mastoparan-Stimulated Insulin Release. Biochemistry 2002, 41, 9663–9671. [Google Scholar] [CrossRef]
- Amin, R.H.; Chen, H.-Q.; Veluthakal, R.; Silver, R.B.; Li, J.; Li, G.; Kowluru, A. Mastoparan-Induced Insulin Secretion from Insulin-Secreting βTC3 and INS-1 Cells: Evidence for Its Regulation by Rho Subfamily of G Proteins. Endocrinology 2003, 144, 4508–4518. [Google Scholar] [CrossRef] [Green Version]
- Kinch, M.S.; Haynesworth, A.; Kinch, S.L.; Hoyer, D. An overview of FDA-approved new molecular entities: 1827–2013. Drug Discov. Today 2014, 19, 1033–1039. [Google Scholar] [CrossRef]
- Cury, Y.; Picolo, G. Animal toxins as analgesics-an overview. Drug News Perspect. 2006, 19, 381–392. [Google Scholar]
- Harvey, A.L. Toxins and drug discovery. Toxicon 2014, 92, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Bhavsar, S.; Mudaliar, S.; Cherrington, A. Evolution of Exenatide as a Diabetes Therapeutic. Curr. Diabetes Rev. 2013, 9, 161–193. [Google Scholar]
- Hui, H.; Zhao, X.; Perfetti, R. Structure and function studies of glucagon-like peptide-1 (GLP-1): the designing of a novel pharmacological agent for the treatment of diabetes. Diabetes. Metab. Res. Rev. 2005, 21, 313–331. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Zhong, J.; Goud, A. Emerging utility of once-weekly exenatide in patients with type 2 diabetes. Diabetes, Metab. Syndr. Obes. Targets Ther. 2015, 62, 505. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Okerson, T.; Viswanathan, P.; Guan, X.; Holcombe, J.H.; MacConell, L. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr. Med. Res. Opin. 2008, 24, 2943–2952. [Google Scholar] [CrossRef]
- Pinelli, N.R.; Jantz, A.; Smith, Z.; Abouhassan, A.; Ayar, C.; Jaber, N.A.; Clarke, A.W.; Commissaris, R.L.; Jaber, L.A. Effect of Administration Time of Exenatide on Satiety Responses, Blood Glucose, and Adverse Events in Healthy Volunteers. J. Clin. Pharmacol. 2011, 51, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.M.B.; Stanley, S.A.; Davis, R.; Brynes, A.E.; Frost, G.S.; Seal, L.J.; Ghatei, M.A.; Bloom, S.R. Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. Am. J. Physiol. Metab. 2001, 281, E155–E161. [Google Scholar] [CrossRef] [PubMed]
- Fehse, F.; Trautmann, M.; Holst, J.J.; Halseth, A.E.; Nanayakkara, N.; Nielsen, L.L.; Fineman, M.S.; Kim, D.D.; Nauck, M.A. Exenatide augments first- and second-phase insulin secretion in response to intravenous glucose in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 2005, 90, 5991–5997. [Google Scholar] [CrossRef]
- Molina Vega, M.; Araceli, M.G.; Tinahones, F.J. Pharmacokinetic drug evaluation of exenatide for the treatment of type 2 diabetes. Expert Opin. Drug Metab. Toxicol. 2018, 14, 207–217. [Google Scholar] [CrossRef]
- Knop, F.K.; Brønden, A.; Vilsbøll, T. Exenatide: pharmacokinetics, clinical use, and future directions. Expert Opin. Pharmacother. 2017, 18, 555–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.D.; Safavi-Hemami, H. Venom peptides as pharmacological tools and therapeutics for diabetes. Neuropharmacology 2017, 127, 79–86. [Google Scholar] [CrossRef]
- Redwan, E.M. Animal-Derived Pharmaceutical Proteins. J. Immunoass. Immunochem. 2009, 30, 262–290. [Google Scholar] [CrossRef]
- Graaf, C.d.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.-M.; Liao, J.; Fletcher, M.M.; Yang, D.; et al. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016, 68, 954–1013. [Google Scholar] [CrossRef]
