Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis
Abstract
:1. Introduction
2. Results
2.1. Chloroplast Genome Organization of Two Kaempferia Species
2.2. Analysis of SSRs and Long Repeats
2.3. IR Contraction and Expansion
2.4. Comparative Chloroplast Genomic Analysis
2.5. Phylogenetic Analysis
2.6. Potential RNA Editing Sites
3. Materials and Methods
3.1. Plant Material and DNA Isolation
3.2. Chloroplast Genome Sequencing and Genome Assembly
3.3. Chloroplast Genome Annotation and Codon Usage
3.4. SSRs and Long Repeat Structure
3.5. Comparative and Divergence Analysis of Chloroplast Genomes of K. galanga and K. elegans
3.6. Phylogenetic Analysis
3.7. RNA Editing Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LSC | Large single copy |
SSC | Small single copy |
IR | Inverted repeat |
tRNA | Transfer RNA |
rRNA | Ribosomal RNA |
SSRs | Simple Sequence Repeats |
SNPs | Single-Nucleotide Polymorphisms |
indels | insertion/deletions |
References
- Wu, D.; Larsen, K. Zingiberaceae. Flora China 2000, 24, 322–377. [Google Scholar]
- Wu, D.; Liu, N.; Ye, Y. The Zingiberaceae resources in China; Huazhong University of Science and Technology University Press: Wuhan, China, 2016; Volume 1, pp. 107–108. [Google Scholar]
- Branney, T.M.E. Hardy Gingers: Including Hedychium, Roscoea and Zingiber; Timber Press, Inc.: Portland, OR, USA, 2005; pp. 181–187. [Google Scholar]
- Techaprasan, J.; Klinbunga, S.; Ngamriabsakul, C.; Jenjittikul, T. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences. Genet. Mol. Res. 2010, 9, 1957–1973. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cui, Y.; Chen, X.; Li, Y.; Xu, Z.; Duan, B.; Li, Y.; Song, J.; Yao, H. Complete chloroplast genomes of Papaver rhoeas and Papaver orientale: Molecular structures, comparative analysis and phylogenetic analysis. Molecules 2018, 23, 437. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Zhao, Z.; Zhang, T.; Zhong, W.; Liu, C.; Yuan, Q.; Huang, L. The chloroplast genome sequence of Scutellaria baicalensis provides insight into intraspecific and interspecific chloroplast genome diversity in Scutellaria. Genes 2017, 8, 227. [Google Scholar] [CrossRef]
- Park, I.; Kim, W.J.; Yeo, S.M.; Choi, G.; Kang, Y.M.; Piao, R.; Moon, B.C. The complete chloroplast genome sequences of Fritillaria ussuriensis Maxim. and Fritillaria cirrhosa D. Don and comparative analysis with other Fritillaria species. Molecules 2017, 22, 982. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yu, H.; Wang, J.; Lei, W.; Gao, J.; Qiu, X.; Wang, J. The complete chloroplast genome sequences of the medicinal plant Forsythia suspense (Oleaceae). Int. J. Mol. Sci. 2017, 18, 2288. [Google Scholar] [CrossRef] [PubMed]
- Wicke, S.; Schneeweiss, G.M.; DePamphilis, C.W.; Muller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef]
- Brunkard, J.O.; Runkel, A.M.; Zambryski, P.C. Chloroplast extend stromules independently and in response to internal redox signals. Proc. Natl. Acad. Sci. USA 2015, 112, 10044–10049. [Google Scholar] [CrossRef]
- Wu, M.; Li, Q.; Hu, Z.; Li, X.; Chen, S. The complete Amomum kravanh chloroplast genome sequence and phylogenetic analysis of the commelinids. Molecules 2017, 22, 1875. [Google Scholar] [CrossRef]
- Shaw, J.; Lickey, E.B.; Schilling, E.E.; Small, R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.G.; Chen, X.L.; Cui, Y.X.; Xu, Z.C.; Li, Y.H.; Song, J.Y.; Duan, B.Z.; Yao, H. Gene losses and partial deletion of small single-copy regions of the chloroplast genomes of two hemiparasitic Taxillus species. Sci. Rep. 2017, 7, 12834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.; Qi, X.; Chen, J.; Sun, L.; Zhong, Y.; Fang, J.; Hu, C. The complete chloroplast genome sequence of Actinidia arguta using the PacBio RSII platform. PLoS ONE 2018, 13, e0197393. [Google Scholar]
- Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138. [Google Scholar] [CrossRef]
- Ferrarini, M.; Moretto, M.; Ward, J.A.; Surbanovski, N.; Stevanovic, V.; Giongo, L.; Viola, R.; Cavalieri, D.; Velasco, R.; Cestaro, A.; et al. An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genomics 2013, 14, 670. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Gui, S.; Guan, Z.; Pan, L.; Wang, S.; Ke, W.; Liang, D.; Ding, Y. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq and PacBio RS II sequencing platforms: Insight into the plastid evolution of basal eudicots. BMC Plant Biol. 2014, 14, 289. [Google Scholar] [CrossRef] [PubMed]
- Shap, P.M.; Li, W.H. The codon adaptation index- a measure of directional synonymous codon usage bias and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar]
- Liu, X.; Li, Y.; Yang, H.; Zhou, B. Chloroplast genome of the folk medicine and vegetable plant Talinum paniculatum (Jacq.) Gaertn.: Gene organization, comparative and phylogenetic analysis. Molecules 2018, 23, 857. [Google Scholar]
- Li, X.; Hu, Z.; Lin, X.; Li, Q.; Gao, H.; Luo, G.; Chen, S. High-throughput pyrosequencing of the complete chloroplast genome of Magnolia officinalis and its application in species identification. Acta Pharm. Sin. 2012, 47, 124–130. [Google Scholar]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-end de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stoneshavas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaisson, M.J.; Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory. BMC Bioinform. 2012, 13, 238. [Google Scholar] [CrossRef] [PubMed]
- Denisov, G.; Walenz, B.; Halpern, A.L.; Miller, J.; Axerlrod, N.; Levy, S.; Sutton, G. Consensus generation and variant detection by celera assembler. Bioinformatics 2008, 24, 1035–1040. [Google Scholar] [CrossRef]
- Wyman, S.K.; Jansen, R.K.; Boore, J.L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20, 3252–3255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Search and Contextual Analysis of Transfer RNA Genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. Organellar Genome DRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. Mega6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- MISA-Microsatellite Identification Tool. Available online: http://pgrc.ipk-gatersleben.de/misa/ (accessed on 20 September 2017).
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Marcais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. Se-Al: Sequence Alignment Editor. Version 2.0. Available online: http://tree.bio.ed.ac.uk/software (accessed on 30 September 2017).
- Kent, W.J. BLAT—The BLAST-like alignment tool. Genome Res. 2002, 12, 656–664. [Google Scholar] [CrossRef]
- Bhagwat, M.; Young, L.; Robison, R.R. Using BLAT to find sequence similarity in closely related genomes. Curr. Protoc. Bioinform. 2012, 010, Unit10.8. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Mower, J.P. The PREP Suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009, 37, W253–W259. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Shi, C.; Liu, Y.; Mao, S.Y.; Gao, L.Z. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: Genome structure and phylogenetic relationships. BMC Evol. Biol. 2014, 14, 151. [Google Scholar] [CrossRef]
- Song, Y.; Dong, W.; Liu, B.; Xu, C.; Yao, X.; Gao, J.; Corlett, R.T. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front Plant Sci. 2015, 6, 662. [Google Scholar] [CrossRef] [PubMed]
