Synthesis of Nano-Praseodymium Oxide for Cataluminescence Sensing of Acetophenone in Exhaled Breath
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Selectivity of the CTL Sensor Based on Nano-Pr6O11
2.3. Optimization of Working Temperature
2.4. Optimization of Air Flow Rate
2.5. Optimization of Detecting Wavelength
2.6. CTL Response Profile and Analytical Characteristics
2.7. Sample Analysis
3. Experimental Section
3.1. Materials and Instrumentation
3.2. Synthesis of Praseodymium Oxide Nanoparticles
3.3. Procedure for Sensing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, J.X.; Zhang, L.C.; Yi, L. Recent advances in cataluminescence gas sensor: Materials and methodologies. Appl. Spectrosc. Rev. 2018, 1–19. [Google Scholar] [CrossRef]
- Na, N.; Liu, H.Y.; Han, J.Y.; Han, F.F.; Liu, H.L.; Ouyang, J. Plasma-Assisted cataluminescence sensor array for gaseous hydrocarbons discrimination. Anal. Chem. 2012, 84, 4830–4836. [Google Scholar] [CrossRef] [PubMed]
- Han, F.F.; Yang, Y.H.; Han, J.Y.; Ouyang, J.; Na, N. Room-temperature cataluminescence from CO oxidation in a non-thermal plasma-assisted catalysis system. J. Hazard. Mater. 2015, 293, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.K.; Cao, X.A.; Liu, Y.H.; Chang, X.Y. A new method for identifying compounds by luminescent response profiles on a cataluminescence based sensor. Anal. Chem. 2011, 83, 8975–8983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.C.; Song, H.J.; Su, Y.Y.; Lv, Y. Advances in nanomaterial-assisted cataluminescence and its sensing applications. TrAC Trends Anal. Chem. 2015, 67, 107–127. [Google Scholar] [CrossRef]
- Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.; Williams, R.J.J.; Wolkenstein, T. Chemiluminescence during the catalysis of carbon monoxide oxidation on a thoria surface. J. Catal. 1976, 45, 137–144. [Google Scholar] [CrossRef]
- Zhang, L.J.; He, N.; Shi, W.Y.; Lu, C. A cataluminescence sensor with fast response to diethyl ether based on layered double oxide nanoparticles. Anal. Bioanal. Chem. 2016, 408, 8787–8793. [Google Scholar] [CrossRef]
- Zhang, L.J.; Wang, S.; Yuan, Z.Q.; Lu, C. A controllable selective cataluminescence sensor for diethyl ether using mesoporous TiO2 nanoparticles. Sens. Actuators B 2016, 230, 242–249. [Google Scholar] [CrossRef]
- Han, J.Y.; Han, F.F.; Ouyang, J.; He, L.X.; Zhang, Y.T.; Na, N. Low temperature CO sensor based on cataluminescence from plasma-assisted catalytic oxidation on Ag doped alkaline-earth nanomaterials. Nanoscale 2014, 6, 3069–3072. [Google Scholar] [CrossRef]
- Li, Z.H.; Wei, X.; Chao, L. Hydrotalcite-supported gold nanoparticle catalysts as a low temperature cataluminescence sensing platform. Sens. Actuators B 2015, 219, 354–360. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.Y.; Hu, Y.F.; Li, G.K. Titanium dioxide-Yttrium(III)-oxide composite based cataluminescence gas Sensor for fast detection of propylene oxide. Chin. J. Anal. Chem. 2019, 47, 191–196. [Google Scholar] [CrossRef]
- Zhang, R.K.; Li, G.G.; Hu, Y.F. Simple and excellent selective chemiluminescence-based CS2 on-line detection system for rapid analysis of sulfur-containing compounds in complex samples. Anal. Chem. 2015, 87, 5649–5655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.K.; Huang, W.T.; Li, G.K.; Hu, Y.F. Noninvasive strategy based on real-time in vivo cataluminescence monitoring for clinical breath analysis. Anal. Chem. 2017, 89, 3353–3361. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Wen, F.; Liu, D.; Kong, H.; Zhang, C.H.; Zhang, S.C. Analysis of 2-propanol in exhaled breath using in situ enrichment and cataluminescence detection. Luminescence 2011, 26, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Liu, D.; Zhang, S.C.; Zhang, X.R. Protein sensing and cell discrimination using a sensor array based on nanomaterial-assisted chemiluminescence. Anal. Chem. 2011, 83, 1867–1870. [Google Scholar] [CrossRef]
- Kong, H.; Wang, H.; Zhang, S.C.; Zhang, X.R. A thermochemiluminescence array for recognition of protein subtypes and their denatured shapes. Analyst 2011, 136, 3643–3648. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Shi, J.J.; Zhang, Z.Y.; Zhang, C.; Zhang, X.R. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal. Chem. 2002, 74, 120–124. [Google Scholar] [CrossRef]
