Potent Anti-Ovarian Cancer with Inhibitor Activities on Both Topoisomerase II and V600EBRAF of Synthesized Substituted Estrone Candidates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results
2.1.1. Chenical Synthesis
2.1.2. Biological Screening
In Vitro Cytotoxic Activities
In Vivo Anti-Ovarian Cancer
2.1.3. Inhibition of Topoisomerase II Activities
2.1.4. In Vitro Kinase Assay
2.2. Discussion
3. Materials and Methods
3.1. Chemical Synthesis
3.1.1. Synthesis of 3-Hydroxy-16-[substituted]-estra-1(10),2,4-trien-17-ones (2a,b)
3-Hydroxy-16-[ethylene]-estra-1(10),2,4-trien-17-one (2b)
3.1.2. Synthesis of 16-(α-alkoxy-alkane)-17-hydrazino-estra-1(10),2,4-trien[17,16-c]-3-ol and their N-substituted derivatives (3a–l)
16-(α-Methoxy-methane)-17-hydrazino-estra-1(10),2,4-trien-[17,16-c]-3-ol (3a)
16-(α-Methoxy-ethane)-17-hydrazino-estra-1(10),2,4-trien[17,16-c]-3-ol (3b)
16-(α-Ethoxy-methane)-17-hydrazino-estra-1(10),2,4-trien-[17,16-c]-3-ol (3c)
16-(α-Ethoxy-ethane)-17-hydrazino-estra-1(10),2,4-trien-[17,16-c]-3-ol (3d)
16-(α-Methoxy-methane)-17-[N-methyl-hydrazino]estra-1(10),2,4-trien[17,16-c]-3-ol (3e)
16-(α-Methoxy-ethane)-17-[N-methyl-hydrazino]-estra-1(10),2,4-trien-[17,16-c]-3-ol (3f)
16-(α-Ethoxy-methane)-17-[N-methyl-hydrazino]-estra-1(10),2,4-trien-[17,16-c]-3-ol (3g)
16-(α-Ethoxy-ethane)-17-[N-methyl-hydrazino]-estra-1(10),2,4-trien-[17,16-c]-3-ol (3h)
16-(α-Methoxy-methane)-17-[N-phenyl-hydrazino]-estra-1(10),2,4-trien-[17,16-c]-3-ol (3i)
16-(α-Methoxy-ethane)-17-[N-phenyl-hydrazino]-estra-1(10),2,4-trien-[17,16-c]-3-ol (3j)
16-(α-Ethoxy-methane)-17-[N-phenyl-hydrazino]-estra-1(10),2,4-trien-[17,16-c]-3-ol (3k)
16-(α-Ethoxy-ethane)-17-[N-phenyl-hydrazino]-estra-1(10),2,4-trien-[17,16-c]-3-ol (3l)
3.1.3. Synthesis of pyrazoline-3-ol derivatives (4a–d)
1`-Methyl-1`H-estra-1(10),2,4-trien-[17,16-c]pyrazoline-3-ol (4a)
1`-Methyl -1`H-5`-methyl-estra-1(10),2,4-trien-[17,16-c]pyrazoline-3-ol (4b)
1`-Phenyl-1`H-estra-1(10),2,4-trien-[17,16-c]pyrazoline-3-ol (4c)
1`-Phenyl-1`H-5`-methyl-estra-1(10),2,4-trien-[17,16-c]pyrazoline-3-ol (4d)
3.2. Biological Screening
3.2.1. In Vitro Cytotoxic Activities
3.2.2. In Vitro Anti-Ovarian Xenograft Model
3.2.3. Topoisomerase II Inhibition
3.2.4. In Vitro Kinase Inhibition
Protein Expression and Purification
In Vitro ELISA-Based Kinase Assay
3.2.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gupta, A.; Kumar, B.S.; Negi, A.S. Current status on development of steroids as anticancer agents. J. Steroid Biochem. Mol. Boil. 2013, 137, 242–270. [Google Scholar] [CrossRef] [PubMed]
- Amr, A.E.-G.E.; El-Naggar, M.; Al-Omar, M.A.; Elsayed, E.A.; Abdalla, M.M. In vitro and in vivo anti-breast cancer activities of some synthesized pyrazolinyl-estran-17-one candidates. Molecules 2018, 23, 1572. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Al-Awadi, S.; Oommen, S. Antioxidant activity of biotransformed sex hormones facilitated by Bacillus stearothermophilus. In Advanced Protocols in Oxidative Stress II, Methods in Molecular Biology; Armstrong, D., Ed.; Springer: Basel, Switzerland, 2010. [Google Scholar]
- Schönecker, B.; Lange, C.; Kötteritzsch, M.; Günther, W.; Weston, J.; Anders, E.; Görls, H. Conformational design for 13α-Steroids. J. Org. Chem. 2000, 65, 5487–5497. [Google Scholar] [CrossRef]