- Chomicki, G.; Renner, S.S. Watermelon origin solved with molecular phylogenetics including Linnaen material: Another example of museomics. New Phytol. 2015, 205, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Ding, M.Q.; Zou, C.Y.; Zhu, X.M.; Tang, Y.; Zhou, M.L.; Shao, J.R. Comparative analysis of four buckwheat species based on morphology and complete chloroplast genome sequences. Sci. Rep. 2017, 7, 6514. [Google Scholar] [CrossRef]
- Su, H.J.; Hogenhout, S.A.; Al-Sadi, A.M.; Kuo, C.H. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids. PLoS ONE 2014, 9, e113049. [Google Scholar] [CrossRef] [PubMed]
- Asaf, S.; Waqas, M.; Khan, A.L.; Khan, M.A.; Kang, S.M.; Imran, Q.M.; Shahzad, R.; Bilal, S.; Yun, B.W.; Lee, I.J. The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species. Front. Plant Sci. 2017, 8, 304. [Google Scholar] [CrossRef]
- Shahid Masood, M.; Nishikawa, T.; Fukuoka, S.; Njenga, P.K.; Tsudzuki, T.; Kadowaki, K. The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: First genome wide comparative sequence analysis of wild and cultivated rice. Gene 2004, 340, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Liu, H.; Xu, C.; Zuo, Y.; Chen, Z.; Zhou, S. A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: A case study on ginsengs. BMC Genet. 2014, 15, 138. [Google Scholar] [CrossRef]
- Chung, H.J.; Jung, J.D.; Park, H.W.; Kim, J.H.; Cha, H.W.; Min, S.R.; Jeong, W.J.; Liu, J.R. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep. 2006, 25, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Middleton, C.P.; Senerchia, N.; Stein, N.; Akhunov, E.D.; Keller, B.; Wicker, T.; Kilian, B. Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS ONE 2014, 9, e85761. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Yang, S.; Choi, G.; Kim, W.J.; Moon, B.C. The complete chloroplast genome sequences of Aconitum pseudolaeve and Aconitum longecassidatum and development of molecular markers for distinguishing species in the Aconitum subgenus Lycoctonum. Molecules 2017, 22, 2012. [Google Scholar] [CrossRef]
- Kress, W.J.; Prince, L.M.; Williams, K.J. The phylogeny and a new classification of the gingers (Zingiberaceae) evidence from molecular data. Am. J. Bot. 2002, 89, 1682–1696. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Species | Regions | Positions | Length (bp) | T/U (%) | C (%) | A (%) | G (%) | AT/U (%) |
---|---|---|---|---|---|---|---|---|
K. galanga | Genome | 163,811 | 32.2 | 18.3 | 31.7 | 17.7 | 63.9 | |
LSC | 88,405 | 33.7 | 17.3 | 32.4 | 16.4 | 66.1 | ||
IRa | 29,797 | 28.8 | 19.8 | 30.0 | 21.2 | 58.8 | ||
SSC | 15,812 | 34.5 | 15.5 | 35.9 | 13.9 | 70.5 | ||
IRb | 29,797 | 28.8 | 19.8 | 30.0 | 21.2 | 58.8 | ||
Protein coding genes | 83,172 | 31.5 | 17.2 | 31.4 | 19.7 | 63.0 | ||
1st position | 27,724 | 23.9 | 18.2 | 31.4 | 26.3 | 55.4 | ||
2nd position | 27,724 | 32.4 | 20.0 | 30.1 | 17.3 | 62.6 | ||
3rd position | 27,724 | 38.3 | 13.3 | 32.8 | 15.5 | 71.1 | ||
tRNA | 2,870 | 24.9 | 23.6 | 22.0 | 29.3 | 47.0 | ||
rRNA | 9,046 | 18.6 | 23.6 | 26.1 | 31.5 | 44.8 | ||
K. elegans | Genome | 163,555 | 32.2 | 18.3 | 31.7 | 17.7 | 63.9 | |
LSC | 88,020 | 33.7 | 17.4 | 32.4 | 16.5 | 66.1 | ||
IRa | 29,773 | 28.8 | 19.8 | 30.1 | 21.3 | 58.9 | ||
SSC | 15,989 | 34.6 | 15.5 | 36.1 | 13.8 | 70.6 | ||
IRb | 29,773 | 28.8 | 19.8 | 30.1 | 21.3 | 58.9 | ||
Protein coding genes | 79,117 | 31.6 | 17.3 | 31.2 | 19.9 | 62.8 | ||
1st position | 26,372 | 35.0 | 14.3 | 31.9 | 18.8 | 66.9 | ||
2nd position | 26,372 | 26.6 | 19.4 | 30.1 | 23.9 | 56.7 | ||
3rd position | 26,372 | 33.3 | 18.2 | 31.4 | 17.1 | 64.7 | ||
tRNA | 2,852 | 24.9 | 23.7 | 22.0 | 29.4 | 46.9 | ||
