Antibacterial and Antifungal Activity of Three Monosaccharide Monomyristate Derivatives
Abstract
:1. Introduction
2. Results and Discussions
2.1. Synthesis of Monosaccharide Monomyristate
2.2. Antibacterial and Antifungal Activity Assays of Monosaccharide Monomyristate Derivatives
3. Experimental
3.1. Materials
3.2. Apparatus
3.3. Synthesis of Myristoyl Chloride
3.4. Synthesis of Monosaccharide Monomyristate
3.5. Antibacterial and Antifungal Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tyers, M.; Wright, G.D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nature Rev. Microbiol. 2019, 7, 1–15. [Google Scholar] [CrossRef]
- Perfect, J.R. The antifungal pipeline: A reality check. Nature Rev. Drug Discov. 2017, 16, 603–616. [Google Scholar] [CrossRef]
- Vogt, R.L.; Dippold, L. Escherichia coli O157:H7 outbreak associated with consumption of ground beef. Public Health Rep. 2005, 120, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; David, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Noble, S.M.; Gianetti, B.A.; Witchley, J.N. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat. Rev. Microbiol. 2017, 15, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Sun, Y.; Sang, Z.; Sun, C.; Dai, Y.; Deng, Y. Synthesis, characterization, antibacterial and antifungal evaluation of novel monosaccharide esters. Molecules 2012, 17, 8661–8673. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Zeng, X.A.; Brennan, C.S.; Brennan, M.; Han, Z. Recent advances in techniques for starch esters and the appications: A review. Foods 2016, 5, 50. [Google Scholar] [CrossRef]
- Staro, J.; Dbrowski, J.M.; Guzik, M. Lactose esters: Synthesis and biotechnological applications. Crit. Rev. Biotechnol. 2018, 38, 1–14. [Google Scholar] [CrossRef]
- Neta, N.S.; Teixera, J.A.; Rodrigues, L.R. Sugar ester surfactants: Enzymatic synthesis and applications in food industry. Crit. Rev. Food. Sci. 2015, 55, 595–610. [Google Scholar] [CrossRef]
- Bachan, S.; Fantini, J.; Joshi, A.; Garg, H.; Mootoo, D.R. Synthesis, gp120 binding and anti-HIV activity of fatty acid esters of 1,1-linked disaccharides. Bioorg. Med. Chem. 2011, 19, 4803–4811. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yang, J.; Zhao, Y. High intensity ultrasound assisted heating to improve solubility, antioxidant and antibacterial properties of chitosan-fructose Maillard reaction products. LWT Food Sci. Technol. 2015, 60, 253–262. [Google Scholar] [CrossRef]
- Perez, B.; Anankanbil, S.; Guo, Z. Synthesis of sugar fatty acid ester and their industrial utilizations. In Fatty Acids; Ahmad, M.U., Ed.; Elsevier: London, UK, 2017. [Google Scholar]
- Smith, A.; Nobmann, P.; Henehan, G.; Bourke, P.; Dunne, J. Synthesis and antimicrobial evaluation of carbohydrate and polyhydroxylated non-carbohydrate fatty acid ester and ether derivatives. Carbohydr. Res. 2008, 343, 2557–2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucarini, S.; Fagioli, L.; Campana, R.; Cole, H.; Duranti, A.; Baffone, W.; Vllasaliu, D.; Casettari, L. Unsaturated fatty acids lactose esters: Cytotoxicity, permeability enhancement and antimicrobial activity. Eur. J. Pharm. Biopharm. 2016, 107, 88–96. [Google Scholar] [CrossRef]
