Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy
Abstract
:1. Introduction
2. Bioassay Guidance: A Multidisciplinary Drug Discovery Program that Integrate Chemistry and Biology Techniques
2.1. Test Organism
2.2. In Vitro Bioassays for Anti-TB Activity Evaluation
2.2.1. Agar Diffusion
2.2.2. Micro/Macro Agar Dilution
2.2.3. Micro Broth Dilution
2.3. Sample Extraction
2.4. Crude Extracts Fractionation and Isolation
2.5. Isolated Compounds Identification and Characterization
3. Phenolic Compounds: Promising Nature-Derived Anti-Tuberculosis Compound
3.1. Nature-Derived Phenolic Active Compounds against Mycobacterium
3.2. Mechanism of Action of Phenolic Compounds against Mycobacterium
3.2.1. Mycobacteria Efflux System Inhibition
3.2.2. Mycobacteria Proteasome Inhibition
3.2.3. Mycolic Acid Biosynthesis Inhibition
3.2.4. Nitric Oxide Inhibition
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO Global Tuberculosis Report 2018; World Health Organization: Geneva, Switzerland, 2018.
- Barnes, D.S. Historical perspectives on the etiology of tuberculosis. Microbes Infect. 2000, 2, 431–440. [Google Scholar] [CrossRef]
- Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013, 12, 388–404. [Google Scholar] [CrossRef] [PubMed]
- Jordao, L.; Vieira, O.V. Tuberculosis: New aspects of an old disease. Int. J. Cell Biol. 2011, 2011, 403623. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M. The mycobacterial cell envelope-lipids. Cold Spring Harb. Perspect. Med. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Brennan, P.J.; Nikaido, H. The Envelope of Mycobacteria. Annu. Rev. Biochem. 1995, 64, 29–63. [Google Scholar] [CrossRef] [PubMed]
- Hett, E.C.; Rubin, E.J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 2008, 72, 126–156. [Google Scholar] [CrossRef]
- Keshavjee, S.; Farmer, P.E. Tuberculosis, drug resistance, and the history of modern medicine. N. Engl. J. Med. 2012, 367, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C.F. Tuberculosis. N. Engl. J. Med. 2013, 368, 745–755. [Google Scholar] [CrossRef]
- Gulbay, B.E.; Gurkan, O.U.; Yildiz, O.A.; Onen, Z.P.; Erkekol, F.O.; Baccioglu, A.; Acican, T. Side effects due to primary antituberculosis drugs during the initial phase of therapy in 1149 hospitalized patients for tuberculosis. Respir. Med. 2006, 100, 1834–1842. [Google Scholar] [CrossRef] [Green Version]
- Arbex, M.A.; Varella, M.D.C.L.; Siqueira, H.R.D.; Mello, F.A.F.D. Antituberculosis drugs: Drug interactions, adverse effects and use in special situations. Part 1: First-line drugs. Braz. J. Pulmonol. 2010, 36, 626–640. [Google Scholar]
- Tabarsi, P.; Mardani, M. Extensively Drug-Resistant Tuberculosis: A Review Article. Arch. Clin. Infect. Dis. 2012, 7, 81–84. [Google Scholar] [CrossRef]
- Gupta, V.K.; Shukla, C.; Bisht, G.R.; Saikia, D.; Kumar, S.; Thakur, R.L. Detection of anti-tuberculosis activity in some folklore plants by radiometric BACTEC assay. Lett. Appl. Microbiol. 2011, 52, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Biodiversity: A continuing source of novel drug leads. Pure Appl. Chem. 2005, 77, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Pathak, K.; Das, R.J. Herbal Medicine- A Rational Approach in Health Care System. Int. J. Herb. Med. 2013, 1, 86–89. [Google Scholar]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. Int. J. Clin. Med. 2015, 06, 635–642. [Google Scholar] [CrossRef]
- Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol. 2015, 4, 165–183. [Google Scholar] [CrossRef]
- Jimenez-Arellanes, M.A.; Gutierrez-Rebolledo, G.; Rojas-Tome, S.; Meckes-Fischer, M. Medicinal Plants, an Important Reserve of Antimycobacterial and Antitubercular Drugs: An Update. J. Infect. Dis. Ther. 2014, 2, 185. [Google Scholar] [CrossRef]
