Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli
Abstract
:1. Introduction
2. Results
2.1. Effect Treatments with Different MeJA Concentrations on the Total Phenolic Content (TPC) and Ferric Reducing Antioxidant Power (FRAP)
2.2. Effect of MeJA Treatment and Wounding Stress on the Total Phenolic Content (TPC) and Antioxidant Capacity (AOX)
2.3. Comparative Analysis of Individual Phenolic Compounds by HPLC-PAD.
2.4. Effect of MeJA Treatment and Wounding Stress on PAL, C4H, and 4CL Activity
2.5. Effect of MeJA Treatment and Wounding Stress on Vit C Content and APX, PPO, and POD Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material Preparation and Treatments
4.3. Total Phenols and Vitamin C (Vit C) Content Assay
4.4. Individual Phenolic Compounds Assay
4.5. Antioxidant Capacity (AOX) Assay
4.6. Phenylpropanoid Metabolism-Related Enzymes Assays
4.7. Antioxidant Enzymes Assays
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yea, J.H.; Huang, L.Y.; Terefe, N.S.; Augustin, M.A. Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chem. 2019, 286, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Torres-Contreras, A.M.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Stability of bioactive compounds in broccoli as affected by cutting styles and storage time. Molecules 2017, 22, 636. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, E.H.; Brown, A.F.; Kurilich, A.C.; Keck, A.S.; Matusheski, N.; Klein, B.P.; Juvik, J.A. Variation in content of bioactive components in broccoli. J. Food Compos. Anal. 2003, 16, 323–330. [Google Scholar] [CrossRef]
- Moreno, D.A.; Carvajal, M.; López-Berenguer, C.; García-Viguera, C. Chemical and biological characterisation of nutraceutical compounds of broccoli. J. Pharm. Biomed. Anal. 2006, 41, 1508–1522. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Derito, C.M.; Liu, M.K. Cellular antioxidant activity of common vegetables. J. Agric. Food Chem. 2010, 58, 6621–6629. [Google Scholar] [CrossRef]
- Cisneros-Zevallos, L. The use of controlled postharvest abiotic stresses as a tool for enhancing the nutraceutical content and adding-value of fresh fruits and vegetables. J. Food Sci. 2003, 68, 1560–1565. [Google Scholar] [CrossRef]
- Surjadinata, B.B.; Cisneros-Zevallos, L. Biosynthesis of phenolic antioxidants in carrot tissue increases with wounding intensity. Food Chem. 2012, 134, 615–624. [Google Scholar] [CrossRef]
- Torres-Contreras, A.M.; Senés-Guerrero, C.; Pacheco, A.; González-Agüero, M.; Perla, A.; Ramos-Parra, P.A.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Genes differentially expressed in broccoli as an early and late response to wounding stress. Postharvest Biol. Technol. 2018, 145, 171–182. [Google Scholar] [CrossRef]
- Berno, N.D.; Tezotto-Uliana, J.V.; Santos, D.C.T.; Kluge, R.A. Storage temperature and type of cut affect the biochemical and physiological characteristics of fresh-cut purple onions. Postharvest Biol. Technol. 2014, 93, 91–96. [Google Scholar] [CrossRef]
- Li, X.A.; Long, Q.H.; Gao, F.; Han, C.; Jin, P.; Zheng, Y.H. Effect of cutting styles on quality and antioxidant activity in fresh-cut pitaya fruit. Postharvest Biol. Technol. 2017, 124, 1–7. [Google Scholar] [CrossRef]
- Reyes, L.F.; Villarreal, J.E.; Cisneros-Zevallos, L. The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem. 2007, 101, 1254–1262. [Google Scholar] [CrossRef]
