Antiglycation Activity and HT-29 Cellular Uptake of Aloe-Emodin, Aloin, and Aloe arborescens Leaf Extracts
Abstract
:1. Introduction
2. Results
2.1. Methanolic and Hydroalcoholic Extracts: Phytochemical Characterization
2.1.1. Quantitative Detection of Aloin and Aloe-Emodin in the Extracts
2.1.2. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.2. Potential Antidiabetic Activities of Methanolic and Hydroalcoholic Extracts, Aloin, and Aloe-Emodin
2.2.1. Bovine Serum Albumin (BSA) Assay
2.2.2. DPPH Assay
2.3. Influence of Methanolic and Hydroalcoholic Extracts, Aloin, and Aloe-Emodin on HT-29 Cells Vitality
MTT Assay
2.4. Cellular Uptake of Aloin and Aloe-Emodin
Cellular Uptake in HT-29 Cells
3. Discussion
4. Materials and Methods
4.1. Extract Preparation
4.2. High Performance Liquid Chromatography (HPLC-DAD) Analysis
4.3. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
4.4. DPPH Assay
4.5. Bovine Serum Albumin (BSA) Assay
4.6. 3-[4,5-Dimethylthiazol-2-yl]-2,5 Diphenyl Tetrazolium Bromide (MTT) Assay
4.7. Cellular HT-29 Uptake Assay
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Salehi, B.; Albayrak, S.; Antolak, H.; Kręgiel, D.; Pawlikowska, E.; Sharifi-Rad, M.; Uprety, Y.; Tsouh Fokou, P.; Yousef, Z.; Amiruddin Zakaria, Z.; et al. Aloe Genus Plants: From Farm to Food Applications and Phytopharmacotherapy. Int. J. Mol. Sci. 2018, 19, 2843. [Google Scholar] [CrossRef] [PubMed]
- Amoo, S.O.; Aremu, A.O.; Van Staden, J. Unraveling the medicinal potential of South African Aloe species. J. Ethnopharmacol. 2014, 153, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Bastian, P.; Fal, A.M.; Jambor, J.; Michalak, A.; Noster, B.; Sievers, H.; Steuber, A.; Walas-Marcinek, N. Candelabra aloe (Aloe arborescens) in the therapy and prophylaxis of upper respiratory tract infections: Traditional use and recent research results. Wien. Med. Wochenschr. 2013, 163, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Nazeam, J.A.; Gad, H.A.; El-Hefnawy, H.M.; Singab, A.B. Chromatographic separation and detection methods of Aloe arborescens Miller constituents: A systematic review. J. Chromatogr. Anal. Technol. Biomed. Life Sci. 2017, 1058, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Trinh, P.T.N.; Luan, N.Q.; Tri, M.D.; Khanh, V.D.; An, N.H.; Minh, P.N.; An, P.N.; Thuy, N.T.L.; Phung, N.K.P.; Dung, L.T. New naphthalene derivative from the leaves of Cassia grandis L. Nat. Prod. Res. 2017, 31, 1733–1738. [Google Scholar] [CrossRef]
- Groom, Q.J.; Reynolds, T. Barbaloin in Aloe species. Planta Med. 1987, 53, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Arosio, B.; Gagliano, N.; Fusaro, L.M.; Parmeggiani, L.; Tagliabue, J.; Galetti, P.; De Castri, D.; Moscheni, C.; Annoni, G. Aloe-Emodin quinone pretreatment reduces acute liver injury induced by carbon tetrachloride. Pharmacol. Toxicol. 2000, 87, 229–233. [Google Scholar] [CrossRef]
- Madonna, R.; Pieragostino, D.; Balistreri, C.R.; Rossi, C.; Geng, Y.-J.; Del Boccio, P.; De Caterina, R. Diabetic macroangiopathy: Pathogenetic insights and novel therapeutic approaches with focus on high glucose-mediated vascular damage. Vascul. Pharmacol. 2018. [Google Scholar] [CrossRef]
- Lissoni, P.; Rovelli, F.; Brivio, F.; Zago, R.; Colciago, M.; Messina, G.; Mora, A.; Porro, G. A randomized study of chemotherapy versus biochemotherapy with chemotherapy plus Aloe arborescens in patients with metastatic cancer. In Vivo 2009, 23, 171–175. [Google Scholar]
- Lee, H.-Z.Z.; Hsu, S.-L.L.; Liu, M.-C.C.; Wu, C.-H.H. Effects and mechanisms of aloe-emodin on cell death in human lung squamous cell carcinoma. Eur. J. Pharmacol. 2001, 431, 287–295. [Google Scholar] [CrossRef]