- Bunalema, L.; Obakiro, S.; Tabuti, J.R.; Waako, P. Knowledge on plants used traditionally in the treatment of tuberculosis in Uganda. J. Ethnopharmacol. 2014, 151, 999–1004. [Google Scholar] [CrossRef]
- Akintola, A.O.; Kehinde, A.O.; Adebiyi, O.E.; Ademowo, O.G. Anti-tuberculosis activities of the crude methanolic extract and purified fractions of the bulb of Crinum jagus. Niger. J. Physiol. Sci. 2013, 28, 135–140. [Google Scholar]
- Sharma, D.; Yadav, J. An Overview of Phytotherapeutic Approaches for the Treatment of Tuberculosis. Mini-Rev. Med. Chem. 2016, 17, 167–183. [Google Scholar] [CrossRef]
- Ahmed, E.; Arshad, M.; Khan, M.Z.; Amjad, M.S.; Sadaf, H.M.; Riaz, I.; Sabir, S.; Ahmad, N.; Sabaoon, M.A. Secondary metabolites and their multidimensional prospective in plant. J. Pharmacogn. Phytochem. 2017, 6, 205–214. [Google Scholar]
- Irchhaiya, R.; Kumar, A.; Yadav, A.; Gupta, N.; Kumar, S.; Gupta, N.; Kumar, S.; Yadav, V.; Prakash, A.; Gurjar, H. Metabolites in Plants and its Classification. World J. Pharm. Pharm. Sci. 2015, 4, 287–305. [Google Scholar]
- Anulika, N.P.; Ignatius, E.O.; Raymond, E.S.; Osasere, O.-I.; Abiola, A.H. The Chemistry of Natural Product: Plant Secondary Metabolites. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2016, 4, 1–8. [Google Scholar]
- Tiwari, R.; Rana, C.S. Plant secondary metabolites: A review. Int. J. Eng. Res. Gen. Sci. 2015, 3, 661–670. [Google Scholar]
- Mazid, M.; Khan, T.; Mohammad, F. Role of Secondary Metabolites in Defense Mechanisms of Plants. Biol. Med. 2011, 3, 232–249. [Google Scholar]
- Compean, K.L.; Ynalvez, R.A. Antimicrobial Activity of Plant Secondary Metabolites: A Review. Res. J. Med. Plant 2014, 8, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Banik, A.; Sharma, P.K. Use of Secondary Metabolite in Tuberculosis: A Review. Der. Pharm. Chem. 2010, 2, 311–319. [Google Scholar]
- Newton, S.M.; Lau, C.; Wright, C.W. A Review of Antimycobacterial Natural Products. Phytother. Res. 2000, 14, 303–322. [Google Scholar] [CrossRef]
- Copp, B.R. Antimycobacterial natural products. Natl. Prod. Rep. 2003, 20, 535. [Google Scholar] [CrossRef]
- Okunade, A.L.; Elvin-Lewis, M.P.; Lewis, W.H. Natural antimycobacterial metabolites: Current status. Phytochemistry 2004, 65, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.; Saklani, A.; Jachak, S.M. Indian medicinal plants as a source of antimycobacterial agents. J. Ethnopharmacol. 2007, 110, 200–234. [Google Scholar] [CrossRef] [PubMed]
- Rogoza, L.N.; Salakhutdinov, N.F.; Tolstikov, G.A. Natural and Synthetic Compounds with an Antimycobacterial Activity. Mini-Rev. Org. Chem. 2009, 6, 135–151. [Google Scholar] [CrossRef]
- Garcia, A.; Bocanegra-Garcia, V.; Palma-Nicolas, J.P.; Rivera, G. Recent advances in antitubercular natural products. Eur. J. Med. Chem. 2012, 49, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, R.S.; Suriyanarayanan, B. Plants: A source for new antimycobacterial drugs. Planta Med. 2014, 80, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Pauli, G.F.; Case, R.J.; Inui, T.; Wang, Y.; Cho, S.; Fischer, N.H.; Franzblau, S.G. New perspectives on natural products in TB drug research. Life Sci. 2005, 78, 485–494. [Google Scholar] [CrossRef]
- Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G. Medicinal plants used to treat TB in Ghana. Int. J. Mycobacteriol. 2015, 4, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Sanusi, S.B.; Abu Bakar, M.F.; Mohamed, M.; Sabran, S.F.; Mainasara, M.M. Southeast Asian Medicinal Plants as a Potential Source of Antituberculosis Agent. Evid. Based Complement. Altern. Med. 2017, 2017, 1–39. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, T.E.; Li, H.; Colquhoun, C.D.; Johnson, J.A.; Webster, D.; Gray, C.A. Optimisation of the microplate resazurin assay for screening and bioassay-guided fractionation of phytochemical extracts against Mycobacterium tuberculosis. Phytochem. Anal. 2014, 25, 461–467. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Thorne, N.; Auld, D.S.; Inglese, J. Apparent activity in high-throughput screening: Origins of compound-dependent assay interference. Curr. Opin. Chem. Biol. 2010, 14, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Harbone, J.B. Phytochemical Methods A Guide to Modern Techniques of Plant Analysis; Chapman and Hall Ltd.: London, UK, 1973. [Google Scholar]
- Fomogne-Fodjo, M.C.; Van Vuuren, S.; Ndinteh, D.T.; Krause, R.W.; Olivier, D.K. Antibacterial activities of plants from Central Africa used traditionally by the Bakola pygmies for treating respiratory and tuberculosis-related symptoms. J. Ethnopharmacol. 2014, 155, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.A.L.; Coelho, R.G.; Honda, N.K.; Pott, A.; Pavan, F.R.; Leite, C.Q.F. Phenolic compounds and antioxidant, antimicrobial and antimycobacterial activities of Serjania erecta Radlk. (Sapindaceae). Braz. J. Pharm. Sci. 2013, 49, 775–782. [Google Scholar] [CrossRef]
- Askun, T.; Tekwu, E.M.; Satil, F.; Modanlioglu, S.; Aydeniz, H. Preliminary antimycobacterial study on selected Turkish (Lamiaceae) against Mycobacterium tuberculosis and search for some phenolic constituents. BMC Complement. Altern. Med. 2013, 13, 365. [Google Scholar] [CrossRef]
- Guan, Y.F.; Song, X.; Qiu, M.H.; Luo, S.H.; Wang, B.J.; Van Hung, N.; Cuong, N.M.; Soejarto, D.D.; Fong, H.H.; Franzblau, S.G.; et al. Bioassay-Guided Isolation and Structural Modification of the Anti-TB Resorcinols from Ardisia gigantifolia. Chem. Biol. Drug Design 2016, 88, 293–301. [Google Scholar] [CrossRef]
- Cunha, L.C.S.; de Morais, S.A.L.; de Aquino, F.J.T.; Chang, R.; de Oliveira, A.; Martins, M.M.; Martins, C.H.G.; Sousa, L.C.F.; Barros, T.T.; de Silva, C.V.; et al. Bioassay-guided fractionation and antimicrobial and cytotoxic activities of Cassia bakeriana extracts. Rev. Bras. Farmacogn. 2017, 27, 91–98. [Google Scholar] [CrossRef]
- Pereira, D.M.; Valentão, P.; Pereira, J.A.; Andrade, P.B. Phenolics: From Chemistry to Biology. Molecules 2009, 14, 2202–2211. [Google Scholar] [CrossRef]
- Groblacher, B.; Kunert, O.; Bucar, F. Compounds of Alpinia katsumadai as potential efflux inhibitors in Mycobacterium smegmatis. Bioorg. Med. Chem. 2012, 20, 2701–2706. [Google Scholar] [CrossRef]
- Jimenez-Arellanes, A.; Leon-Diaz, R.; Meckes, M.; Tapia, A.; Molina-Salinas, G.M.; Luna-Herrera, J.; Yepez-Mulia, L. Antiprotozoal and Antimycobacterial Activities of Pure Compounds from Aristolochia elegans Rhizomes. Evid. Based Complement. Altern. Med. 2013, 2012, 1–7. [Google Scholar] [CrossRef]
- Namdaung, U.; Aroonrerk, N.; Suksamrarn, S.; Danwisetkanjana, K.; Saenboonrueng, J.; Arjchomphu, W.; Suksamrarn, A. Bioactive Constituents of the Root Bark of Artocarpus rigidus subsp. rigidus. Chem. Pharm. Bull. 2006, 54, 1433–1436. [Google Scholar] [CrossRef]
- Chokchaisiri, R.; Suaisom, C.; Sriphota, S.; Chindaduang, A.; Chuprajob, T.; Suksamrarn, A. Bioactive Flavonoids of the Flowers of Butea monosperma. Chem. Pharm. Bull. 2009, 57, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Suksamrarn, A.; Chotipong, A.; Suavansri, T.; Boongird, S.; Timsuksai, P.; Vimuttipong, S.; Chuaynugul, A. Antimycobacterial activity and cytotoxicity of flavonoids from the flowers of Chromolaena odorata. Arch. Pharm. Res. 2004, 27, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, M.Z.; Gutierrez-Rebolledo, G.A.; Yepez-Mulia, L.; Rojas-Tome, I.S.; Luna-Herrera, J.; Jimenez-Arellanes, M.A. Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 89, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Kanokmedhakul, S.; Kanokmedhakul, K.; Nambuddee, K.; Kongsaeree, P. New Bioactive Prenylflavonoids and Dibenzocycloheptene Derivative from Roots of Dendrolobium lanceolatum. J. Nat. Prod. 2004, 67, 968–972. [Google Scholar] [CrossRef] [PubMed]