- Han, C.; Li, J.; Jin, P.; Li, X.A.; Wang, L.; Zheng, Y.H. The effect of temperature on phenolic content in wounded carrots. Food Chem. 2017, 215, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hu, W.; He, Y.; Jiang, A.; Zhang, R. Effect of citric acid combined with UV-C on the quality of fresh-cut apples. Postharvest Biol. Technol. 2016, 111, 126–131. [Google Scholar] [CrossRef]
- Villarreal-García, D.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Plants as biofactories: postharvest stress-induced accumulation of phenolic compounds and glucosinolates in broccoli subjected to wounding stress and exogenous phytohormones. Front. Plant. Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Heredia, J.B.; Cisneros-Zevallos, L. The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chem. 2009, 115, 1500–1508. [Google Scholar] [CrossRef]
- Hu, W.; Jiang, A.; Tian, M.; Liu, C.; Wang, Y. Effect of ethanol treatment on physiological and quality attributes of fresh-cut eggplant. J. Sci. Food Agric. 2010, 90, 1323–1326. [Google Scholar] [CrossRef]
- Jin, P.; Zheng, Y.H.; Tang, S.S.; Rui, H.J.; Wang, C.Y. Enhancing disease resistance in peach fruit with methyl jasmonate. J. Sci. Food Agric. 2010, 89, 802–808. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Gómez, P.A.; Pradas, I.; Artés, F.; Artés-Hernández, F. Moderate UV-C pretreatment as a quality enhancement tool in fresh-cut bimi ® broccoli. Postharvest Biol. Technol. 2011, 62, 327–337. [Google Scholar] [CrossRef]
- Ansorena, M.R.; Moreira, M.R.; Roura, S.I. Combined effect of ultrasound, mild heat shock and citric acid to retain greenness, nutritional and microbiological quality of minimally processed broccoli (brassica oleracea L.): An optimization study. Postharvest Biol. Technol. 2014, 94, 1–13. [Google Scholar] [CrossRef]
- Zhan, L.J.; Hu, J.Q.; Li, Y.; Pang, L.Y. Combination of light exposure and low temperature in preserving quality and extending shelf-life of fresh-cut broccoli (Brassica oleracea L.). Postharvest Biol. Technol. 2012, 72, 76–81. [Google Scholar] [CrossRef]
- Margherita, M.; Milena, P.; Roberto, F. Methyl jasmonate and ozone affect the antioxidant system and the quality of wine grape during postharvest partial dehydration. Food Res. Int. 2018, 112, 369–377. [Google Scholar]
- Heredia, J.B.; Cisneros-Zevallos, L. The effects of exogenous ethylene and methyl jasmonate on PAL activity, phenolic profiles and antioxidant capacity of carrots (Daucus carota) under different wounding intensities. Postharvest Biol. Technol. 2009, 51, 242–249. [Google Scholar] [CrossRef]
- Li, X.A.; Li, M.L.; Wang, J.; Wang, L.; Han, C.; Jin, P.; Zheng, Y.H. Methyl jasmonate enhances wound-induced phenolic accumulation in pitaya fruit by regulating sugar content and energy status. Postharvest Biol. Technol. 2018, 137, 106–112. [Google Scholar] [CrossRef]
- Reyes, L.F.; Cisneros-Zevallos, L. Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum L.). J. Agric. Food Chem 2003, 51, 5296–5300. [Google Scholar] [CrossRef]
- Costa, C.; Tsatsakis, A.; Mamoulakis, C.; Teodoro, M.; Briguglio, G.; Caruso, E. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 2017, 110, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, J.; Neveu, V.; Vos, N.; Scalbert, A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: An application of the phenol-explorer database. J. Sci. Food Agric. 2010, 58, 4959–4969. [Google Scholar] [CrossRef]