- Dos Santos, A.; Andre, C.B.; Martim, G.C.; Schuquel, I.T.A.; Pfeifer, C.S.; Ferracane, J.L.; Tominaga, T.T.; Khalil, N.M.; Radovanovic, E.; Giroto, E.M. Methacrylate saccharide-based monomers for dental adhesive systems. Int. J. Adhes. Adhes. 2018, 87, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Sun, Y.N.; Yan, X.T.; Yang, S.Y.; Song, S.B.; Lee, Y.M.; Kim, Y.H. NF-KB inhibitory activity of sucrose fatty acid esters and related constituents from Astragalus membranaceus. J. Agric. Food Chem. 2013, 61, 7081–7088. [Google Scholar] [CrossRef]
- Enayati, M.; Gong, Y.; Goddard, J.M.; Abbaspourrad, A. Synthesis and characterization of lactose fatty acid ester biosurfactants using free and immobilized lipases in organic solvents. Food Chem. 2018, 266, 508–513. [Google Scholar] [CrossRef]
- Alfindee, M.N.; Zhang, Q.; Subedi, Y.P.; Shrestha, J.P.; Kawasaki, Y.; Grilley, M.; Takemoto, J.Y.; Chang, C.T. One step synthesis of carbohydrate esters as antibacterial and antifungal agent. Bioorg. Med. Chem. 2018, 26, 765–774. [Google Scholar] [CrossRef]
- Mancini, A.; Imperlini, E.; Nigro, E.; Montagnese, C.; Daniele, A.; Orru, S.; Buono, P. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules 2015, 20, 17339–17361. [Google Scholar] [CrossRef]
- Kurniawan, Y.S.; Anwar, M.; Wahyuningsih, T.D. New lubricant from used cooking oil: Cyclic ketal of ethyl 9,10-dihydroxyoctadecanoate. Mater. Sci. Forum 2017, 901, 135–141. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods- a review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef]
- Torres, J.D.J.M.; Franco, J.A.S.; Moreno, E.R.; Cansino, N.D.S.C.; Ortega, J.A.A.; Valencia, J.M.T. Effect on thermoultrasound on the antioxidant compounds and fatty acid profile of blackberry (Rubus fructicosus spp.) juice. Molecules 2016, 21, 1624. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Uchida, T.; Nakajima, Y.; Maekawa, T.; Mizuki, T. Chemical synthesis and cytotoxicity of neo-glycolipids; rare sugar-glycerol-lipid compounds. Heliyon 2018, 4, e00861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jumina; Nurmala, A.; Fitria, A.; Pranowo, D.; Sholikhah, E.N.; Kurniawan, Y.S.; Kuswandi, B. Monomyristin and monopalmitin derivatives: Synthesis and evaluation as potential antibacterial and antifungal agents. Molecules 2018, 23, 3141. [Google Scholar] [CrossRef] [PubMed]
- Mutmainah; Jumina; Purwono, B. Chemical synthesis of monosaccharide lauric acid esters as antibacterial and antifungal agents. Mater. Sci. Forum 2019, 948, 63–68. [Google Scholar] [CrossRef]
- Fregapane, G.; Sarney, D.B.; Vulfson, E.N. Facile chemo-enzymatic synthesis of monosaccharide fatty acid esters. Biocatalysis 1994, 11, 9–18. [Google Scholar] [CrossRef]
- Baczko, K.; Plusquellec, D. Sugar chemistry without protecting groups-III. A facile chemical synthesis of 6-O-acyl-D-glycopyranoses and methyl-6-O-acyl-d-glycopyranosides. Tetrahedron 1991, 47, 3817–3828. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Hao, T.; Li, S. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem. 2015, 187, 370–377. [Google Scholar] [CrossRef]
- Yoon, B.K.; Jackman, J.A.; Valle-Gonzalez, E.R.; Cho, N.J. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef]
