Quercetin and Related Chromenone Derivatives as Monoamine Oxidase Inhibitors: Targeting Neurological and Mental Disorders
Abstract
:1. Introduction
2. Chemistry and Therapeutic Journey of Quercetin and Related Derivatives
3. Molecular Docking Studies of Quercetin and Related Flavonoid Derivatives
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Lopez, A.D. Evidence-based health policy-lessons from the Global Burden of Disease Study. Science 1996, 274, 740–741. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.J.; Mendlowicz, M.V.; Marrocos, R.P.; Figueira, I.L. Anxiety disorders in outpatients with schizophrenia: Prevalence and impact on the subjective quality of life. J. Psychiatry. Res. 2005, 39, 409–414. [Google Scholar] [CrossRef]
- Wilson, K.G.; Chochinov, H.M.; Skirko, M.G.; Allard, P.; Chary, S.; Gagnon, P.R.; Macmillan, K.; De Luca, M.; O’Shea, F.; Kuhl, D.; et al. Depression and anxiety disorders in palliative cancer care. J. Pain. Symptom. Manage. 2007, 33, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Goldman, L.S.; Nielsen, N.H.; Champion, H.C. Awareness, diagnosis, and treatment of depression. J. Gen. Intern. Med. 1999, 14, 569–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Üstün, T.B.; Ayuso-Mateos, J.L.; Chatterji, S.; Mathers, C.; Murray, C.J. Global burden of depressive disorders in the year 2000. Br. J. Psychiatry. 2004, 184, 386–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalaria, R.N.; Maestre, G.E.; Arizaga, R.; Friedland, R.P.; Galasko, D.; Hall, K.; Luchsinger, J.A.; Ogunniyi, A.; Perry, E.K.; Potocnik, F.; et al. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet. Neurol. 2008, 7, 812–826. [Google Scholar] [CrossRef]
- Bacho, M.; Coelho-Cerqueira, E.; Follmer, C.; Nabavi, S.M.; Rastrelli, L.; Uriarte, E.; Sobarzo-Sánchez, E. A medical approach to the monoamine oxidase inhibition by using 7H-benzo [e] perimidin-7-one derivatives. Curr. Top. Med. Chem. 2017, 17, 489–497. [Google Scholar] [CrossRef]
- Choi, D.Y.; Lee, Y.J.; Hong, J.T.; Lee, H.J. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res. Bull. 2012, 87, 144–153. [Google Scholar] [CrossRef]
- Javed, S.; Tariq, A.; Ahmed, T.; Budzyńska, B.; Tejada, S.; Daglia, M.; Nabavi, S.F.; Sobarzo-Sánchez, E.; Nabavi, S.M. Tanshinones and mental diseases: From chemistry to medicine. Rev. Neurosciences. 2016, 27, 777–791. [Google Scholar] [CrossRef]
- Joao Matos, M.; Viña, D.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Focusing on new monoamine oxidase inhibitors: Differently substituted coumarins as an interesting scaffold. Curr. Top. Med. Chem. 2012, 12, 2210–2239. [Google Scholar] [CrossRef]
- Youdim, M.B.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nature. Rev. Neurosci. 2006, 7, 295–309. [Google Scholar] [CrossRef]
- Zheng, H.; Fridkin, M.; Youdim, M.B. From antioxidant chelators to site-activated multi-target chelators targeting hypoxia inducing factor, beta-amyloid, acetylcholinesterase and monoamine oxidase A/B. Mini. Rev. Med. Chem. 2012, 12, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Carradori, S.; D’Ascenzio, M.; Chimenti, P.; Secci, D.; Bolasco, A. Selective MAO-B inhibitors: A lesson from natural products. Molec. Divers. 2014, 18, 219–243. [Google Scholar] [CrossRef] [PubMed]
- Fazel Nabavi, S.; Uriarte, E.; Rastrelli, L.; Modak, B.; Sobarzo-Sánchez, E. Aporphines and Parkinson’s Disease: Medical Tools for the Future. Curr. Top. Med. Chem. 2016, 16, 1906–1909. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, P.; Malik, N.; Khatkar, A. 3D-QSAR and in-silico studies of natural products and related derivatives as monoamine oxidase inhibitors. Curr. Neuropharmacol. 2018, 16, 881–900. [Google Scholar] [CrossRef] [PubMed]