- Ramu, Y.; Xu, Y.; Lu, Z. A novel high-affinity inhibitor against the human ATP-sensitive Kir6.2 channel. J. Gen. Physiol. 2018, 150, 969–976. [Google Scholar] [CrossRef]
- Moreno, M.; Giralt, E. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan. Toxins 2015, 7, 1126–1150. [Google Scholar] [CrossRef] [Green Version]
- Conlon, J.M.; Mechkarska, M.; Abdel-Wahab, Y.H.; Flatt, P.R. Peptides from frog skin with potential for development into agents for Type 2 diabetes therapy. Peptides 2018, 100, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Mclaughlin, C.M.; Lampis, S.; Mechkarska, M.; Coquet, L.; Jouenne, T.; King, J.D.; Mangoni, M.L.; Lukic, M.L.; Scorciapino, M.A.; Conlon, J.M. Purification, Conformational Analysis, and Properties of a Family of Tigerinin Peptides from Skin Secretions of the Crowned Bullfrog Hoplobatrachus occipitalis. J. Nat. Prod. 2016, 79, 2350–2356. [Google Scholar] [CrossRef] [PubMed]
- Manzo, G.; Scorciapino, M.A.; Srinivasan, D.; Attoub, S.; Mangoni, M.L.; Rinaldi, A.C.; Casu, M.; Flatt, P.R.; Conlon, J.M. Conformational Analysis of the Host-Defense Peptides Pseudhymenochirin-1Pb and -2Pa and Design of Analogues with Insulin-Releasing Activities and Reduced Toxicities. J. Nat. Prod. 2015, 78, 3041–3048. [Google Scholar] [CrossRef]
- Ojo, O.O.; Flatt, P.R.; Mechkarska, M.; Conlon, J.M. Tigerinin-1R: a potent, non-toxic insulin-releasing peptide isolated from the skin of the Asian frog, Hoplobatrachus rugulosus. Diabetes Obes. Metab. 2011, 13, 1114–1122. [Google Scholar] [CrossRef]
- Srinivasan, D.; Ojo, O.O.; Abdel-wahab, Y.H.A.; Flatt, P.R.; Guilhaudis, L.; Conlon, J.M. Insulin-releasing and cytotoxic properties of the frog skin peptide, tigerinin-1R: a structure – activity study. Peptides 2014, 55, 23–31. [Google Scholar] [CrossRef]
- Attoub, S.; Mechkarska, M.; Sonnevend, A.; Radosavljevic, G.; Jovanovic, I.; Lukic, M.L.; Conlon, J.M. Peptides Esculentin-2CHa: A host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Peptides 2013, 39, 95–102. [Google Scholar] [CrossRef]
- Mo, G.-X.; Bai, X.-W.; Li, Z.-J.; Yan, X.-W.; He, X.-Q.; Rong, M.-Q. A Novel Insulinotropic Peptide from the Skin Secretions of Amolops loloensis Frog. Nat. Prod. Bioprospect. 2014, 4, 309–313. [Google Scholar] [CrossRef] [Green Version]
- Marenah, L.; Flatt, P.R.; Orr, D.F.; Clean, S.M.; Shaw, C. Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris. J. Endocrinol. 2004, 181, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Conlon, J.M.; Abdel-wahab, Y.H.A.; Flatt, P.R.; Vaudry, H.; Jouenne, T.; Condamine, E. A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog Leptodactylus laticeps (Leptodactylidae). Peptides 2009, 30, 888–892. [Google Scholar] [CrossRef]
- Mechkarska, M.; Ojo, O.O.; Meetani, M.A.; Coquet, L.; Jouenne, T.; Abdel-wahab, Y.H.A.; Flatt, P.R.; King, J.D.; Conlon, J.M. Peptidomic analysis of skin secretions from the bullfrog Lithobates catesbeianus (Ranidae) identifies multiple peptides with potent insulin-releasing activity. Peptides 2011, 32, 203–208. [Google Scholar] [CrossRef]
- Conlon, J.M.; Power, G.J.; Abdel-wahab, Y.H.A.; Flatt, P.R.; Jiansheng, H.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H. A potent, non-toxic insulin-releasing peptide isolated from an extract of the skin of the Asian frog, Hylarana guntheri (Anura:Ranidae). Regul. Pept. 2008, 151, 153–159. [Google Scholar] [CrossRef]