- Lin, H.D.; Li, K.T.; Duan, Q.Q.; Chen, Q.; Tian, S.; Chu, E.S.M.; Bai, D.Q. The effect of aloe-emodin-induced photodynamic activity on the apoptosis of human gastric cancer cells: A pilot study. Oncol. Lett. 2017, 13, 3431–3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecere, T.; Sarinella, F.; Salata, C.; Gatto, B.; Bet, A.; Vecchia, F.D.; Diaspro, A.; Carli, M.; Palumbo, M.; Palu, G. Involvement of p53 in specific anti-neuroectodermal tumor activity of aloe-emodin. Int. J. Cancer 2003, 106, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Park, C.; Li, S.; Lee, K.W.; Liu, H.; He, L.; Soung, N.K.; Ahn, J.S.; Bode, A.M.; Dong, Z.; et al. Aloe-emodin suppresses prostate cancer by targeting the mTOR complex 2. Carcinogenesis 2012, 33, 1406–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pecere, T.; Gazzola, M.V.; Mucignat, C.; Parolin, C.; Vecchia, F.D.; Cavaggioni, A.; Basso, G.; Diaspro, A.; Salvato, B.; Carli, M.; et al. Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Cancer Res. 2000, 60, 2800–2804. [Google Scholar] [PubMed]
- Shimpo, K.; Chihara, T.; Kaneko, T.; Beppu, H.; Wakamatsu, K.; Shinzato, M.; Yukitake, J.; Sonoda, S. Inhibitory effects of low-dose aloe-emodin on the development of colorectal tumors in min mice. Asian Pac. J. Cancer Prev. 2014, 15, 5587–5592. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I. Methodological considerations for characterizing potential antioxidant actions of bioactive components in plant foods. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 523–524, 9–20. [Google Scholar] [CrossRef]
- Martínez-Maqueda, D.; Miralles, B.; Recio, I. The Impact of Food Bioactives on Health. In The Impact of Food Bioactives on Health; Springer: Cham, Switzerland, 2015; pp. 113–124. [Google Scholar]
- Cardarelli, M.; Rouphael, Y.; Pellizzoni, M.; Colla, G.; Lucini, L. Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen Aloe species. Ind. Crops Prod. 2017, 108, 44–51. [Google Scholar] [CrossRef]
- Kumar, S.; Yadav, M.; Yadav, A.; Rohilla, P.; Yadav, J.P. Antiplasmodial potential and quantification of aloin and aloe-emodin in Aloe vera collected from different climatic regions of India. BMC Complement. Altern. Med. 2017, 17, 1–10. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.N.; Lee, M.J.; Kim, Y.H.; Lee, W.; Kim, K.H.; Kim, K.T.; Kang, J.S. Identification and discrimination of three common Aloe species by high performance liquid chromatography–tandem mass spectrometry coupled with multivariate analysis. J. Chromatogr. B 2016, 1031, 163–171. [Google Scholar] [CrossRef]
- Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of aloin: A concise report. J. Acute Dis. 2013, 2, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Zhang, L.; Fan, K.; Wang, J. Aloin promotes A549 cell apoptosis via the reactive oxygen species-mitogen activated protein kinase signaling pathway and p53 phosphorylation. Mol. Med. Rep. 2017, 16, 5759–5768. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Kong, J.; Chen, Z.; Huang, S.; Lv, G.; Wei, B.; Wei, J.; Jing, K.; Quan, J.; Chu, J. Aloin promotes osteogenesis of bone-marrow-derived mesenchymal stem cells via the ERK1/2-dependent Runx2 signaling pathway. J. Nat. Med. 2019, 73, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Furkan, M.; Alam, M.T.; Rizvi, A.; Khan, K.; Ali, A.; Shamsuzzaman; Naeem, A. Aloe emodin, an anthroquinone from Aloe vera acts as an anti aggregatory agent to the thermally aggregated hemoglobin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 179, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Özenver, N.; Saeed, M.; Demirezer, L.Ö.; Efferth, T. Aloe-emodin as drug candidate for cancer therapy. Oncotarget 2018, 9, 17770–17796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghav, A.; Ahmad, J.; Alam, K. Impact of glycation on structural and antioxidant function of human serum albumin: Relevance in diabetic complications. Diabetes Metab. Syndr. Clin. Res. Rev. 2016, 10, 96–101. [Google Scholar] [CrossRef] [PubMed]