- Helguera, A.; Perez-Machado, G.; NDS Cordeiro, M.; Borges, F. Discovery of MAO-B inhibitors-present status and future directions part I: Oxygen heterocycles and analogs. Mini. Rev. Med. Chem. 2012, 12, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Yanez, M.; Fernando Padin, J.; Alberto Arranz-Tagarro, J.; Camiña, M.; Laguna, R. History and therapeutic use of MAO-A inhibitors: A historical perspective of MAO-A inhibitors as antidepressant drug. Curr. Top. Med. Chem. 2012, 12, 2275–2282. [Google Scholar] [CrossRef]
- Blackwell, B.; Marley, E.; Price, J.; Taylor, D. Hypertensive interactions between monoamine oxidase inhibitors and foodstuffs. Br. J. Psychiatry. 1967, 113, 349–365. [Google Scholar] [CrossRef]
- Dhiman, P.; Malik, N.; Khatkar, A.; Kulharia, M. Antioxidant, Xanthine Oxidase and Monoamine Oxidase Inhibitory Potential of Coumarins: A. Review. Curr. Org. Chem. 2017, 21, 294–304. [Google Scholar] [CrossRef]
- Dhiman, P.; Malik, N.; Khatkar, A. Docking-Related Survey on Natural-Product-Based New Monoamine Oxidase Inhibitors and Their Therapeutic Potential. Comb. Chem. High Throughput Screen. 2017, 20, 474–491. [Google Scholar] [CrossRef]
- McCabe-Sellers, B.J.; Staggs, C.G.; Bogle, M.L. Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge. J. Food. Compost. Anal. 2006, 19, 58–65. [Google Scholar] [CrossRef]
- Rapaport, M.H. Dietary restrictions and drug interactions with monoamine oxidase inhibitors: The state of the art. J. Clin. Psychiatry. 2007, 68, 42–46. [Google Scholar] [PubMed]
- Shih, J.C.; Chen, K.; Ridd, M.J. Monoamine oxidase: From genes to behavior. Annu. Rev. Neurosci. 1999, 22, 197–198. [Google Scholar] [CrossRef]
- Ebadi, M.; Brown-Borg, H.; Ren, J.; Sharma, S.; Shavali, S.; El ReFaey, H.; Carlson, E.C. Therapeutic efficacy of selegiline in neurodegenerative disorders and neurological diseases. Curr. Drug. Targets. 2006, 7, 1513–1529. [Google Scholar] [CrossRef] [PubMed]
- Kalgutkar, A.S.; Dalvie, D.K.; Castagnoli, N.; Taylor, T.J. Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem. Res. Toxicol. 2001, 14, 1139–1162. [Google Scholar] [CrossRef] [PubMed]
- Carradori, S.; Silvestri, R. New Frontiers in Selective Human MAO-B Inhibitors: Miniperspective. J. Med. Chem. 2015, 58, 6717–6732. [Google Scholar] [CrossRef]
- Maurel, A.; Hernandez, C.; Kunduzova, O.; Bompart, G.; Cambon, C.; Parini, A.; Francés, B. Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats. Am. J. Physiol. Heart. Circ. Physiol. 2003, 284, 1460–1470. [Google Scholar] [CrossRef]
- Maker, H.S.; Weiss, C.; Silides, D.J.; Cohen, G. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J. neurochem. 1981, 36, 589–593. [Google Scholar] [CrossRef]
- Ji, H.F.; Zhang, H.Y. Multipotent natural agents to combat Alzheimer’s disease. Functional spectrum and structural features. Acta. Pharmacol. Sin. 2008, 29, 143–151. [Google Scholar] [CrossRef]
- Decker, M. Hybrid molecules incorporating natural products: Applications in cancer therapy, neurodegenerative disorders and beyond. Curr. Med. Chem. 2011, 18, 1464–1475. [Google Scholar] [CrossRef]
- Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; Van Nood, E.L.; Van Hoorn, D.E.; Boelens, P.G.; Van Norren, K.; Van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Proteggente, A.R.; Pannala, A.S.; Paganga, G.; Buren, L.V.; Wagner, E.; Wiseman, S.; Put, F.V.; Dacombe, C.; Rice-Evans, C.A. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and Vitamin C composition. Free. Radic. Res. 2002, 36, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Hirpara, K.V.; Aggarwal, P.; Mukherjee, A.J.; Joshi, N.; Burman, A.C. Quercetin and its derivatives: Synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anticancer. Agents. Med. Chem. 2009, 9, 138–161. [Google Scholar] [CrossRef] [PubMed]
- Guardia, T.; Rotelli, A.E.; Juarez, A.O.; Pelzer, L.E. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. II farmaco. 2001, 56, 683–687. [Google Scholar] [CrossRef]
- Bravo, A.; Anacona, J.R. Metal complexes of the flavonoid quercetin: Antibacterial properties. Transit. Metal. Chem. 2001, 26, 20–23. [Google Scholar] [CrossRef]
- Kaul, T.N.; Middleton, E.; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol. 1985, 15, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ververidis, F.; Trantas, E.; Douglas, C.; Vollmer, G.; Kretzschmar, G.; Panopoulos, N. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnol. J. 2007, 2, 1214–1234. [Google Scholar] [CrossRef] [PubMed]
- Jäger, A.K.; Saaby, L. Flavonoids and the CNS. Molecules 2011, 16, 1471–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.S.; Lee, S.A.; Hong, S.S.; Lee, K.S.; Lee, M.K.; Hwang, B.Y.; Ro, J.S. Monoamine oxidase inhibitory components from the roots of Sophora flavescens. Arch. Pharm. Res. 2005, 28, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Samoylenko, V.; Rahman, M.M.; Tekwani, B.L.; Tripathi, L.M.; Wang, Y.H.; Khan, S.I.; Khan, I.A.; Miller, L.S.; Joshi, V.C.; Muhammad, I. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease. J. Ethnopharmacol. 2010, 127, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.C.; Lin, R.D.; Chen, C.T.; Lee, M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol. 2005, 100, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Chung, H.Y.; Lee, I.K.; Oh, S.U.; Yoo, I.D. Phenolics with inhibitory activity on mouse brain monoamine oxidase (MAO) from whole parts of Artemisia vulgaris L (Mugwort). Food. Sci. Biotechnol. 2000, 9, 179–182. [Google Scholar]
- Kim, J.H.; Son, Y.K.; Kim, G.H.; Hwang, K.H. Xanthoangelol and 4-hydroxyderricin are the major active principles of the inhibitory activities against monoamine oxidases on Angelica keiskei K. Biomol. Ther. 2013, 21, 234–235. [Google Scholar] [CrossRef]
- Pan, X.; Kong, L.D.; Zhang, Y.; Cheng, C.H.; Tan, R.X. In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta. Pharmacol. Sin. 2000, 21, 949–953. [Google Scholar]
- Lee, M.H.; Lin, R.D.; Shen, L.Y.; Yang, L.L.; Yen, K.Y.; Hou, W.C. Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J. Agric. Food Chem. 2001, 49, 5551–5555. [Google Scholar] [CrossRef]
- Sloley, B.D.; Urichuk, L.J.; Morley, P.; Durkin, J.; Shan, J.J.; Pang, P.K.; Coutts, R.T. Identification of kaempferol as a monoamine oxidase inhibitor and potential neuroprotectant in extracts of Ginkgo biloba leaves. J. Pharm. Pharmacol. 2000, 52, 451–459. [Google Scholar] [CrossRef]
- Saaby, L.; Rasmussen, H.B.; Jäger, A.K. MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. J. Ethnopharmacol. 2009, 121, 178–181. [Google Scholar] [CrossRef]
- Van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J. Ethnopharmacol. 2009, 122, 397–401. [Google Scholar] [CrossRef]
- Lee, T.H.; Liu, D.Z.; Hsu, F.L.; Wu, W.C.; Hou, W.C. Structure-activity relationships of five myricetin galloylglycosides from leaves of Acacia confusa. Bot. Stud. 2006, 47, 37–43. [Google Scholar]