rRNA | 9,046 | 18.7 | 23.6 | 26.1 | 31.5 | 44.8 |
Category | Gene Name |
---|---|
Photosystem I | psaA, psaB, psaC, psaI, psaJ |
Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, lhbA |
Cytochrome b/f | petA, petB *, petD *, petG, petL, petN |
ATP synthase | atpA, atpB, atpE, atpF *, atpH, atpI |
NADH dehydrogenase | ndhA *, ndhB(×2) *, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK |
Rubisco | rbcL |
RNA polymerase | rpoA, rpoB, rpoC1 *, rpoC2 |
Large subunit ribosomal proteins | rpl2(×2) *, rpl14, rpl16 *, rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36 |
Small subunit ribosomal proteins | rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12(×2) *, rps14, rps15, rps16 *, rps18, rps19(×2) |
Other proteins | accD, ccsA, cemA, clpP *, infA, matK |
Proteins of unknown function | ycf1(×2), ycf2(×2), ycf3*, ycf4 |
Ribosomal RNAs | rrn4.5(×2), rrn5(×2), rrn16(×2), rrn23(×2) |
Transfer RNAs | trnA-UGC (×2) *, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC (Kg×2, Ke) **, trnG-UCC, trnH-GUG (×2), trnI-CAU (×2), trnI-GAU (×2) *, trnK-UUU (×2) *, trnL-CAA (×2), trnL-UAA (×2) *, trnL-UAG, trnM-CAU, trnN-GUU (×2), trnP-UGG, trnQ-UUG, trnR-ACG (×2), trnR-UCU, trnS-GCU (Kg×2, Ke), trnS-UGA, trnT-GGU (Kg×2, Ke), trnV-GAC (×2), trnV-UAC (×2) *, trnW-CCA, trnY-GUA, trnS-GGA (Ke), trnT-UGU (Ke) |
Species | Gene | Location | Exon I (bp) | Intron I (bp) | Exon II (bp) | Intron II (bp) | Exon III (bp) |
---|---|---|---|---|---|---|---|
K. galanga | trnA-UGC | IR | 38 | 801 | 35 | ||
trnG-GCC | LSC | 14 | 711 | 48 | |||
trnI-GAU | IR | 42 | 935 | 35 | |||
trnK-UUU | LSC | 35 | 2646 | 37 | |||
trnL-UAA | LSC | 35 | 536 | 50 | |||
trnV-UAC | LSC | 37 | 598 | 38 | |||
rps12 * | LSC/IR | 114 | - | 231 | 540 | 27 | |
rps16 | LSC | 212 | 749 | 40 | |||
rpl2 | IR | 443 | 650 | 315 | |||
rpl16 | LSC | 402 | 1058 | 9 | |||
petB | LSC | 6 | 783 | 642 | |||
petD | LSC | 8 | 740 | 481 | |||
atpF | LSC | 425 | 816 | 145 | |||
ndhA | SSC | 518 | 1083 | 562 | |||
ndhB | IR | 778 | 673 | 782 | |||
rpoC1 | LSC | 1632 | 726 | 432 | |||
clpP | LSC | 252 | 636 | 306 | 856 | 60 | |
ycf3 | LSC | 153 | 794 | 228 | 714 | 132 | |
K. elegans | trnA-UGC | IR | 38 | 801 | 35 | ||
trnI-GAU | IR | 42 | 935 | 35 | |||
trnK-UUU | LSC | 35 | 2663 | 37 | |||
trnL-UAA | LSC | 35 | 535 | 50 | |||
trnV-UAC | LSC | 37 | 598 | 38 | |||
rps12 * | LSC/IR | 114 | - | 231 | 540 | 27 | |
rps16 | LSC | 212 | 729 | 40 | |||
rpl2 | IR | 432 | 659 | 387 | |||
rpl16 | LSC | 402 | 1056 | 9 | |||
petB | LSC | 6 | 784 | 642 | |||
petD | LSC | 8 | 741 | 481 | |||
atpF | LSC | 411 | 816 | 144 | |||
ndhA | SSC | 540 | 1079 | 552 | |||
ndhB | IR | 756 | 700 | 777 | |||
rpoC1 | LSC | 1632 | 728 | 432 | |||
clpP | LSC | 255 | 636 | 291 | 854 | 69 | |
ycf3 | LSC | 153 | 794 | 228 | 723 | 132 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.-M.; Zhao, C.-Y.; Liu, X.-F. Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis. Molecules 2019, 24, 474. https://doi.org/10.3390/molecules24030474
Li D-M, Zhao C-Y, Liu X-F. Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis. Molecules. 2019; 24(3):474. https://doi.org/10.3390/molecules24030474
Chicago/Turabian StyleLi, Dong-Mei, Chao-Yi Zhao, and Xiao-Fei Liu. 2019. "Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis" Molecules 24, no. 3: 474. https://doi.org/10.3390/molecules24030474
APA StyleLi, D. -M., Zhao, C. -Y., & Liu, X. -F. (2019). Complete Chloroplast Genome Sequences of Kaempferia Galanga and Kaempferia Elegans: Molecular Structures and Comparative Analysis. Molecules, 24(3), 474. https://doi.org/10.3390/molecules24030474