- Wang, K.; Jin, P.; Cao, S.; Shang, H.; Yang, Z.; Zheng, Y.H. Methyl jasmonate reduces decay and enhances antioxidant capacity in Chinese bayberries. J. Agric. Food Chem. 2009, 57, 5809–5815. [Google Scholar] [CrossRef]
- Akan, S.; Gunes, N.T.; Yanmaz, R. Methyl jasmonate and low temperature can help for keeping some physicochemical quality parameters in garlic (Allium sativum L.) cloves. Food Chem. 2019, 270, 546–553. [Google Scholar] [CrossRef]
- Fung, R.W.M.; Wang, C.Y.; Smith, D.L.; Gross, K.C.; Tao, Y.; Tian, M. Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. J. Plant. Physiol. 2006, 163, 1049–1060. [Google Scholar] [CrossRef]
- Boudet, A.M. Evolution and current status of research in phenolic compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar] [CrossRef]
- Kenny, O.; O’Beirne, D. Antioxidant phytochemicals in fresh-cut carrot disks as affected by peeling method. Postharvest Biol. Technol. 2010, 58, 247–253. [Google Scholar] [CrossRef]
- Heo, H.J.; Kim, Y.J.; Chung, D.; Kim, D.O. Antioxidant capacities of individual and combined phenolics in a model system. Food Chem. 2007, 104, 87–92. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. F. 2017, 16, 1243–1268. [Google Scholar] [CrossRef]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin biosynthesis and structure. Plant. Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Moreno, A.; Redondo-Gil, M.; Benavides, J.; Nair, V.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Fron. Plant. Sci. 2015, 6, 1–15. [Google Scholar]
- Wang, Q.; Cao, Y.; Zhou, L.; Jiang, C.Z.; Feng, Y.; Wei, S. Effects of postharvest curing treatment on flesh colour and phenolic metabolism in fresh-cut potato products. Food Chem. 2015, 169, 246–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Chai, H.; Cheng, N.; Cao, W. Effects of 24-epibrassinolide on enzymatic browning and antioxidant activity of fresh-cut lotus root slices. Food Chem. 2017, 217, 45–50. [Google Scholar] [CrossRef]
- Marszałek, K.; Wozniak, L.; Barba, F.J.; Skąpska, S.; Lorenzo, J.M.; Zambon, A.; Spilimbergo, S. Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden Delicious, L.) juice under supercritical carbon dioxide and long-term cold storage. Food Chem. 2018, 268, 279–286. [Google Scholar]
- Sun, J.; Jiang, Y.; Wei, X.; Shi, J.; You, Y.; Liu, H.; Kakuda, Y.; Zhao, M. Identification of (-) - epicatechin as the direct substrate for polyphenol oxidase isolated from litchi pericarp. Food Res. Int. 2006, 39, 864–870. [Google Scholar] [CrossRef]
- Bessey, O.A.; King, C.G. The distribution of vitamin C in plant and animal tissues, and its determination. J. Biol. Chem. 1933, 103, 687–698. [Google Scholar]
- Becerra-Moreno, A.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Plants as biofactories: Glyphosate-induced production of shikimic acid and phenolic antioxidants in wounded carrot tissue. J. Agric. Food Chem. 2012, 60, 11378–11386. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Hu, W.; Zhang, R.; Jiang, A.; Zou, Y. Levels of phenolic compounds, antioxidant capacity, and microbial counts of fresh-cut onions after treatment with a combination of nisin and citric acid. Hortic. Environ. Biotechnol. 2016, 57, 266–273. [Google Scholar] [CrossRef]