- Peng, C.H.; Shao, K.; Long, Z.; Ouyang, J.; Na, N. A plasma-assisted cataluminescence sensor for ethyne detection. Anal. Bioanal. Chem. 2016, 408, 1–8. [Google Scholar] [CrossRef]
- Tang, J.; Song, H.J.; Zeng, B.R.; Zhang, L.C.; Lv, Y. Cataluminescence gas sensor for ketones based on nanosized NaYF4: Er. Sens. Actuators B 2016, 222, 300–306. [Google Scholar] [CrossRef]
- Zhen, Y.Z.; Zhang, H.M.; Fu, F.; Zhang, Y.T. A cataluminescence sensor based on α-MoO3 nanobelts with low working temperature for the detection of diethyl ether. J. Mater. Sci. Mater. Electron. 2019, 30, 1–7. [Google Scholar] [CrossRef]
- Meng, F.F.; Lu, Z.Y.; Zhang, R.K.; Li, G.K. Cataluminescence sensor for highly sensitive and selective detection of iso-butanol. Talanta 2019, 194, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Deng, D.Y.; Huang, S.X.; Song, H.J.; Xu, K.L.; Zhang, L.C.; Lv, Y. UV-assisted Cataluminescence Sensor for Carbon Monoxide based on Oxygen Functionalized g-C3N4 Nanomaterials. Anal. Chem. 2018, 90, 9598–9605. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.L.; Hu, J.X.; Li, X.H.; Zhang, L.C.; Lv, Y. Camellia-like NiO: A novel cataluminescence sensing material for H2S. Sens. Actuators B 2019, 288, 243–250. [Google Scholar] [CrossRef]
- Chu, Y.X.; Zhang, Q.C.; Li, Y.H.; Xu, Z.M.; Long, W.R. A cataluminescence sensor for propionaldehyde based on the use of nanosized zirconium dioxide. Microchim. Acta 2014, 181, 1125–1132. [Google Scholar] [CrossRef]
- Konvalina, G.; Haick, H. Sensors for breath testing: From nanomaterials to comprehensive disease detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Jahan, S.A.; Kabir, E. A review of breath analysis for diagnosis of human health. TrAC Trends Anal. Chem. 2012, 33, 1–8. [Google Scholar] [CrossRef]
- Saidi, T.; Zaim, O.; Moufid, M.; El Bari, N.; Ionescu, R.; Bouchikhi, B. Exhaled breath analysis using electronic nose and gas chromatography–mass spectrometry for non-invasive diagnosis of chronic kidney disease, diabetes mellitus and healthy subjects. Sens. Actuators B 2018, 257, 178–188. [Google Scholar] [CrossRef]
- Worrall, A.D.; Qian, Z.; Bernstein, J.A.; Angelopoulos, A.P. Water-resistant polymeric acid membrane catalyst for acetone detection in the exhaled breath of diabetics. Anal. Chem. 2018, 90, 1819–1826. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, S.; Yu, Q.; Wang, S.; Sun, P.; Lu, H.Y.; Liu, F.M.; Yan, X.; Lu, G.Y. Novel self-assembly route assisted ultra-fast trace VOCs gas sensing based on 3D opal microspheres composites for diabetes diagnosis. ACS Appl. Mater. Interfaces 2018, 10, 32913–32921. [Google Scholar] [CrossRef]
- Neerincx, A.H.; Vijverberg, S.J.H.; Bos, L.D.J.; Brinkman, P.; van der Schee, M.P.; de Vries, R.; Sterk, P.J.; Maitland-van Der Zee, A. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr. Pulmonol. 2017, 52, 1616–1627. [Google Scholar] [CrossRef]
- Brinkman, P.; van de Pol, M.A.; Gerritsen, M.G.; Bos, L.D.; Dekker, T.; Smids, B.S.; Sinha, A.; Majoor, C.J.; Sneeboer, M.M.; Knobel, H.H.; et al. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma. Clin. Exp. Allergy 2017, 47, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, J.; Kowalkowski, T.; Buszewski, B. Searching for selected VOCs in human breath samples as potential markers of lung cancer. Lung Cancer 2019, 135, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Silva, C.L.; Perestrelo, R.; Silva, P.; Tomás, H.; Câmara, J.S. Volatile metabolomic signature of human breast cancer cell lines. Sci. Rep. 2017, 7, 43969. [Google Scholar] [CrossRef] [Green Version]
- Katwal, G.; Paulose, M.; Rusakova, I.A.; Martinez, J.E.; Varghese, O.K. Rapid growth of zinc oxide nanotube-nanowire hybrid architectures and their use in breast cancer related volatile organics detection. Nano Lett. 2016, 16, 3014–3021. [Google Scholar] [CrossRef]
- Mutlu, G.M.; Garey, K.W.; Robbins, R.A.; Danziger, L.H.; Rubinstein, I. Collection and analysis of exhaled breath condensate in humans. Am. J. Respir. Crit. Care Med. 2001, 164, 731–737. [Google Scholar] [CrossRef]