- ELhassan, G.O.M.; Adhikari, A.; Yousuf, S.; Hafizur Rahman, M.; Khalid, A.; Omer, H.; Fun, H.-K.; Jahan, H.; Choudhary, M.I.; Yagi, S. Phytochemistry and antiglycation activity of Aloe sinkatana Reynolds. Phytochem. Lett. 2012, 5, 725–728. [Google Scholar] [CrossRef]
- Younus, H.; Anwar, S. Antiglycating activity of Aloe vera gel extract and its active component Aloin. J. Proteins Proteom. 2018, 9, 115–125. [Google Scholar]
- Beppu, H.; Shimpo, K.; Chihara, T.; Kaneko, T.; Tamai, I.; Yamaji, S.; Ozaki, S.; Kuzuya, H.; Sonoda, S. Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin-induced diabetes in mice: Investigation on hypoglycemic action and systemic absorption dynamics of aloe components. J. Ethnopharmacol. 2006, 103, 468–477. [Google Scholar] [CrossRef]
- Younus, H.; Anwar, S. Prevention of non-enzymatic glycosylation (glycation): Implication in the treatment of diabetic complication. Int. J. Health Sci. 2016, 10, 261–277. [Google Scholar] [CrossRef]
- Lai, Q.; Wang, H.; Guo, X.; Abbasi, A.M.; Wang, T.; Li, T.; Fu, X.; Li, J.; Liu, R.H. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of seven cultivars of Aloe. Int. J. Food Sci. Technol. 2016, 51, 1489–1494. [Google Scholar] [CrossRef]
- Lucini, L.; Pellizzoni, M.; Pellegrino, R.; Molinari, G.P.; Colla, G. Phytochemical constituents and in vitro radical scavenging activity of different Aloe species. Food Chem. 2015, 170, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Vignolini, P.; Isolani, L.; Tombelli, S.; Heimler, D.; Turchetti, B.; Buzzini, P. In vitro radical scaveging and anti-yest activity of extracts from leaves of Aloe species growing in Congo. Nat. Prod. Commun. 2008, 3, 2061–2064. [Google Scholar]
- Jeremić, S.; Amić, A.; Stanojević-Pirković, M.; Marković, Z. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org. Biomol. Chem. 2018, 16, 1890–1902. [Google Scholar] [CrossRef] [PubMed]
- Curin, Y.; Andriantsitohaina, R. Polyphenols as potential therapeutical agents against cardiovascular diseases. Pharmacol. Rep. 2005, 57, 97–107. [Google Scholar]
- Roleira, F.M.F.; Tavares-da-Silva, E.J.; Varela, C.L.; Costa, S.C.; Silva, T.; Garrido, J.; Borges, F. Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chem. 2015, 183, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Dong, W. Aloe-Emodin Induces Endoplasmic Reticulum Stress-Dependent Apoptosis in Colorectal Cancer Cells. Med. Sci. Monit. 2018, 24, 6331–6339. [Google Scholar] [CrossRef] [PubMed]
- Arcella, A.; Oliva, M.A.; Staffieri, S.; Sanchez, M.; Madonna, M.; Riozzi, B.; Esposito, V.; Giangaspero, F.; Frati, L. Effects of aloe emodin on U87MG glioblastoma cell growth: In vitro and in vivo study. Environ. Toxicol. 2018, 33, 1160–1167. [Google Scholar] [CrossRef]
- Lin, J.-G.; Chen, G.-W.; Li, T.-M.; Chouh, S.-T.; Tan, T.-W.; Chung, J.-G. Aloe-Emodin Induces Apoptosis in T24 Human Bladder Cancer Cells Through the p53 Dependent Apoptotic Pathway. J. Urol. 2006, 175, 343–347. [Google Scholar] [CrossRef]
- Pan, Q.; Pan, H.; Lou, H.; Xu, Y.; Tian, L. Inhibition of the angiogenesis and growth of Aloin in human colorectal cancer in vitro and in vivo. Cancer Cell Int. 2013. [Google Scholar] [CrossRef] [PubMed]