- Jumina; Lavendi, W.; Singgih, T.; Triono, S.; Kurniawan, Y.S.; Koketsu, M. Preparation of monoacylglycerol derivatives from Indonesian edible oil and their antimicrobial assay against Staphylococcus aureus and Escherichia coli. Sci. Rep. 2019, 9, 10941. [Google Scholar] [CrossRef]
- Odds, F.; Brown, A.J.P.; Gow, N.A.R. Antifungal agents: Mechanism of action. Trends Microbiol. 2003, 6, 272–279. [Google Scholar] [CrossRef]
Compounds | Concentration (% wt/v) | Inhibition Zone (mm) | ||||
---|---|---|---|---|---|---|
Gram-Positive | Gram-Negative | Fungi | ||||
S. aureus | B. subtilis | E. coli | S. typhimurium | C. albicans | ||
Fructosyl monomyristate | 0.02 | 3.0 | 2.1 | 0.0 | 0.0 | 6.7 |
0.10 | 3.2 | 3.0 | 0.0 | 1.1 | 7.4 | |
0.50 | 3.9 | 4.1 | 0.0 | 0.0 | 7.3 | |
2.50 | 4.9 | 4.1 | 0.0 | 1.1 | 8.8 | |
12.5 | 6.3 | 3.1 | 0.0 | 0.0 | 7.7 | |
Glucosyl monomyristate | 0.02 | 0.0 | 2.0 | 1.0 | 0.0 | 6.2 |
0.10 | 0.0 | 2.1 | 1.3 | 0.0 | 7.4 | |
0.50 | 4.2 | 3.1 | 2.1 | 0.0 | 7.3 | |
2.50 | 5.2 | 4.0 | 2.4 | 1.1 | 8.7 | |
12.5 | 6.6 | 4.1 | 0.0 | 0.0 | 7.9 | |
Galactosyl monomyristate | 0.02 | 5.1 | 2.2 | 1.2 | 1.0 | 2.6 |
0.10 | 6.0 | 3.1 | 0.0 | 0.0 | 4.0 | |
0.50 | 6.0 | 1.3 | 0.0 | 0.0 | 4.8 | |
2.50 | 7.3 | 3.2 | 1.6 | 1.3 | 5.7 | |
12.5 | 8.5 | 4.3 | 0.0 | 1.2 | 3.6 | |
Positive control a | 1.00 | 11.6 | 8.8 | 10.2 | 5.3 | 24.2 |
Negative control b | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Compounds in 0.5% wt/v Concentration | Inhibition Zone (mm) | ||||
---|---|---|---|---|---|
Gram-Positive | Gram-Negative | Fungi | |||
S. aureus | B. subtilis | E. coli | C. albicans | ||
Fructosyl monomyristate | 3.9 | 4.1 | - | 7.3 | |
Glucosyl monomyristate | 4.2 | 3.1 | 2.1 | 7.3 | |
Galactosyl monomyristate | 6.0 | 1.3 | - | 4.8 | |
Fructose monocapratea [26] | 15.2 | 16.5 | 7.1 | * | |
Glucose monocapratea [26] | 12.9 | 16.2 | 6.6 | * | |
Fructosyl monolaurate [25] | 2.3 | 5.1 | - | 6.8 | |
Glucosyl monolaurate [25] | - | 1.1 | - | 4.8 | |
Galactosyl monolaurate [25] | 4.0 | 2.0 | - | 6.0 | |
1-Myristoyl-sn-glycerol [24] | 10.3 | 2.4 | 1.5 | - | |
2-Myristoyl-sn-glycerol [24] | 20.0 | * | 29.5 | - | |
1-Palmitoyl-sn-glycerol [24] | - | * | - | - | |
Sucrose myristate [25] | 10.0 | * | - | - | |
Glucose monocapratea [26] | 12.9 | 16.2 | 6.6 | * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jumina, J.; Mutmainah, M.; Purwono, B.; Kurniawan, Y.S.; Syah, Y.M. Antibacterial and Antifungal Activity of Three Monosaccharide Monomyristate Derivatives. Molecules 2019, 24, 3692. https://doi.org/10.3390/molecules24203692
Jumina J, Mutmainah M, Purwono B, Kurniawan YS, Syah YM. Antibacterial and Antifungal Activity of Three Monosaccharide Monomyristate Derivatives. Molecules. 2019; 24(20):3692. https://doi.org/10.3390/molecules24203692
Chicago/Turabian StyleJumina, Jumina, Mutmainah Mutmainah, Bambang Purwono, Yehezkiel Steven Kurniawan, and Yana Maolana Syah. 2019. "Antibacterial and Antifungal Activity of Three Monosaccharide Monomyristate Derivatives" Molecules 24, no. 20: 3692. https://doi.org/10.3390/molecules24203692
APA StyleJumina, J., Mutmainah, M., Purwono, B., Kurniawan, Y. S., & Syah, Y. M. (2019). Antibacterial and Antifungal Activity of Three Monosaccharide Monomyristate Derivatives. Molecules, 24(20), 3692. https://doi.org/10.3390/molecules24203692