- López, V.; Martín, S.; Gómez-Serranillos, M.P.; Carretero, M.E.; Jäger, A.K.; Calvo, M.I. Neuroprotective and neurological properties of Melissa officinalis. Neurochem. Res. 2009, 34, 1955–1961. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; West, B.J. Antidepressant effects of noni fruit and its active principals. Asian. J. Med. Sci. 2011, 3, 79–83. [Google Scholar]
- Ryu, S.Y.; Han, Y.N.; Han, B.H. Monoamine oxidase-A inhibitors from medicinal plants. Arch. Pharm. Res. 1988, 11, 230–239. [Google Scholar] [CrossRef]
- Olsen, H.T.; Stafford, G.I.; van Staden, J.; Christensen, S.B.; Jäger, A.K. Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J. Ethnopharmacol. 2008, 117, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, H.; Tanaka, Y.; Kabbash, A.; Fujioka, T.; Ishizu, T.; Yagi, A. Monoamine oxidase inhibitors from Gentiana lutea. Phytochemistry 2004, 65, 2255–2260. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitel, A.; Korte, G.; Schreier, P.; Oehme, A.; Locher, S.; Domani, M.; Hajak, G.; Sand, P.G. Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol. Res. 2009, 59, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Han, X.H.; Hong, S.S.; Hwang, J.S.; Lee, M.K.; Hwang, B.Y.; Ro, J.S. Monoamine oxidase inhibitory components from Cayratia japonica. Arch. Pharm. Res. 2007, 30, 13–70. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.N.; Noh, D.B.; Han, D.S. Studies on the monoamine oxidase inhibitors of medicinal plants I. Isolation of MAO-B inhibitors from Chrysanthemum indicum. Arch. Pharm. Res. 1987, 10, 142–147. [Google Scholar] [CrossRef]
- Gao, G.Y.; Li, D.J.; Keung, W.M. Synthesis of potential antidipsotropic isoflavones: Inhibitors of the mitochondrial monoamine oxidase-aldehyde dehydrogenase pathway. J. Med. Chem. 2001, 44, 3320–3328. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.F.; Zhang, H.Y. Theoretical evaluation of flavonoids as multipotent agents to combat Alzheimer’s disease. J. Mol. Struct. Theochem. 2006, 767, 3–9. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Greeson, J.M.; Sanford, B.; Monti, D.A. St. John’s wort (Hypericum perforatum): A review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 2001, 153, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Fang, J.S.; Bai, X.Y.; Zhou, D.; Wang, Y.T.; Liu, A.L.; Du, G.H. In silico Target Fishing for the Potential Targets and Molecular Mechanisms of Baicalein as an Antiparkinsonian Agent: Discovery of the Protective Effects on NMDA Receptor-Mediated Neurotoxicity. Chem. Biol. Drug. Des. 2013, 81, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beula, S.J.; Raj, V.B.; Mathew, B. Isolation and molecular recognization of 6-prenyl apigenin towards MAO-A as the active principle of seeds of Achyranthes aspera. Biomed. Prev. Nutr. 2014, 4, 379–382. [Google Scholar] [CrossRef]
- Gidaro, M.C.; Astorino, C.; Petzer, A.; Carradori, S.; Alcaro, F.; Costa, G.; Artese, A.; Rafele, G.; Russo, F.M.; Petzer, J.P.; et al. Kaempferol as selective human MAO-A inhibitor: analytical detection in calabrian red wines, biological and molecular modeling studies. J. Agric. Food Chem. 2016, 64, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, F.; Cottiglia, F.; Bonsignore, L.; Casu, L.; Casu, M.; Floris, C.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; et al. Quercetin as the Active Principle of Hypericum h ircinum Exerts a Selective Inhibitory Activity against MAO-A: Extraction, Biological Analysis, and Computational Study. J. Nat. Prod. 2006, 69, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Jo, G.; Sung, S.H.; Lee, Y.; Kim, B.G.; Yoon, J.; Lee, H.O.; Ji, S.Y.; Koh, D.; Ahn, J.H.; Lim, Y. Discovery of Monoamine Oxidase A Inhibitors Derived from in silico Docking. Bull. Korean. Chem. Soc. 2012, 33, 3841–3844. [Google Scholar] [CrossRef]
- Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 1996, 261, 470–489. [Google Scholar] [CrossRef]
- Desideri, N.; Bolasco, A.; Fioravanti, R.; Proietti, M.L.; Orallo, F.; Yáñez, M.; Ortuso, F.; Alcaro, S. Homoisoflavonoids: Natural scaffolds with potent and selective monoamine oxidase-B inhibition properties. J. Med. Chem. 2011, 54, 2155–2164. [Google Scholar] [CrossRef]
- Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi, F.; Yáñez, M.; Orallo, F.; Ortuso, F.; Alcaro, S.; et al. A new series of flavones, thioflavones, and flavanones as selective monoamine oxidase-B inhibitors. Bioorg. Med. Chem. 2010, 18, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Turkmenoglu, F.P.; Baysal, İ.; Ciftci-Yabanoglu, S.; Yelekci, K.; Temel, H.; Paşa, S.; Ezer, N.; Çalış, İ.; Ucar, G. Flavonoids from Sideritis species: Human monoamine oxidase (hMAO) inhibitory activities, molecular docking studies and crystal structure of xanthomicrol. Molecules 2015, 20, 7454–7473. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, D.; Vignesh, G.; Selvaraj, R.; Dare, B.J. Identification of potential monoamine oxidase inhibitor from herbal source for the treatment of major depressive disorder: An in-silico screening approach. Der. Pharma. Chemica. 2015, 7, 224–234. [Google Scholar]
- Zarmouh, N.; Eyunni, S.; Mazzio, E.; Messeha, S.; Elshami, F.; Soliman, K. Bavachinin and Genistein, Two Novel Human Monoamine Oxidase-B (MAO-B) Inhibitors in the Psoralea Corylifolia Seeds. FASEB J. 2015, 29, 771–772. [Google Scholar]
- Zarmouh, N.O.; Mazzio, E.A.; Elshami, F.M.; Messeha, S.S.; Eyunni, S.V.; Soliman, K.F. Evaluation of the inhibitory effects of bavachinin and bavachin on human monoamine oxidases A and B. Evid. Based. Complement. Alternat. Med. 2015, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zarmouh, N.O.; Messeha, S.S.; Elshami, F.M.; Soliman, K.F. Evaluation of the Isoflavone Genistein as Reversible Human Monoamine Oxidase-A and-B Inhibitor. Evid. Based. Complement. Alternat. Med. 2016, 1–12. [Google Scholar] [CrossRef] [PubMed]
Flavonoids | Target Protein | Important Amino Acid Residues | Comments | Software | References |
---|---|---|---|---|---|
Quercetin | MAO-A PDB (2Z5X) | Tyr444, Tyr197, and Asn181 | Quercetin fitted well within the hMAO-A active site than in the hMAO-B active site due to development of highest π-π interaction and intermolecular hydrogen bonds. | Schrodinger [61] | Zhang et al. [62] |
Baicalein | MAO-B PDB (2Z5Y) | Leu164 and Leu167 | Two catecholic OH groups of baicalein showed hydrogen bonding with Leu167and Leu164 respectively. | Schrodinger [61] | Gao et al. [63] |
6-prenyl apigenin | hMAO-A PDB (2Z5X) | Tyr 444 and Tyr407 | 6-prenyl apigenin the structural shared π electrons of the hydroxyl groups were sandwiched between phenolic side chains of TYR407 and TYR 444 composed the ‘aromatic cage’ of the hydrophobic pocket of the enzyme. | AutoDock [64] | Beula et al. [65] |
Kaempferol | hMAO-A PDB (2Z5X) | Ile335 of hMAO-A Tyr326 of hMAO-B | Kaempferol in the dynamic site of hMAO-A established hydrophobic interactions with important residues of hMAO-A for a longer time than in the hMAO-B pocket. | Schrödinger [61] | Gidaro et al. [66] |
Sr. No | Flavonoid | Binding Score Energy Value for MAO-A (Kcal/mol) | Calculated Ki for MAO-A (μM) | Binding Score Energy Value for MAO-B (Kcal/mol) | Calculated Ki for MAO-B (μM) |