- Koysomboon, S.; van Altena, I.; Kato, S.; Chantrapromma, K. Antimycobacterial flavonoids from Derris indica. Phytochemistry 2006, 67, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Ngameni, B.; Mbaveng, A.T.; Ngadjui, B.; Meyer, J.J.; Lall, N. Evaluation of flavonoids from Dorstenia barteri for their antimycobacterial, antigonorrheal and anti-reverse transcriptase activities. Acta Trop. 2010, 116, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Suthhivaiyakit, S.; Thongnak, O.; Lhinhatrakool, T.; Yodchun, O.; Srimark, R.; Dowtaisong, P.; Chuankamnerdkarn, M. Cytotoxic and Antimycobacterial Prenylated Flavonoids from the Roots of Eriosema chinense. J. Nat. Prod. 2009, 72, 1092–1096. [Google Scholar] [CrossRef]
- Chen, L.-W.; Cheng, M.-J.; Peng, C.-F.; Chen, I.-S. Secondary Metabolites and Antimycobacterial Activities from the Roots of Ficus nervosa. Chem. Biodivers. 2010, 7, 1814–1821. [Google Scholar] [CrossRef]
- Mativandlela, S.P.N.; Muthivhi, T.; Kikuchi, H.; Oshima, Y.; Hamilton, C.; Hussein, A.A.; van der Walt, M.L.; Houghton, P.J.; Lall, N. Antimycobacterial Flavonboids from the Leaf Extract of Galenia africana. J. Nat. Prod. 2009, 72, 2169–2171. [Google Scholar] [CrossRef]
- Gaur, R.; Thakur, J.P.; Yadav, D.K.; Kapkoti, D.S.; Verma, R.K.; Gupta, N.; Khan, F.; Saikia, D.; Bhakuni, R.S. Synthesis, antitubercular activity, and molecular modeling studies of analogues of isoliquiritigenin and liquiritigenin, bioactive components from Glycyrrhiza glabra. Med. Chem. Res. 2015, 24, 3494–3503. [Google Scholar] [CrossRef]
- Murillo, J.I.; Encarnación-Dimayuga, R.; Malmstrøm, J.; Christophersen, C.; Franzblau, S.G. Antimycobacterial flavones from Haplopappus sonorensis. Fitoterapia 2003, 74, 226–230. [Google Scholar] [CrossRef]
- Christopher, R.; Nyandoro, S.S.; Chacha, M.; de Koning, C.B. A new cinnamoylglycoflavonoid, antimycobacterial and antioxidant constituents from Heritiera littoralis leaf extracts. Nat. Prod. Res. 2014, 28, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.; Wahab, A.; Siddiqui, B.S. Antimycobacterial activity of flavonoids from Lantana camara Linn. Nat. Prod. Res. 2008, 22, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Favela-Hernandez, J.M.; Garcia, A.; Garza-Gonzalez, E.; Rivas-Galindo, V.M.; Camacho-Corona, M.R. Antibacterial and antimycobacterial lignans and flavonoids from Larrea tridentata. Phytother. Res. 2012, 26, 1957–1960. [Google Scholar] [CrossRef] [PubMed]
- Suksamram, A.; Poomsing, P.; Aroonrerk, N.; Punjanon, T.; Suksamrn, S.; Kongkun, S. Antimycobacterial and Antioxidant Flavones from Limnophila geoffrayi. Arch. Pharm. Res. 2003, 26, 816–820. [Google Scholar] [CrossRef]
- Costa, I.F.; Calixto, S.D.; Heggdorne de Araujo, M.; Konno, T.U.; Tinoco, L.W.; Guimaraes, D.O.; Lasunskaia, E.B.; Leal, I.R.; Muzitano, M.F. Antimycobacterial and nitric oxide production inhibitory activities of Ocotea notata from Brazilian restinga. Sci. World J. 2015, 2015, 947248. [Google Scholar] [CrossRef]
- Moreira, R.R.D.; Martins, G.Z.; Pietro, R.C.L.R.; Sato, D.N.; Pavan, F.R.; Leite, S.R.A.; Vilegas, W.; Leite, C.Q.F. Paepalanthus spp: Antimycobacterial activity of extracts, methoxylated flavonoids and naphthopyranone fractions. Rev. Bras. Farmacogn. 2013, 23, 268–272. [Google Scholar] [CrossRef]