- Knobloch, K.H.; Hahlbrock, K. Isoenzyme of p-coumarate: CoA ligase from cell suspension cultures of Glycine max. Eur. J. Biochem. 1975, 52, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.P.; Xu, Y.; Jiang, A.; Gong, Q.Q. Physiological and quality responses of longan fruit to high O2 or high CO2 atmospheres in storage. Postharvest Biol. Technol. 2002, 24, 335–340. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascrobate specific peroxidase in spinach chloroplasts. Plant. Cell Physio. 1989, 22, 867–880. [Google Scholar]
Sample Availability: Broccoli and phenolic standards are available from the authors. |
Storage (Hour) | Treatment | Individual Phenolic Content (mg kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Catechin | Hydroxybenz-oic Acid | Chlorogenic Acid | Caffeic Acid | Sinapic Acid | Ferulic Acid | Rutin | Cinnamic Acid | Quercetin | ||
0 | Control | 23.87 ± 3.01 aA | 5.64 ± 0.45 abA | 38.76 ± 2.47 aA | 42.59 ± 3.51 aA | 2.94 ± 0.19 aA | 15.52 ± 1.16 aA | 13.02 ± 0.98 abA | 2.81 ± 0.21 aA | 1.15 ± 0.09 aA |
MeJA | 24.92 ± 1.38 aA | 6.08 ± 0.58 aA | 39.52 ± 2.31 aA | 44.50 ± 2.09 aA | 3.08 ± 0.21 aA | 16.61 ± 0.57 aA | 14.37 ± 0.25 aA | 2.95 ± 0.31 aA | 1.19 ± 0.05 aB | |
Wounding | 24.52 ± 2.23 aA | 5.35 ± 0.62 abA | 37.38 ± 1.52 aA | 41.33 ± 1.28 aC | 2.81 ± 0.25 aC | 14.05 ± 0.87 aA | 12.15 ± 0.33 bB | 2.91 ± 0.17 aA | 1.17 ± 0.11 aB | |
MeJA + Wounding | 22.87 ± 1.28 aA | 5.02 ± 0.23 bA | 36.67 ± 1.43 aA | 43.22 ± 2.06 aD | 3.02 ± 0.31 aC | 16.33 ± 1.02 aA | 15.02 ± 0.66 aC | 3.05 ± 0.23 aE | 1.25 ± 0.13 aE | |
12 | Control | 24.92 ± 2.17 aA | 3.05 ± 0.32 bB | 36.24 ± 2.93 aA | 26.69 ± 1.99 bB | 1.59 ± 0.21 bB | 13.28 ± 1.21 aAB | 10.77 ± 0.99 aB | 1.93 ± 0.09 cB | 0.81 ± 0.05 dB |
MeJA | 25.60 ± 1.93 aA | 4.09 ± 0.33 aB | 35.99 ± 3.01 aA | 40.85 ± 3.01 aA | 2.71 ± 0.19 aA | 14.09 ± 1.41 aB | 11.97 ± 1.01 aB | 2.59 ± 0.13 bA | 1.14 ± 0.08 cB | |
Wounding | 19.32 ± 0.96 bB | 2.03 ± 0.18 cB | 7.87 ± 0.81 cD | 43.11 ± 2.94 aC | 0.88 ± 0.05 cD | 12.93 ± 1.08 aAB | 11.62 ± 1.02 aBC | 2.02 ± 0.15 cB | 2.84 ± 0.14 aA | |
MeJA+ Wounding | 15.49 ± 0.84 cB | 2.59 ± 0.21 cB | 10.26 ± 0.96 bE | 26.04 ± 1.67 bE | 1.34 ± 0.11 bD | 13.28 ± 1.09 aB | 12.07 ± 1.09 aD | 4.49 ± 0.31 aD | 1.99 ± 0.13 bD | |
24 | Control | 19.35 ± 1.25 aB | 1.77 ± 0.12 bC | 28.92 ± 1.57 aB | - | 1.12 ± 0.09 cC | 12.37 ± 1.22 aAB | 13.39 ± 1.12 aA | 1.02 ± 0.06 dC | 0.79 ± 0.06 cB |
MeJA | 20.22 ± 2.01 aB | 2.44 ± 0.26 aC | 30.28 ± 2.45 aB | 12.91 ± 1.22 cB | 2.08 ± 0.19 bB | 13.71 ± 1.09 aB | 8.09 ± 0.56 bC | 2.03 ± 0.19 cB | 1.86 ± 0.12 bA | |
Wounding | 15.33 ± 1.33 bC | 1.32 ± 0.23 cC | 10.41 ± 1.02 bC | 148.74 ± 9.21 bB | 12.68 ± 1.05 aB | 10.82 ± 1.03 bB | 5.26 ± 0.32 cD | 2.58 ± 0.16 bA | 0.82 ± 0.07 cC | |
MeJA+ Wounding | 14.12 ± 1.09 bB | 1.03 ± 0.32 cC | 12.24 ± 1.01 bD | 222.11 ± 8.66 aC | 12.39 ± 1.23 aB | 12.14 ± 1.05 bB | 13.56 ± 1.03 aD | 10.23 ± 0.81 aC | 4.82 ± 0.37 aA | |
36 | Control | 21.75 ± 1.72 aB | 2.49 ± 0.48 aB | 20.26 ± 1.95 bC | - | 0.76 ± 0.05 dD | 10.58 ± 0.92 bB | 9.29 ± 0.58 cB | 0.58 ± 0.02 dD | 0.57 ± 0.04 cC |
MeJA | 15.32 ± 1.37 bC | 2.62 ± 0.24 aC | 26.51 ± 1.83 aB | - | 1.78 ± 0.12 cC | 12.63 ± 1.09 aB | 8.82 ± 0.73 cC | 1.43 ± 0.07 cC | 0.64 ± 0.06 cC | |