---|---|---|---|---|---|
1 | Isoscutellarein 7-O-[6′′′-O-acetyl-β-d-allopyranosyl-(1→2)]-6″-O-acetyl-β-d-glucopyranoside | −3.81 | 1660.00 | 8.92 | - |
2 | Salvigenin | −8.30 | 0.867 | −7.51 | 3.63 |
3 | Isoscutellarein 7-O-[6′′′-O-acetyl-β-d-allopyranosyl-(1→2)]-β-d-glucopyranoside | −4.15 | 930.10 | 5.79 | - |
4 | Xanthomicrol | −7.80 | 1.90 | −5.78 | 64.26 |
Sr. No | Name of the Lead | Binding Free Energy (Kcal/mol) | Inhibition Constant Ki (µM) | No. of Hydrogen Bonds | Interacting Amino Acid Residue |
---|---|---|---|---|---|
1 | Kaempferol | −5.17 | 4.63 | 12 | 397 TRP, 352 PHE, 406 CYS, 444 TYR, 448 ALA, 303 VAL, 51ARG, 407 TYR, 52 THR, 435 THR, 305 LYS, 445 MET |
2 | Quercetin | −4.40 | 636.60 | 9 | 436 GLU, 448 ALA, 52 THR, 435 THR, 407 TYR,51 ARG, 406 CYS, 23 ILE, 445 MET |
3 | Apigenin | −7.65 | 2.61 | 8 | 305 LYS, 397 TRP, 448 ALA, 51 ARG, 406 CYS, 435 THR, 352 PHE, 407 TYR |
4 | Luteolin | −7.67 | 2.42 | 11 | 448 ALA, 23 ILE, 435 THR, 406 CYS, 303 VAL, 52 THR, 51 ARG, 397 TRP, 445 MET, 407 TYR,444TYR |
5 | Brofaromine (Standard) | −7.55 | 3.06 | 10 | 303 VAL, 397 TRP, 51 ARG, 52 THR, 406 CYS, 305 LYS, 445 MET, 407 TYR, 435 THR, 448 ALA |
Sr. No | Natural Ligands | MAO-A Active Site PDB (2BXR) | MAO-B Active Site PDB (1GOS) | Overall Bonds | MAO Inhibition Selectivity | |||
---|---|---|---|---|---|---|---|---|
Docking Score | Predicted H-Bond | Docking Score | Predicted H-Bond | H-Bond | Active Site Residue | |||
1. | Bavachinin | −1.06 | 0 | −6.82 | 2 | OH⋯O HO⋯HN | THR:201: A THR:201: A | B |
3 | Safinamide | −0.22 | 0 | −6.12 | 3 | NH⋯O NH⋯O NH⋯O | GLU:84: A THR:201: A PRO:102: A | B |
4 | Bavachin | −8.72 | H2O-726 | −3.95 | 0 | ⋯ | ⋯ | NA |
Sr. No | Name of the Lead | MAO-A | MAO-B | RMSD Å | Amino Acid | ||
---|---|---|---|---|---|---|---|
Docking Score | Predicted H-Bond | Docking Score | Predicted H-Bond | ||||
1 | Genistein (GST) | −7.0 | 0 | −12.8 | 2 (OH⋅ ⋅ ⋅ N) | 2.27 | THR: 201: A |
2 | Daidzein (DZ) | −6.9 | 0 | −12.8 | 1 (O⋅ ⋅ ⋅ HN) | 2.32 | THR: 201: A |
Sr. No | Name of the Lead | hMAO-B | hMAO-A | ||
---|---|---|---|---|---|
IC50 (μM) | ΔG Bind (Kcal/mol) | IC50 (μM) | ΔG Bind (Kcal/mol) | ||
1 | Kaempferol | >100 | −42.66 | 0.525 ± 0.035 | −49.52 |
2 | Quercetin | >100 | −46.98 | 3.98 ± 0.265 | −48.35 |
3 | Harmine | - | - | 0.029 ± 0.0042 | −46.07 |
4 | Safinamide | 0.0479 ± 0.00472 | −73.70 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhiman, P.; Malik, N.; Sobarzo-Sánchez, E.; Uriarte, E.; Khatkar, A. Quercetin and Related Chromenone Derivatives as Monoamine Oxidase Inhibitors: Targeting Neurological and Mental Disorders. Molecules 2019, 24, 418. https://doi.org/10.3390/molecules24030418
Dhiman P, Malik N, Sobarzo-Sánchez E, Uriarte E, Khatkar A. Quercetin and Related Chromenone Derivatives as Monoamine Oxidase Inhibitors: Targeting Neurological and Mental Disorders. Molecules. 2019; 24(3):418. https://doi.org/10.3390/molecules24030418
Chicago/Turabian StyleDhiman, Priyanka, Neelam Malik, Eduardo Sobarzo-Sánchez, Eugenio Uriarte, and Anurag Khatkar. 2019. "Quercetin and Related Chromenone Derivatives as Monoamine Oxidase Inhibitors: Targeting Neurological and Mental Disorders" Molecules 24, no. 3: 418. https://doi.org/10.3390/molecules24030418
APA StyleDhiman, P., Malik, N., Sobarzo-Sánchez, E., Uriarte, E., & Khatkar, A. (2019). Quercetin and Related Chromenone Derivatives as Monoamine Oxidase Inhibitors: Targeting Neurological and Mental Disorders. Molecules, 24(3), 418. https://doi.org/10.3390/molecules24030418