- Hengwei, L.; Minseok, J.; Suslick, K.S. Preoxidation for colorimetric sensor array detection of VOCs. J. Am. Chem. Soc. 2011, 133, 16786. [Google Scholar]
- Ma, Y.X.; Li, H.; Peng, S.; Wang, L.Y. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Anal. Chem. 2012, 84, 8415–8421. [Google Scholar] [CrossRef]
- Martínez-Aquino, C.; Costero, M.A.; Gil, S.; Gaviña, P. A New environmentally-friendly colorimetric probe for formaldehyde gas detection under real conditions. Molecules 2018, 239, 2646. [Google Scholar] [CrossRef] [Green Version]
- Sajin, K.; Ling, C.; Murray, E.P.; Mainardi, D.S. Kinetics of nitric oxide and oxygen gases on porous Y-stabilized ZrO2-based sensors. Molecules 2013, 18, 9901–9918. [Google Scholar]
- Choi, S.; Fuchs, F.; Demadrille, R.; Grévin, B.; Jang, B.; Lee, S.; Lee, J.; Tuller, H.L.; Kim, I. Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl. Mater. Interfaces 2014, 6, 9061–9070. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Schroeder, V.; Kim, B.J.; Swager, T.M. Ionic liquid-carbon nanotube sensor arrays for human breath related volatile organic compounds. ACS Sens. 2018, 3, 2432–2437. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Zhang, Y.X.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.L.; Cheng, S.L.; Lu, L.G.; Zhang, W.; Zhang, Z.; et al. Breath analysis based on surface-enhanced raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano 2016, 10, 8169–8179. [Google Scholar] [CrossRef]
- Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef]
- Michael, P.; David, B.J.; Cataneo, R.N.; Jan, H.; Kaplan, P.D.; Lalisang, R.I.; Philippe, L.; Lobbes, M.B.I.; Mayur, M.; Nadine, P. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms. PLoS ONE 2014, 9, e90226. [Google Scholar]
- Gębicki, J.; Kloskowski, A.; Chrzanowski, W. Prototype of electrochemical sensor for measurements of volatile organic compounds in gases. Sens. Actuators B 2013, 177, 1173–1179. [Google Scholar] [CrossRef]
- Muhr, E.; Leicht, O.; González, S.S.; Thanbichler, M.; Heider, J. A fluorescent bioreporter for acetophenone and 1-phenylethanol derived from a specifically induced catabolic operon. Front. Microbiol. 2016, 6, 1561–1572. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.C.; Meng, F.F.; Lin, C.; Wang, X.Y.; Zhang, G.Y. A sensitive cataluminescence-based sensor using a SrCO3/graphene composite for n-propanol. RSC Adv. 2015, 5, 57482–57489. [Google Scholar] [CrossRef]
Principle | Sensing Materials | Linear Range (ppm) | LOD (ppm) | References |
---|---|---|---|---|
CTL | Nano-Pr6O11 | 2.8–50 | 0.7 | Present work |
Electrochemistry | 1-Octyl, 3-methylimidazolium tetrafluoroborate | 5–80 | 2.0 | [47] |
Quartz microbalance | Macrocyclic oligolactams | 5–40 | 2.0 | [48] |
Sample No. | Spiked Concentration (mg/m3) | Measured Concentration (mg/m3) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 20.0 | 21.9 ± 0.9 | 109.5 | 4.0 |
2 | 25.0 | 26.7 ± 0.9 | 106.7 | 3.2 |
3 | 30.0 | 33.9 ± 1.3 | 113.1 | 3.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.-C.; Yan, W.-L.; Jiang, L.; Zheng, Y.-G.; Wang, J.-X.; Zhang, R.-K. Synthesis of Nano-Praseodymium Oxide for Cataluminescence Sensing of Acetophenone in Exhaled Breath. Molecules 2019, 24, 4275. https://doi.org/10.3390/molecules24234275
Zhang Q-C, Yan W-L, Jiang L, Zheng Y-G, Wang J-X, Zhang R-K. Synthesis of Nano-Praseodymium Oxide for Cataluminescence Sensing of Acetophenone in Exhaled Breath. Molecules. 2019; 24(23):4275. https://doi.org/10.3390/molecules24234275
Chicago/Turabian StyleZhang, Qian-Chun, Wu-Li Yan, Li Jiang, Yu-Guo Zheng, Jing-Xin Wang, and Run-Kun Zhang. 2019. "Synthesis of Nano-Praseodymium Oxide for Cataluminescence Sensing of Acetophenone in Exhaled Breath" Molecules 24, no. 23: 4275. https://doi.org/10.3390/molecules24234275
APA StyleZhang, Q.-C., Yan, W.-L., Jiang, L., Zheng, Y.-G., Wang, J.-X., & Zhang, R.-K. (2019). Synthesis of Nano-Praseodymium Oxide for Cataluminescence Sensing of Acetophenone in Exhaled Breath. Molecules, 24(23), 4275. https://doi.org/10.3390/molecules24234275