- Newton, S.M.; Lau, C.; Gurcha, S.S.; Besra, G.S.; Wright, C.W. The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from Psoralea corylifolia and Sanguinaria canadensis. J. Ethnopharmacol. 2002, 79, 57–67. [Google Scholar] [CrossRef]
- Smolarz, H.D.; Swatko-Ossor, M.; Ginalska, G.; Medyńska, E. Antimycobacterial Effect of Extract and Its Components from Rheum rhaponticum. J. AOAC Int. 2013, 96, 155–160. [Google Scholar] [CrossRef]
- Coronado-Aceves, E.W.; Gigliarelli, G.; Garibay-Escobar, A.; Zepeda, R.E.R.; Curini, M.; Lopez Cervantes, J.; Ines Espitia-Pinzon, C.I.; Superchi, S.; Vergura, S.; Marcotullio, M.C. New Isoflavonoids from the extract of Rhynchosia precatoria (Humb. & Bonpl. ex Willd.) DC. and their antimycobacterial activity. J. Ethnopharmacol. 2017, 206, 92–100. [Google Scholar] [CrossRef]
- Bernardes, N.R.; Heggdorne-Araújo, M.; Borges, I.F.J.C.; Almeida, F.M.; Amaral, E.P.; Lasunskaia, E.B.; Muzitano, M.F.; Oliveira, D.B. Nitric oxide production, inhibitory, antioxidant and antimycobacterial activities of the fruits extract and flavonoid content of Schinus terebinthifolius. Rev. Bras. Farmacogn. 2014, 24, 644–650. [Google Scholar] [CrossRef]
- Fomogne-Fodjo, M.C.; Ndinteh, D.T.; Olivier, D.K.; Kempgens, P.; van Vuuren, S.; Krause, R.W. Secondary metabolites from Tetracera potatoria stem bark with anti-mycobacterial activity. J. Ethnopharmacol. 2017, 195, 238–245. [Google Scholar] [CrossRef]
- Gu, J.-Q.; Wang, Y.; Franzblau, S.G.; Montenegro, G.; Yang, D.; Timmermann, B.N. Antitubercular Constituents of Valeriana laxiflora. Planta Med. 2004, 70, 509–514. [Google Scholar] [CrossRef]
- Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; van Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet 2010, 375, 1830–1843. [Google Scholar] [CrossRef]
- Zumla, A.I.; Gillespie, S.H.; Hoelscher, M.; Philips, P.P.J.; Cole, S.T.; Abubakar, I.; McHugh, T.D.; Schito, M.; Maeurer, M.; Nunn, A.J. New antituberculosis drugs, regimens, and adjunct therapies: Needs, advances, and future prospects. Lancet Infect. Dis. 2014, 14, 327–340. [Google Scholar] [CrossRef]
- Lechner, D.; Gibbons, S.; Bucar, F. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J. Antimicrob. Chemother. 2008, 62, 345–348. [Google Scholar] [CrossRef]
- Louw, G.E.; Warren, R.M.; Gey van Pittius, N.C.; McEvoy, C.R.; Van Helden, P.D.; Victor, T.C. A balancing act: Efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother. 2009, 53, 3181–3189. [Google Scholar] [CrossRef]
- Islam, M.M.; Hameed, H.M.A.; Mugweru, J.; Chhotaray, C.; Wang, C.; Tan, Y.; Liu, J.; Li, X.; Tan, S.; Ojima, I.; et al. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J. Genet. Genom. 2017, 44, 21–37. [Google Scholar] [CrossRef]
- Rodrigues, L.; Ramos, J.; Couto, I.; Amaral, L.; Viveiros, M. Ethidiym bromide transport across Mycobacterium smegmatis cell wall: Correlation with antibiotic resistance. BMC Microbiol. 2011, 11, 35. [Google Scholar] [CrossRef]
- Darwin, K.H.; Ehrt, S.; Gutierrez-Ramos, J.-C.; Weich, N.; Nathan, C.F. The Proteasome of Mycobacterium tuberculosis Is Required for Resistance to Nitric Oxide. Science 2003, 302, 1963–1966. [Google Scholar] [CrossRef]
- Lin, G.; Li, D.; de Carvalho, L.P.; Deng, H.; Tao, H.; Vogt, G.; Wu, K.; Schneider, J.; Chidawanyika, T.; Warren, J.D.; et al. Inhibitors selective for mycobacterial versus human proteasomes. Nature 2009, 461, 621–626. [Google Scholar] [CrossRef]
- Cerda-Maira, F.; Darwin, K.H. The Mycobacterium tuberculosis proteasome: More than just a barrel-shaped protease. Microb. Infect. 2009, 11, 1150–1155. [Google Scholar] [CrossRef]
- Gandotra, S.; Lebron, M.B.; Ehrt, S. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog. 2010, 6, e1001040. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, X.; Gao, F.; Song, J.; Sun, J.; Wang, L.; Sun, X.; Lu, Z.; Zhang, H. Identification of plant-derived natural products as potential inhibitors of the Mycobacterium tuberculosis proteasome. BMC Complement. Altern. Med. 2014, 14, 400. [Google Scholar] [CrossRef]