- Conlon, J.M.; Musale, V.; Attoub, S.; Mangoni, L.; Leprince, J.; Coquet, L.; Jouenne, T.; Abdel-wahab, Y.H.A.; Flatt, R.; Rinaldi, A.C. Cytotoxic peptides with insulin-releasing activities from skin secretions of the Italian stream frog Rana italica ( Ranidae ). J. Pept. Sci. 2017, 23, 769–776. [Google Scholar] [CrossRef]
- Moore, S.W.M.; Bhat, V.K.; Flatt, P.R.; Gault, V.A.; McClean, S. Isolation and characterisation of insulin-releasing compounds from Crotalus adamanteus, Crotalus vegrandis and Bitis nasicornis venom. Toxicon 2015, 101, 48–54. [Google Scholar] [CrossRef]
- Nogueira, T.C.A.; Ferreira, F.; Toyama, M.H.; Stoppiglia, L.F.; Marangoni, S.; Boschero, A.C.; Carneiro, E.M. Characterization of the insulinotropic action of a phospholipase A2 isolated from Crotalus durissus collilineatus rattlesnake venom on rat pancreatic islets. Toxicon 2005, 45, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Dutertre, S.; Lewis, R.J. Use of Venom Peptides to Probe Ion Channel Structure and Function. J. Biol. Chem. 2010, 285, 13315–13320. [Google Scholar] [CrossRef]
- Wan, E.; Kushner, J.S.; Zakharov, S.; Nui, X.; Chudasama, N.; Kelly, C.; Waase, M.; Doshi, D.; Liu, G.; Iwata, S.; et al. Reduced vascular smooth muscle BK channel current underlies heart failure-induced vasoconstriction in mice. FASEB J. 2013, 27, 1859–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Lee, A.; Campbell, E.; MacKinnon, R. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. Elife 2013, 2, 1–22. [Google Scholar] [CrossRef]
Mode of Action | Toxins | Species | Sequence | aa | Summary | Ref. |
---|---|---|---|---|---|---|
Specific Mechanism | ||||||
GLP-1 receptor Agonist | Exendin-4 (Exenatide; Byetta ™) | Heloderma Suspectum | HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS | 39 | Highly stable GLP-1 analogue, promotes glucose-dependent insulin secretion, inhibits glucagon secretion and suppresses appetite; Increase in cAMP signaling in pancreatic acinar cells with superior selectivity; Ex-4 may stimulate β-cells cooperatively by inhibiting KATP channels and activating TRPM2 channels (potential target for T2D); Human GLP-1 and ex-4 show relative bias for cAMP and intracellular Ca2 mobilization (involved in promotion of insulin release) | [237,238,239,240,241,242,243] |
Platypus GLP-1 (pGLP-1) | Ornithorhynchus Anatinus | HSEGTFTNDVTRLLEEKATSEFIAWLLKGLE | 31 | Stable GLP-1 analogue with distinct signal bias; stimulates insulin release in cultured rodent islets; Resistance to DPP-4 cleavage; Biophysical characteristics that may offer valuable insight in the development of new anti-diabetic agents | [244] | |
Echidna GLP-1 (eGLP-1) | Tachyglossus Aculeatus | HFDGVYTDYFSRYLEEKATNEFIDWLLKGQE | 31 | |||
Insulinotropic peptide | FSIP | Agalychnis litodryas | AVWKDFLKNIGKAAGKAVLNSVTDMVNE | 28 | Clinical phase 3; Type 2 diabetes | [245] |
Modulate Na+ channel inactivation. | TsTx-V | Tityus serrulatus | KKDGYPVEGDNCAFACFGYDNAYCDKUIKDKKADDGYCYWSPDCYCYGLPEHILKEPTKTSGRC | 64 | Membrane depolarization and increased relative duration of electrical activity during the active phase. | [119] |
Crotamine Two isoforms (F2 – F3) | Crotalus durissus terrificus | YKQCHKKGGHCFPKEKICLPPSSDFGKMDCRWRWKCCKKGSG | 42 | Increases the peak of Na+ currents and inhibits the direct transition of the channel from closed to inactivated states; Insulin secretion in dose-dependent manner. | [246] | |
Cro 2 | Crotalus durissus cascavella | YKRCHKKGGHCFPKEKICLPPSSDLGKMDCRWKRKCCKKGSGK. | 43 | Cro 2 binding to open state of the Na+ channels, induces a dose-dependent manner of insulin secretion; The most important region for the binding of Cro 2 to the Na+ channels involved the C-terminal region. | [247] | |