Wounding | 12.56 ± 1.09 cD | 1.24 ± 0.11 bC | 20.91 ± 1.69 bB | 185.33 ± 1.88 bA | 17.28 ± 0.97 aA | 5.35 ± 0.87 cC | 18.71 ± 1.03 bA | 2.69 ± 0.21 bA | 0.98 ± 0.07 bC | |
MeJA+ Wounding | 10.28 ± 1.02 dC | 0.94 ± 0.05 cC | 26.86 ± 2.33 aB | 239.48 ± 1.59 aB | 13.57 ± 1.24 bAB | 9.54 ± 0.64 bC | 24.92 ± 1.82 aA | 39.42 ± 2.19 aB | 3.18 ± 0.28 aB | |
48 | Control | 10.08 ± 0.92 aC | 0.82 ± 0.04 aD | 15.39 ± 1.26 bD | - | 0.69 ± 0.05 dE | 7.15 ± 0.49 bC | 9.47 ± 0.62 cB | 0.56 ± 0.04 dD | - |
MeJA | 11.87 ± 0.64 aD | 0.90 ± 0.06 aD | 18.97 ± 1.44 aC | - | 1.48 ± 0.91 cD | 8.72 ± 0.52 aC | 8.67 ± 0.59 cC | 0.82 ± 0.06 cD | 0.15 ± 0.01 cD | |
Wounding | - | - | 10.07 ± 0.72 cC | 143.49 ± 1.32 bB | 12.45 ± 1.06 bB | 2.94 ± 0.22 dD | 10.50 ± 0.29 bC | 1.59 ± 0.13 bC | 0.70 ± 0.04 bD | |
MeJA+ Wounding | - | - | 20.06 ± 1.37 aC | 265.28 ± 9.34 aA | 15.44 ± 1.09 aA | 4.86 ± 0.41 cD | 18.62 ± 1.57 aB | 50.23 ± 3.64 aA | 2.45 ± 0.18 aC |
PAL | C4H | 4CL | PPO | POD | TP | Catechin | HyA | ChA | CaA | SiA | FeA | Rutin | CiA | Quercetin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PAL | 1 | 0.770 ** | 0.647 ** | −0.411 | −0.566 ** | 0.793 ** | −0.500 ** | −0.516 * | −0.557 ** | 0.844 ** | 0.787 ** | −0.392 | 0.453 * | 0.557 * | 0.697 ** |
C4H | 1 | 0.688 ** | −0.636 ** | −0.494 * | 0.724 ** | −0.559 * | −0.400 | −0.434 | 0788 ** | 0.717 ** | −0.343 | 0.280 | 0.543 * | 0.652 ** | |
4CL | 1 | −0.377 | − 0.145 | 0.769 ** | −0.357 | −0.312 | −0.096 | 0.776 ** | 0.642 ** | −0.146 | 0.307 | 0.671 ** | 0.761 ** | ||
PPO | 1 | 0.010 | −0.642 ** | 0.796 ** | 0.671 ** | 0.416 | −0.585 ** | −0.621 ** | 0.693 ** | −0.158 | −0.501 * | −0.171 | |||
POD | 1 | −0.271 | 0.099 | 0.149 | 0.456 | −0.282 | −0.208 | 0.102 | −0.254 | −0.070 | −0.357 | ||||
TP | 1 | −0.585 | −0.456 * | −0.188 | 0.891 ** | 0.812 ** | −0.447 * | 0.656 ** | 0.824 ** | 0.595 ** | |||||
Catechin | 1 | 0.839 ** | 0.650 ** | −0.605 ** | −0.638 ** | 0.889 ** | −0.011 | −0.529 * | −0.129 | ||||||
HyA | 1 | 0.775 ** | −0.478 * | −0.514 * | 0.841 ** | 0.082 | −0.364 | −0.163 | |||||||
ChA | 1 | −0.302 | −0.325 | 0.596 ** | 0.253 | −0.058 | −0.227 | ||||||||
CaA | 1 | 0.949 ** | −0.511 * | 0.436 | 0.743 ** | 0.606 ** | |||||||||
SiA | 1 | −0.618 ** | 0.362 | 0.579 ** | 0.392 | ||||||||||
FeA | 1 | 0.008 | −0.354 | 0.103 | |||||||||||
Rutin | 1 | 0.410 | 0.408 | ||||||||||||
CiA | 1 | 0.511 * | |||||||||||||
Quercetin | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Hu, W.; Jiang, A.; Xu, Y.; Sa, R.; Feng, K.; Zhao, M.; Yu, J.; Ji, Y.; Hou, M.; et al. Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli. Molecules 2019, 24, 3537. https://doi.org/10.3390/molecules24193537
Guan Y, Hu W, Jiang A, Xu Y, Sa R, Feng K, Zhao M, Yu J, Ji Y, Hou M, et al. Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli. Molecules. 2019; 24(19):3537. https://doi.org/10.3390/molecules24193537
Chicago/Turabian StyleGuan, Yuge, Wenzhong Hu, Aili Jiang, Yongping Xu, Rengaowa Sa, Ke Feng, Manru Zhao, Jiaoxue Yu, Yaru Ji, Mengyang Hou, and et al. 2019. "Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli" Molecules 24, no. 19: 3537. https://doi.org/10.3390/molecules24193537
APA StyleGuan, Y., Hu, W., Jiang, A., Xu, Y., Sa, R., Feng, K., Zhao, M., Yu, J., Ji, Y., Hou, M., & Yang, X. (2019). Effect of Methyl Jasmonate on Phenolic Accumulation in Wounded Broccoli. Molecules, 24(19), 3537. https://doi.org/10.3390/molecules24193537