- Freag, M.S.; Elnaggar, Y.S.R.; Abdelmonsif, D.A.; Abdallah, O.Y. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: In vitro and in vivo studies. Int. J. Nanomed. 2016, 11, 4799–4818. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-Y.; Kwon, H.-J.; Sung, M.-K. Intestinal absorption of aloin, aloe-emodin, and aloesin; A comparative study using two in vitro absorption models. Nutr. Res. Pract. 2009, 3, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, S.M.I.; Kwon, H. assessing absorbability of bioactive components in aloe using In Vitro digestion model with human intestinal cell. J. Food Biochem. 2010, 34, 425–438. [Google Scholar] [CrossRef]
- Bai, Y.; Su, Z.; Sun, H.; Zhao, W.; Chen, X.; Hang, P.; Zhu, W.; Du, Z. Aloe-Emodin Relieves High-Fat Diet Induced QT Prolongation via MiR-1 Inhibition and IK1 Up-Regulation in Rats. Cell. Physiol. Biochem. 2018, 43, 1961–1973. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Matsuura, N.; Aradate, T.; Sasaki, C.; Kojima, H.; Ohara, M.; Hasegawa, J.; Ubukata, M. Screening system for the maillard reaction inhibitor from natural product extracts. J. Heal. Sci. 2002, 48, 520–526. [Google Scholar] [CrossRef]
- Van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell Sensitivity Assays: The MTT Assay. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2011; Volume 731, pp. 237–245. [Google Scholar]
- Chen, Z.; Bertin, R.; Froldi, G. EC50 estimation of antioxidant activity in DPPH* assay using several statistical programs. Food Chem. 2013, 138, 414–420. [Google Scholar] [CrossRef]
Sample Availability: Samples of AA-BS-011 and AA-BS-011-1 are available from the Laboratory of Pharmacognosy, DSF, University of Padova. |
Aloe arborescens Leaves | Aloin µg/mg § | Aloe-emodin µg/mg § | Aloin mg/100 g FW ¤ | Aloe-emodin mg/100 g FW ¤ |
---|---|---|---|---|
Methanolic extract | 20.0 ± 1.2 | 0.22 * ± 0.1 | 96.7 ± 5.6 | 1.07 ± 0.05 |
Hydroalcoholic extract | 21.9 ± 1.7 | 0.08 ± 0.1 | 106.1 ± 8.1 | 0.39 ± 0.01 |
Aloe arborescens Leaves | TPC | TFC | ||
---|---|---|---|---|
GAE μg/mg | GAE mg/100 g FW | QE μg/mg | QE mg/100 g FW | |
Methanolic extract | 13.85 ± 0.46 * | 67.11 ± 2.31 | 3.42 ± 0.14 | 16.53 ± 0.68 |
Hydroalcoholic extract | 16.84 ± 0.77 | 81.43 ± 3.71 | 3.09 ± 0.17 | 14.93 ± 0.83 |
Aloe arborescens Anthraquinones | Concentration Inoculated | Intracellular Concentration | Extracellular Concentration |
---|---|---|---|
Aloin | 5 μM | * | 4.12 μM |
Aloe-emodin | 5 μM | 0.20 nmol/mg (~1.0 μM) | 0.15 μM |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Froldi, G.; Baronchelli, F.; Marin, E.; Grison, M. Antiglycation Activity and HT-29 Cellular Uptake of Aloe-Emodin, Aloin, and Aloe arborescens Leaf Extracts. Molecules 2019, 24, 2128. https://doi.org/10.3390/molecules24112128
Froldi G, Baronchelli F, Marin E, Grison M. Antiglycation Activity and HT-29 Cellular Uptake of Aloe-Emodin, Aloin, and Aloe arborescens Leaf Extracts. Molecules. 2019; 24(11):2128. https://doi.org/10.3390/molecules24112128
Chicago/Turabian StyleFroldi, Guglielmina, Federica Baronchelli, Elisa Marin, and Margherita Grison. 2019. "Antiglycation Activity and HT-29 Cellular Uptake of Aloe-Emodin, Aloin, and Aloe arborescens Leaf Extracts" Molecules 24, no. 11: 2128. https://doi.org/10.3390/molecules24112128
APA StyleFroldi, G., Baronchelli, F., Marin, E., & Grison, M. (2019). Antiglycation Activity and HT-29 Cellular Uptake of Aloe-Emodin, Aloin, and Aloe arborescens Leaf Extracts. Molecules, 24(11), 2128. https://doi.org/10.3390/molecules24112128