BK channel blocker | Iberiotoxin (IbTx) | Buthus tamulus | ZFTDVDCSVSKECWSVCKDLFGVDRGKCMGKKCRCYQ | 37 | Increases action potential amplitude, enhances insulin secretion by 70% and increases resting membrane conductance. | [39] |
Kv2.1 channel blocker | Hanatoxin (HaTX) | Grammostola rosea | ECRYLFGGCKTTSDCCKHLGCKFRDKYCAWDFTFS | 35 | Inhibits the delayed rectifier current by 65% at +20 mV; Induces a right shift in the current-voltage (I-V) relationship; Affects oscillatory [Ca2]int responses in mouse and human islets in the presence of glucose. | [181,248] |
Kv2.1 and Kv2.2 channel blocker (β cell IDR ) | Guangxitoxin-1 (GxTX-1) | Chilobrachys Guangxiensis | EGECGGFWWKCGSGKPACCPKYVCSPKWGLCNFPMP | 36 | Inhibits 90% of the β cell IDR; Increases [Ca2]int and stimulated insulin secretion in a glucose-dependent manner. | [182] |
KV1.7 channel blocker | Conkunitzin-S1 (Conk-S1) | Striated cone | KDRPSLCDLPADSGSGTKAEKRIYYNSARKQCLRFDYTGQGGNENNFRRTYDCQRTCLYT (amidation of the C-terminal) | 60 | Conk-S1 as a specific blocker of Kv1.7 and indicates that Kv1.7 activity contributes actively to the control of GSIS in pancreatic β cells without affecting basal glucose; | [180] |
Non-specific Mechanism | ||||||
K+ channel Blocker (by similarity) | Cardiotoxin-I (CTX-I) | Naja kaouthia | LKCNKLIPIASKTCPAGKNLCYKMFMMSDLTIPVKRGCIDVCPKNSLLVKYVCCNTDRCN | 60 | Stimulates insulin secretion in a concentration-dependent manner in the absence and presence of glucose without affecting cell viability and integrity; Increases the mobilization of [Ca2]int; Insulinotropic activity does not involve GLP-1R signaling. | [249] |
KATP channel independent pathway | Temporin-1Oe | R. ornativentris | ILPLLGNLLNGLL.NH2 | 13 | Stimulates in vitro insulin release from BRIN-BD11 rat insulinoma derived cells; does not stimulate release of the cytosolic enzyme LDH. | [250] |
Temporin-1Va Temporin-1Vc Temporin-1Vb | R. virgatipes | FLSSIGKILGNLL.NH2 FLPLVTMLLGKLF.NH2 FLSIIAKVLGSLF.NH2 | 13 | Small but significant increases in insulin release with no increased rate of LDH. | [250] | |
Temporin-1DRb | R. draytonii | NFLGTLVNLAKKIL.NH2 | 14 | Stimulates in vitro insulin release from BRIN-BD11 rat insulinoma-derived cells; does not stimulate release of the cytosolic enzyme LDH. | [250] | |
Temporin-1TGb | R. tagoi | AVDLAKIANKVLSSLF.NH2 | 16 | Stimulates in vitro insulin release from BRIN-BD11 rat insulinoma derived cells; does not stimulate release of the cytosolic enzyme LDH. | [250] | |
Ca2+-independent pathways | Pseudin-2 | Pseudis paradoxa | GLNALKKVFQGIHEAIKLINNHVQ | 24 | Stimulates insulin release from BRIN-BD11. | [251] |
GLP-1 receptor Agonist | RK-13 | Agalychnis calcarifer | RRKPLFPLIPRPK | 13 | Stimulated insulin release in a dose-dependent, glucose-sensitive manner, exerting its effects through a cyclic AMP-protein kinase A pathway independent of pertussis toxin-sensitive G proteins. | [252] |
GLP-1 receptor Agonist | Brevinin-2-Related Peptide | Lithobates septentrionals | GIWDTIKSMGKVFAGKILQNL.NH2 | 21 | The rate of insulin release increased to 222 % of basal rate. | [253] |
Magainin-AM1 Magainin-AM2 | Xenopus amieti | GIKEFAHSLGKFGKAFLGEIMKS GVSKILHSAGKFGKAFLGEIMKS | 23 | All peptides produced a significant increase over the basal rate of insulin release; Magainin-AM2 was the most potent peptide and Magainin-AM1 stimulated GLP-1 release. | [254,255] | |