- Jovanovic-Santa, S.; Petrović, J.; Andrić, S.; Kovačević, R.; Ðurendić, E.; Sakač, M.; Lazar, D.; Stanković, S. Synthesis, structure, and screening of estrogenic and antiestrogenic activity of new 3,17-substituted- 16,17-seco-estratriene derivatives. Bioorg. Chem. 2003, 31, 475–484. [Google Scholar] [CrossRef]
- Minorics, R.; Bózsity, N.; Wölfling, J.; Mernyák, E.; Schneider, G.; Márki, A.; Falkay, G.; Ocsovszki, I.; Zupkó, I. Antiproliferative effect of normal and 13-epi-D-homoestrone and their 3-methyl ethers on human reproductive cancer cell lines. J. Steroid Biochem. Mol. Biol. 2013, 132, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Ayan, D.P.; Maltais, R.; Roy, J.; Poirier, D. Impact of estradiol structural modifications (18-methyl and/or 17-hydroxy inversion of configuration) on the in vitro and in vivo estrogenic activity. In Proceedings of the Endocrine Society’s 93rd Annual Meeting & Expo, Boston, MA, USA, 4–7 June 2011; Volume 127. [Google Scholar]
- Szabó, J.; Bacsa, I.; Wölfling, J.; Schneider, G.; Zupkó, I.; Varga, M.; Herman, B.E.; Kalmár, L.; Szécsi, M.; Mernyák, E. Synthesis and in vitro pharmacological evaluation of N-[(1-benzyl-1,2,3-triazol-4-yl)methyl]- carboxamides on D-secoestrone scaffolds. J. Enzyme Inhib. Med. Chem. 2016, 31, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Szabó, J.; Jerkovics, N.; Schneider, G.; Wölfling, J.; Bózsity, N.; Minorics, R.; Zupkó, I.; Mernyák, E.; De Sousa, M.E. Synthesis and in vitro antiproliferative evaluation of c-13 epimers of triazolyl-d-secoestrone alcohols: the first potent 13α-d-secoestrone derivative. Molecules 2016, 21, 611. [Google Scholar] [CrossRef] [PubMed]
- Szabó, J.; Pataki, Z.; Wölfling, J.; Schneider, G.; Bózsity, N.; Minorics, R.; Zupkó, I.; Mernyák, E. Synthesis and biological evaluation of 13α-estrone derivatives as potential antiproliferative agents. Steroids 2016, 113, 14–21. [Google Scholar] [CrossRef]
- Mernyák, E.; Kovács, I.; Minorics, R.; Sere, P.; Czégány, D.; Sinka, I.; Wölfling, J.; Schneider, G.; Újfaludi, Z.; Boros, I.; et al. Synthesis of trans-16-triazolyl-13α-methyl-17-estradiol diastereomers and the effects of structural modifications on their in vitro antiproliferative activities. J. Steroid Biochem. Mol. Boil. 2015, 150, 123–134. [Google Scholar] [CrossRef]
- Rao, P.N.; Cessac, J.W.; Tinley, T.L.; Mooberry, S.L. Synthesis and antimitotic activity of novel 2-methoxyestradiol analogs. Steroids 2002, 67, 1079–1089. [Google Scholar] [CrossRef]
- Sundov, D.; Čarić, A.; Mrklić, I.; Gugic, D.; Čapkun, V.; Hofman, I.D.; Mise, B.P.; Tomic, S. P53, MAPK, topoisomerase II alpha and Ki67 immunohistochemical expression and KRAS/BRAF mutation in ovarian serous carcinomas. Diagn. Pathol. 2013, 8, 21. [Google Scholar] [CrossRef]
- Kaur, P.V.; Kaur, S. DNA Topoisomerase II: promising target for anticancer drugs. In Multi-Targeted Approach to Treatment of Cancer; Gandhi, V., Ed.; Springer: Basel, Switzerland, 2015; pp. 323–338. [Google Scholar]
- Nijenhuis, C.; Lucas, L.; Rosing, H.; Huitema, A.; Mergui-Roelvink, M.; Jamieson, G.C.; Fox, J.; Mould, D.; Schellens, J.; Beijnen, J. Metabolism and disposition of the anticancer quinolone derivative vosaroxin, a novel inhibitor of topoisomerase II. Investig. New Drugs 2017, 35, 478–490. [Google Scholar] [CrossRef]