- Bhatt, A.; Molle, V.; Besra, G.S.; Jacobs, W.R., Jr.; Kremer, L. The Mycobacterium tuberculosis FAS-II condensing enzymes: Their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol. Microbiol. 2007, 64, 1442–1454. [Google Scholar] [CrossRef]
- Pawelczyk, J.; Kremer, L. The Molecular Genetics of Mycolic Acid Biosynthesis. Microbiol. Spectr. 2014, 2, 1–20. [Google Scholar] [CrossRef]
- North, E.J.; Jackson, M.; Lee, R.E. New Approaches to Target the Mycolic Acid Biosynthesis Pathway for the Development of Tuberculosis Therapeutics. Curr. Pharm. Design 2014, 20, 4357–4378. [Google Scholar] [CrossRef]
- Baquero, E.; Quinones, W.; Ribon, W.; Caldas, M.L.; Sarmiento, L.; Echeverri, F. Effect of an Oxadiaxoline and a Lignan on Mycolic Acid Biosynthesis and Ultrastructural Changes of Mycobacterium tuberculosis. Tuberculosis Res. Treat. 2011, 2011, 1–6. [Google Scholar] [CrossRef]
- Guzik, T.J.; Korbut, R.; Adamek-Guzik, T. Nitric Oxide and Superoxide in Inflammation and Immune Regulation. J. Physiol. Pharmacol. 2003, 54, 469–487. [Google Scholar]
- Shen, S.-C.; Lee, W.-R.; Lin, H.-Y.; Huang, H.-C.; Ko, C.-H.; Yang, L.-L.; Chen, Y.-C. In vitro and in vivo inhibitory activities of rutin, wogonin and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production. Eur. J. Pharmacol. 2002, 446, 187–194. [Google Scholar] [CrossRef]
Compound Name | Plant Source | MIC (µg/mL) | References |
---|---|---|---|
pinocembrin (1) | Alpinia katsumadai Hayata | 128 c | [50] |
eupomatenoid-1 (2) | Aristolochia elegans Mast. | 100 a | [51] |
fargesin (3) | Aristolochia elegans Mast. | 50 a | [51] |
(8R,8′R,9R)-cubebin (4) | Aristolochia elegans Mast. | 100 a | [51] |
flavonoid 7-demethylartonol E (5) | Artocarpus rigidus Blume | 50 b | [52] |
chromone artorigidusin (6) | Artocarpus rigidus Blume | 12.5 b | [52] |
artonol B (7) | Artocarpus rigidus Blume | 100 b | [52] |
artonin F (8) | Artocarpus rigidus Blume | 6.25 b | [52] |
cycloartobiloxanthone (9) | Artocarpus rigidus Blume | 25 b | [52] |
artoindonesianin C (10) | Artocarpus rigidus Blume | 12.5 b | [52] |
(-)-butin (11) | Butea monosperma (Lam.) Taub. | 25 b | [53] |
butein (12) | Butea monosperma (Lam.) Taub. | 12.5 b | [53] |
butrin (13) | Butea monosperma (Lam.) Taub. | 50 b | [53] |
monospermoside (14) | Butea monosperma (Lam.) Taub. | 25 b | [53] |
(+)-isomonospermoside (15) | Butea monosperma (Lam.) Taub. | 25 b | [53] |
7,3′, 4′-trihydroxyflavone (16) | Butea monosperma (Lam.) Taub. | 50 b | [53] |
dihydromonospermoside (17) | Butea monosperma (Lam.) Taub. | 50 b | [53] |
isoliquiritigenin (18) | Butea monosperma (Lam.) Taub. | 25 b | [53] |
(-)-liquiritigenin (19) | Butea monosperma (Lam.) Taub. | 25 b | [53] |
formononetin (20) | Butea monosperma (Lam.) Taub. | 50 b | [53] |
afrormosin (21) | Butea monosperma (Lam.) Taub. | 25 b | [53] |
formononetin-7-O-β-D-glucopyranoside (22) | Butea monosperma (Lam.) Taub. | 100 b | [53] |
5,7-dihydroxy-4′-methoxyflavanone (23) | Chromolaena odorata (L.) R.M.King & H.Rob. | 175.8 mM b | [54] |
4′-hydroxy-5,6,7′-trimethoxyflavanone (24) | Chromolaena odorata (L.) R.M.King & H.Rob. | 606.0 mM b | [54] |
acetin (25) | Chromolaena odorata (L.) R.M.King & H.Rob. | 704.2 mM b | [54] |
luteolin (26) | Chromolaena odorata (L.) R.M.King & H.Rob. | 699.3 mM b | [54] |
kaempferol-3,7-dimethyl ether (27) | Cnidoscolus chayamansa McVaugh | >50 a | [55] |
5-hydroxy-7,3′,4′-trimethoxy flavanone (28) | Cnidoscolus chayamansa McVaugh | >50 a | [55] |