Hymenochirin–1B | Hymenochirus boettgeri | IKLSPETKDNLKKVLKGAIKGAIAVAKMV.NH2 | 29 | This peptide produced a concentration-dependent increase in the rate of insulin release from BRIN-BD11 cells without cytotoxicity | [256] | |
Caerulein-B1 | Xenopus borealis | EQDY(SO3)GTGWMDF | 11 | At concentrations ≥30 nM stimulates the rate of insulin secretion from BRIN-BD11 cells with a maximum response (360% of basal rate) at 3 µM | [257] | |
PGLa-AM1 PGLa-AM2 XPF-AM1 CPF-AM1 CPF-AM3 CPF-AM4 CPF-AM2 | Xenopus amieti | GMASKAGSVLGKVAKVALKAAL.NH2 GMASTAGSVLGKLAKAVAIGAL.NH2 GWASKIAQTLGKMAKVGLQELIQPK GLGSVLGKALKIGANLL.NH2 GIGSALAKAAKLVAGIV.NH2 GLGSVLGKILKMGANLLGGAPKGA GLGSLVGNALRIGAKLL.NH2 | 22 22 25 17 17 24 17 | All peptides produced a significant (p < 0.05) increase over the basal rate of release at concentrations P300 nM. Magainin-AM2 was the most potent peptide, producing a significant (p < 0.05) increase at a concentration of 1 nM. CPF-AM1 was the most effective peptide, producing a maximum response 3.2-fold greater than basal rate (p < 0.001) at 3 µM concentration | [254,255] | |
G protein interaction | Esculentin-1b | Pelophylax saharicus | GIFSKLAGKKLKNLLISGLKNVGKEVGMDVVRTGIDIAGCKIKGEC | 46 | Stimulates insulin release from rat RINm5F insulinoma-derived cells and increases intracellular Ca2+ concentrations | [258] |
Agelaia MP-I (AMP-I) | Agelaia pallipes pallipes | INWLKLGKAIIDAL–NH2 | 14 | Increases glucose-induced insulin secretion in a dose-dependent manner and this effect was not due to lysis process; The mechanism involved in this modulation is independent of the KATP and L-type Ca2+ channels, suggesting a different mechanism for this peptide, possibly by a G protein interaction. | [259] | |
Insulin receptor agonist | Insulin 1 (Con- Ins G1) | Conus geographus | GVVgHCCHRPCSNAEFKKYC (A chain) TFDTOKHRCSGSgITNSYMDLCYR (B chain) | 44 | Con-Ins G1 the smallest insulin identified from a natural source; Injection of Con-Ins G1 into zebrafish produced a rapid drop in blood glucose with a potency comparable to that of human insulin; Con-Ins G1 could be an effective drug for T1D. | [260,261] |
Phospholipase A2 (PLA2) arachidonic acid release | BcPLA21 | Bunodosoma caissarum | GATIMPGTLWCGKGNSAADYLQLGVWKDTAHCCRDHDGC | 39 | Strongly induces insulin secretion only in presence of high glucose concentration; The enzymatic activity of BcPLA21 is not required for its pharmacological activity. | [262] |
Melittin | Apis mellifera | GIGAVLKVLTTGLPALISWIKRKRQQ | 26 | Stimulates insulin secretion in isolated rat islets in a dose-dependent manner by activating phospholipase A2 in islet cells, causing release of arachidonic acid from membrane phospholipid; The effect on insulin secretion was dependent on extracellular calcium and did not require the presence of glucose. | [263,264,265] | |
BjVIII Lys49-PLA2 phospholipase A2 (sPLA2) isoform | Bothrops jararacussu | SLFELGKMILQETGKNPAKSYGAYGCNCGVLGRGGPKDATDRCCYVHKCCYKKVTGCDPKKDRYSYSWKDKTIVCGENNPCLKELCECDKAVAICLRENL GTYNKKYRYHLKPFCKKADPC 38DATDRCCYVHK48 new isoform Lys49-PLA2 20SYGAYGCNCGVLRGGPK36, the calcium binding region | 121 | Enhances insulin secretion by increasing calcium entry into pancreatic β cells; hyperactivating depolarization-induced exocytosis; does not show significant enzymatic activity; Arachidonic acid induces an increase in insulin secretion, which may be due to potential interaction with K+ channels and the stimulation of adenylyl cyclase guanydyl cyclase, proteinkinase C (PKC),the Ca2+/calmodulin-dependent protein kinase; inhibition of KATP channels | [266] | |