- Rahman, M.A.; Salajegheh, A.; Smith, R.A.; Lam, A.K.-Y.; Ariana, A. Inhibition of BRAF kinase suppresses cellular proliferation, but not enough for complete growth arrest in BRAF V600E mutated papillary and undifferentiated thyroid carcinomas. Endocrine 2016, 54, 129–138. [Google Scholar] [CrossRef]
- Rahman, M.A.; Salajegheh, A.; Smith, R.A.; Lam, A.K.-Y.; Ariana, A. Multiple proliferation-survival signalling pathways are simultaneously active in BRAF V600E mutated thyroid carcinomas. Exp. Mol. Pathol. 2015, 99, 492–497. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Steelman, L.S.; Abrams, S.L.; Lee, J.T.; Chang, F.; Bertrand, F.E.; Navolanic, P.M.; Terrian, D.M.; Franklin, R.A.; D’Assoro, A.B.; et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzym. Regul. 2006, 46, 249–279. [Google Scholar] [CrossRef]
- Ouf, N.H.; Amr, A.E. Synthesis and anti-inflammatory activity of some pyrimidines and thieno- pyrimidines using 1-(2-benzo[d][1,3]dioxol-5-yl)vinyl)-4-mercapto-6-methyl-pyrimidine-5-yl)-ethan-2- one as a starting material. Monatsh. fur Chem. 2008, 139, 579–585. [Google Scholar] [CrossRef]
- Amr, A.E.; Abdulla, M.M. Synthesis and anti-inflammatory activities of new cynopyrane derivatives fused with steroidal nuclei. Archiv. der Pharm. 2008, 339, 88–95. [Google Scholar] [CrossRef]
- Khalifa, N.M.; Al-Omar, M.A.; Amr, A.E.; Haiba, M.E. Antiviral activity of some new polycyclic nucleoside pyrene candidate against HIV-1 and HSV-1 virus. Int. J. Biol. Macromol. 2013, 54, 51. [Google Scholar] [CrossRef]
- Abdel-Wahab, B.F.; Mohamed, S.F.; Amr, A.E.-G.E.; Abdalla, M.M. Synthesis and reactions of thiosemicarbazides, triazoles, and Schiff bases as antihypertensive α-blocking agents. Monatsh. Chem. 2008, 139, 1083–1090. [Google Scholar] [CrossRef]
- Amr, A.E.-G.E.; Elsayed, E.A.; Al-Omar, M.A.; Eldin, H.O.B.; Nossier, E.S.; Abdallah, M.M.; Eldin, H.B. Design, synthesis, anticancer evaluation and molecular modeling of novel estrogen derivatives. Molecules 2019, 24, 416. [Google Scholar] [CrossRef]
- Day, J.M.; Foster, P.A.; Tutill, H.J.; Schmidlin, F.; Sharland, C.M.; Hargrave, J.D.; Vicker, N.; Potter, B.V.L.; Reed, M.J.; Purohit, A. STX2171, a 17-hydroxysteroid dehydrogenase type 3 inhibitor, is efficacious in vivo in a novel hormone-dependent prostate cancer model. Endocr. Relat. Cancer 2013, 20, 53–64. [Google Scholar] [CrossRef]
- Donald, P.; Ho-Jin, C.; Arezki, A.; Roch, P.B.; Sheng-Xiang, L. Estrone and estradiol C-16 derivatives as inhibitors of type 1 17β-hydroxysteroid dehydrogenase. Mol. Cell. Endocrinol. 2006, 248, 236–238. [Google Scholar]
- Elsayed, E.A.; Sharaf-Eldin, M.; Wadaan, M. In vitro evaluation of cytotoxic activities of essential oil from moringa oleifera seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 Cell Lines. Asian Pac. J. Cancer Prev. 2015, 16, 4671–4675. [Google Scholar] [CrossRef]
- Elsayed, E.A.; Farooq, M.; Dailin, D.; El-Enshasy, H.A.; Othman, N.Z.; Malek, R.; Danial, E.; Wadaan, M. In vitro and in vivo biological screening of kefiran polysaccharide produced by Lactobacillus kefiranofaciens. Biomed. Res. 2017, 28, 594–600. [Google Scholar]