5,7,3′-trihydroxy-4′,5′-(2′′′′,2′′′′-dimethylpyran)-8,2¢-di(3-methyl-2-butenyl)-(2S)-flavanone (29) | Dendrolobium lanceolatum (Dunn) Schindl. | 6.3 b | [56] |
5,7,3′-trihydroxy-4¢-methoxy-8,2′-di(3-methyl-2-butenyl)-(2S)-flavanone (30) | Dendrolobium lanceolatum (Dunn) Schindl. | 12.5 b | [56] |
7,3′,4′-trihydroxy-6-methoxy-8,2′-di(3-methyl-2-butenyl)-(2S)-flavan.(31) | Dendrolobium lanceolatum (Dunn) Schindl. | 25 b | [56] |
4′-hydroxy-2″,2″dimethyl-pyranoflavan (32) | Dendrolobium lanceolatum (Dunn) Schindl. | 25 b | [56] |
8,4′-dimethoxy-7-O-γ,-dimethylallylisoflavone (33) | Derris indica (Lam.) Bennet | 100 b | [57] |
3,4-methylenedioxy-10-methoxy-7-oxo[2]benzopyrano[4,3-b]benzopyran (34) | Derris indica (Lam.) Bennet | 6.25 b | [57] |
desmethoxy kanugin (35) | Derris indica (Lam.) Bennet | 50 b | [57] |
lacheolatin B (36) | Derris indica (Lam.) Bennet | 50 b | [57] |
pongachromene (37) | Derris indica (Lam.) Bennet | 100 b | [57] |
3,7-dimethoxyflavone (38) | Derris indica (Lam.) Bennet | 50 b | [57] |
pachycarin D (39) | Derris indica (Lam.) Bennet | 200 b | [57] |
maackiain (40) | Derris indica (Lam.) Bennet | 50 b | [57] |
medicarpin (41) | Derris indica (Lam.) Bennet | 100 b | [57] |
karanjachromene (42) | Derris indica (Lam.) Bennet | 12.5 b | [57] |
pinnatin (43) | Derris indica (Lam.) Bennet | 12.5 b | [57] |
isobachalcone (44) | Dorstenia barteri var. multiradiata (Engl.) Hijman & C.C.Berg | 2.44 a,c | [58] |
kanzanol C (45) | Dorstenia barteri var. multiradiata (Engl.) Hijman & C.C.Berg | 9.76 a, 19.53 c | [58] |
4-hydroxylonchocarpin (46) | Dorstenia barteri var. multiradiata (Engl.) Hijman & C.C.Berg | 9.76 a,c | [58] |
stipulin (47) | Dorstenia barteri var. multiradiata (Engl.) Hijman & C.C.Berg | 39.06 a,c | [58] |
amentoflavone (48) | Dorstenia barteri var. multiradiata (Engl.) Hijman & C.C.Berg | 39.06 a,c | [58] |
khonkloginols A (49) | Eriosema chinense Vogel | 25 b | [59] |
khonkloginols B (50) | Eriosema chinense Vogel | 50 b | [59] |
khonkloginols F (51) | Eriosema chinense Vogel | 50 b | [59] |
khonkloginols H (52) | Eriosema chinense Vogel | 25 b | [59] |
lupinifolinol (53) | Eriosema chinense Vogel | 25 b | [59] |
dehydrolupinifolinol (54) | Eriosema chinense Vogel | 12.5 b | [59] |
flemichin D (55) | Eriosema chinense Vogel | 12.5 b | [59] |
eriosemaone (56) | Eriosema chinense Vogel | 12.5 b | [59] |
lupinifolin (57) | Eriosema chinense Vogel | 12.5 b | [59] |
3-hydroxyxanthyletin (58) | Ficus nervosa B.Heyne ex Roth | 16 a | [60] |
xanthyletin (59) | Ficus nervosa B.Heyne ex Roth | 220 a | [60] |
umbelliferone (60) | Ficus nervosa B.Heyne ex Roth | 150 a | [60] |
scopoletin (61) | Ficus nervosa B.Heyne ex Roth | ≥110 a | [60] |
carpachromene (62) | Ficus nervosa B.Heyne ex Roth | 110 a | [60] |
genistein (63) | Ficus nervosa B.Heyne ex Roth | 35 a | [60] |
prunetin (64) | Ficus nervosa B.Heyne ex Roth | 30 a | [60] |
cajanin (65) | Ficus nervosa B.Heyne ex Roth | 110 a | [60] |
apigenin (66) | Ficus nervosa B.Heyne ex Roth | 70a | [60] |
naringenin (67) | Ficus nervosa B.Heyne ex Roth | ≤ 2.8 a | [60] |
(2S)-5,7,2′-trihydroxyflavone (68) | Galenia africana L. | 110.20 µM c, 367.60 µM a | [61] |
(E)—2′,4′-dihydroxychalcone (69) | Galenia africana L. | 468.70 µM c, 195.30 µM a | [61] |
(E)-3,2′,4′-trihydroxy-3′-methoxychalcone (70) | Galenia africana L. | 174.80 µM a | [61] |
isoliquiritigenin (71) | Glycyrrhiza glabra L. | 25 a | [62] |
liquiritigenin (72) | Glycyrrhiza glabra L. | 26 a | [62] |
5-hydroxy-3,7,49-trimethoxyflavone (73) | Haplopappus sonoriensis (A.Gray)S.F.Blake | 33% inhibition at 100 a | [63] |
5,7-dihydroxy-3,49-dimethoxyflavone (74) | Haplopappus sonorensis (A.Gray) S.F.Blake | 98% inhibition at concentration of 100 a | [63] |