Phospholipase A2 (PLA2) arachidonic acid release | Phospholipase A2 | Naja mossambica mossambica | NLYQFKNMIHCTVPSRPWWHFADYGCYCGRGGKGTPVDDLDRCCQVHDNCYEKAGKMGCWPYFTLYKYKCSQGKLTCSGGNSKCGAAVCNCDLVAANCFAGARYIDANYNINFKKRCQ | 118 | Induces insulin secretion also involved in block of ATP-dependent K channels, increases cytosolic free Ca2+ and insulin exocytosis; Despite the differing opinions on the mechanism of action of PLA2-induced insulin secretion in β cells, its role as a potent insulin secretagogue is without question. | [267] |
Mechanism involving membrane depolarization and increase of intracellular Ca2+ | Alyteserin-2a | Alytes. obstetricans | ILGKLLSTAAGLLSNL.NH2 | 16 | Significant stimulation of the rate of insulin release from BRIN-BD11. | [268] |
Esculentin-2CHa | Lithobates chiricahuensis | GFSSIFRGVAKFASKGLGKDLAKLGVDLVACKISKQC | 37 | Stimulates insulin secretion from rat BRIN-BD11 clonal pancreatic β cells | [269] | |
PTK-dependent pathway | Convulxin-Like Protein (Cvx-like) | Crotalus durissus collilineatus | α subunit: GLHCPSDWYAYDGHCYKIFNEEMNWED β subunit: GFCCPSHWSSYSRYCYKFFSQEMNWEDAEK | 57 | Insulin secretion induced by Cvx-like protein may be mediated by a protein tyrosine kinase-dependent pathway and may involve other membrane receptors, such as GP VI or Scr family proteins. | [270] |
Exocytosis process mediated by receptor | α-Latrotoxin (α -LTX) | Latrodectus tredecimguttatus | Polypeptide: 21-1199 aa | α-LTX receptors are expressed on primary β cells and the toxin induces exocytosis of the peptide hormone insulin in a glucose-dependent manner in both the presence and absence of extracellular Ca2+; rises in cytosolic Ca2+, large conductance of non-selective cation channels; and Ca2+ dependent insulin granule exocytosis; α-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K+ and Ca2+ channels as novel targets of its secretory activity. | [271,272,273] | |
Insulinotropic toxin; GTP-binding protein; Exocytosis process; KATP Channel inhibition; Direct activation of Rho protein | Mastoparan Versatile peptide | Vespula lewisii | INLKALAALAKKIL | 14 | Mastoparan, an amphiphilic tetradecapeptide, inserts itself into the phospholipid bilayer of the plasma membrane and displays four positive charges near the inner surface of the membrane. This structurally mimics the positively charged loops of hormone receptors that associate with the R-subunit of heterotrimeric GTP-binding proteins; Mastoparan suppresses KATP channel activity and causes depolarization, implicating this pathway in mastoparan-induced [Ca2+]ı elevation; Mastoparan had no effect on cellular CAMP levels. | [274,275,276,277,278,279] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarmiento, B.E.; Santos Menezes, L.F.; Schwartz, E.F. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019, 24, 1846. https://doi.org/10.3390/molecules24101846
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules. 2019; 24(10):1846. https://doi.org/10.3390/molecules24101846
Chicago/Turabian StyleSarmiento, Beatriz Elena, Luis Felipe Santos Menezes, and Elisabeth F. Schwartz. 2019. "Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects" Molecules 24, no. 10: 1846. https://doi.org/10.3390/molecules24101846
APA StyleSarmiento, B. E., Santos Menezes, L. F., & Schwartz, E. F. (2019). Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules, 24(10), 1846. https://doi.org/10.3390/molecules24101846