- Al-Salahi, R.; Elsayed, E.A.; El Dib, R.A.; Wadaan, M.; Ezzeldin, E.; Marzouk, M. Synthesis, characterization and cytotoxicity evaluation of 5-hydrazono-[1,2,4]triazolo[1,5-a]quinazolines (Part I). Lat. Am. J. Pharm. 2016, 35, 58–65. [Google Scholar]
- Al-Salahi, R.; Elsayed, E.A.; El Dib, R.A.; Wadaan, M.; Ezzeldin, E.; Marzouk, M. Cytotoxicity of new 5-hydrazono-[1,2,4]triazolo[1,5-a]quinazolines (Part II). Lat. Am. J. Pharm. 2016, 35, 66–73. [Google Scholar]
- Elsayed, E.A.; Sharaf-Eldin, M.A.; El-Enshasy, H.A.; Wadaan, M. In vitro assessment of anticancer properties of Moringa peregrina essential seed oil on different cell lines. Pak. J. Zool. 2016, 48, 853–859. [Google Scholar]
- Farooq, M.; Abu Taha, N.; Butorac, R.R.; Evans, D.A.; Elzatahry, A.A.; Elsayed, E.A.; Wadaan, M.A.M.; Al-Deyab, S.S.; Cowley, A.H.; Li, J. Biological screening of newly synthesized BIAN N-heterocyclic gold carbene complexes in zebrafish embryos. Int. J. Mol. Sci. 2015, 16, 24718–24731. [Google Scholar] [CrossRef]
- McCauley, J.; Zivanovic, A.; Skropeta, D. Bioassays for anticancer activities. Methods Mol. Biol. 2013, 1055, 191–205. [Google Scholar]
- Goyeneche, A.A.; Carón, R.W.; Telleria, C.M. Mifepristone inhibits ovarian cancer cancer cell growth in vitro and in vivo. Clin. Cancer Res. 2007, 13, 3370–3379. [Google Scholar] [CrossRef]
- Nakamura, K.; Sugumi, H.; Yamaguchi, A.; Uenaka, T.; Kotake, Y.; Okada, T.; Kamata, J.; Niijima, J.; Nagasu, T.; Koyanagi, N.; et al. Antitumor activity of ER-37328, a novel carbazole topoisomerase II inhibitor. Mol. Cancer Ther. 2002, 1, 169–75. [Google Scholar]
- Qin, J.; Xie, P.; Ventocilla, C.; Zhou, G.; Vultur, A.; Chen, Q.; Liu, Q.; Herlyn, M.; Winkler, J.; Marmorstein, R. Identification of a novel family of BRAF(V600E) inhibitors. J. Med. Chem. 2012, 55, 5220–5230. [Google Scholar] [CrossRef]
- Stones, C.J.; Kim, J.E.; Joseph, W.R.; Leung, E.; Marshall, E.S.; Finlay, G.J.; Shelling, A.N.; Baguley, B.C. Comparison of responses of human melanoma cell lines to MEK and BRAF inhibitors. Front. Genet. 2013, 4, 66. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Naggar, M.; E. Amr, A.E.-G.; Fayed, A.A.; A. Elsayed, E.; A. Al-Omar, M.; Abdalla, M.M. Potent Anti-Ovarian Cancer with Inhibitor Activities on Both Topoisomerase II and V600EBRAF of Synthesized Substituted Estrone Candidates. Molecules 2019, 24, 2054. https://doi.org/10.3390/molecules24112054
El-Naggar M, E. Amr AE-G, Fayed AA, A. Elsayed E, A. Al-Omar M, Abdalla MM. Potent Anti-Ovarian Cancer with Inhibitor Activities on Both Topoisomerase II and V600EBRAF of Synthesized Substituted Estrone Candidates. Molecules. 2019; 24(11):2054. https://doi.org/10.3390/molecules24112054
Chicago/Turabian StyleEl-Naggar, Mohamed, Abd El-Galil E. Amr, Ahmed A. Fayed, Elsayed A. Elsayed, Mohamed A. Al-Omar, and Mohamed M. Abdalla. 2019. "Potent Anti-Ovarian Cancer with Inhibitor Activities on Both Topoisomerase II and V600EBRAF of Synthesized Substituted Estrone Candidates" Molecules 24, no. 11: 2054. https://doi.org/10.3390/molecules24112054
APA StyleEl-Naggar, M., E. Amr, A. E. -G., Fayed, A. A., A. Elsayed, E., A. Al-Omar, M., & Abdalla, M. M. (2019). Potent Anti-Ovarian Cancer with Inhibitor Activities on Both Topoisomerase II and V600EBRAF of Synthesized Substituted Estrone Candidates. Molecules, 24(11), 2054. https://doi.org/10.3390/molecules24112054