5,49-dihydroxy-3,7-dimethoxyflavone (75) | Haplopappus sonorensis (A.Gray) S.F.Blake | 48% inhibition at concentration of 100 a | [63] |
3-cinnamoyltribuloside (76) | Heritiera littoralis Aiton | 1600 d, 800 e | [64] |
afzelin (77) | Heritiera littoralis Aiton | 1600 e | [64] |
astilbin (78) | Heritiera littoralis Aiton | 1600 d,e | [64] |
linaroside (79) | Lantana camara L. | 30% inhibition of 6.25 a | [65] |
lantanoside (80) | Lantana camara L. | 37%, inhibition 6.25 a | [65] |
dihydroguaiaretic acid (81) | Larrea tridentate (Sessé & Moc. ex DC.) Coville | 50 a | [66] |
4-epi-larreatricin (82) | Larrea tridentate (Sessé & Moc. ex DC.) Coville | 50 a | [66] |
3′-demethoxy-6-O-demethylisoguaiacin (83) | Larrea tridentate (Sessé & Moc. ex DC.) Coville | >50 a | [66] |
5,4′-dihydroxy-3,7,8,3′-tetramethoxyflavone (84) | Larrea tridentate (Sessé & Moc. ex DC.) Coville | >50 a | [66] |
5,4′-dihydroxy-3,7,8-trimethoxyflavone (85) | Larrea tridentate (Sessé & Moc. ex DC.) Coville | >50 a | [66] |
nevadensin (86) | Limnophila geoffrayi Bon. | 200 b | [67] |
isothymusin (87) | Limnophila geoffrayi Bon. | 200 b | [67] |
isoquercitrin (88) | Ocotea notate (Nees & Mart.) Mez | 0 | [68] |
afzelin (89) | Ocotea notate (Nees & Mart.) Mez | 0 | [68] |
7-methylquercetagetin (90) | Paepalanthus latipes Silveira | 500 a, 1000 g | [69] |
7-methylquercetagetin-4′-O-β-D-glucopyranoside (91) | Paepalanthus latipes Silveira | 500 a, 1000 g | [69] |
bakuchiol (92) | Psoralea corylifolia L. | 15.79 f 21.4 h >500 c | [70] |
chrysophanol (93) | Rheum rhaponticum L. | 64 b 128 h | [71] |
aloe-emodin (94) | Rheum rhaponticum L. | 64 b 128 h | [71] |
rhaponticin (95) | Rheum rhaponticum L. | 128 b 128 h | [71] |
resveratrol (96) | Rheum rhaponticum L. | 128 b 64 h | [71] |
barbaloin (97) | Rheum rhaponticum L. | 32 b 128 h | [71] |
deoxyrhaponticin (98) | Rheum rhaponticum L. | 256 b 128 h | [71] |
precatorin A (99) | Rhynchosia precatoria (Willd.) DC | 62.5 a | [72] |
precatorin B (100) | Rhynchosia precatoria (Willd.) DC | 62.5 a | [72] |
precatorin C (101) | Rhynchosia precatoria (Willd.) DC | 62.5 a | [72] |
lupinifolin (102) | Rhynchosia precatoria (Willd.) DC | 31.25 a | [72] |
cajanone (103) | Rhynchosia precatoria (Willd.) DC | 62.5 a | [72] |
apigenin (104) | Schinus terebinthifolius Raddi | 14.5 h | [73] |
tetraceranoate (105) | Tetracera potatoria Afzel. ex G.Don | 7.8 c, 125 f | [74] |
N-hydroxy imidate-tetracerane (106) | Tetracera potatoria Afzel. ex G.Don | 31 c, 125 f | [74] |
(+)-1-hydroxy-2,6-bis-epi-pinoresinol (107) | Valeriana laxiflora DC. | 127 a | [75] |
5,7-dihydroxy-3,6,4′-trimethoxyflavone (108) | Valeriana laxiflora DC. | 46.2 a | [75] |
ferulic acid (109) | Valeriana laxiflora DC. | >128 a | [75] |
(+)-1-hydroxypinoresinol (110) | Valeriana laxiflora DC. | >128 a | [75] |
prinsepiol (111) | Valeriana laxiflora DC. | >128 a | [75] |
5,7,3′-trihydroxy-4′-methoxyflavone (112) | Valeriana laxiflora DC. | >128 a | [75] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazlun, M.H.; Sabran, S.F.; Mohamed, M.; Abu Bakar, M.F.; Abdullah, Z. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules 2019, 24, 2449. https://doi.org/10.3390/molecules24132449
Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules. 2019; 24(13):2449. https://doi.org/10.3390/molecules24132449
Chicago/Turabian StyleMazlun, Muhamad Harith, Siti Fatimah Sabran, Maryati Mohamed, Mohd Fadzelly Abu Bakar, and Zunoliza Abdullah. 2019. "Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy" Molecules 24, no. 13: 2449. https://doi.org/10.3390/molecules24132449
APA StyleMazlun, M. H., Sabran, S. F., Mohamed, M., Abu Bakar, M. F., & Abdullah, Z. (2019). Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules, 24(13), 2449. https://doi.org/10.3390/molecules24132449