Structure-Function Studies of Polymyxin B Lipononapeptides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
3. Materials and Methods
3.1. Synthesis
3.2. Minimum Inhibitory Concentration (MIC) Determination by Broth Microdilution Assay
3.3. Cytotoxicity (Lactate Dehydragenase (LDH) Assay)
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benedict, R.G.; Langlykke, A.F. Antibiotic Activity of Bacillus polymyxa. J. Bacteriol. 1947, 54, 24–25. [Google Scholar] [PubMed]
- Stansly, P.G.; Schlosser, M.E. Studies on Polymyxin—Isolation and Identification of Bacillus polymyxa and Differentiation of Polymyxin from Certain Known Antibiotics. J. Bacteriol. 1947, 54, 549–556. [Google Scholar] [PubMed]
- Stansly, P.G.; Brownlee, G. Nomenclature of Polymyxin Antibiotics. Nature 1949, 163, 611. [Google Scholar] [CrossRef] [PubMed]
- Stansly, P.G.; Shepherd, R.G.; White, H.J. Polymyxin—A New Chemotherapeutic Agent. Bull. Johns Hopkins Hosp. 1947, 81, 43–54. [Google Scholar] [PubMed]
- Shoji, J.; Kato, T.; Hinoo, H. Structures of 2 New Polymyxin Group Antibiotics. J. Antibiot. 1977, 30, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Shoji, J.; Hinoo, H.; Wakisaka, Y.; Koizumi, K.; Mayama, M.; Matsuura, S. Isolation of Two New Polymyxin Group Antibiotics (Studies on Antibiotics from Genus Bacillus. XX). J. Antibiot. 1977, 30, 1029–1034. [Google Scholar] [CrossRef]
- Wilkinson, S.; Lowe, L.A. Structures of Polymyxins A and the Question of Identity with the Polymyxins M. Nature 1966, 212, 311. [Google Scholar] [CrossRef]
- Parker, W.L.; Rathnum, M.L.; Dean, L.D.; Nimeck, M.W.; Brown, W.E.; Meyers, E. Polymyxin-F, a New Peptide Antibiotic. J. Antibiot. 1977, 30, 767–769. [Google Scholar] [CrossRef]
- Zavascki, A.P.; Nation, R.L. Nephrotoxicity of Polymyxins: Is There Any Difference between Colistimethate and Polymyxin B? Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef]
- Manchandani, P.; Zhou, J.; Babic, J.T.; Ledesma, K.R.; Truong, L.D.; Tam, V.H. Role of Renal Drug Exposure in Polymyxin B-Induced Nephrotoxicity. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, K.; Voor In ’t Holt, A.F.; Vos, M.C. A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Proliferation and significance of clinically relevant β-lactamases. Ann. NY Acad. Sci. 2013, 1277, 84–90. [Google Scholar] [CrossRef] [PubMed]
- PEW. A Scientific Roadmap for Antibiotic Discovery. 2016. Available online: http://www.pewtrusts.org/~/media/assets/2016/05/ascientificroadmapforantibioticdiscovery.pdf (accessed on 31 January 2019).
- Luepke, K.H.; Suda, K.J.; Boucher, H.; Russo, R.L.; Bonney, M.W.; Hunt, T.D.; Mohr, J.F. Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications. Pharmacotherapy 2017, 37, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S.; Blaskovich, M.A.T.; Cooper, M.A. Antibiotics in the clinical pipeline at the end of 2015. J. Antibiot. 2017, 70, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.B.; Velkov, T.; Nation, R.L.; Forrest, A.; Tsuji, B.T.; Bergen, P.J.; Li, J. Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: Are we there yet? Int. J. Antimicrob. Agent 2016, 48, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Nation, R.L.; Li, J.; Cars, O.; Couet, W.; Dudley, M.N.; Kaye, K.S.; Mouton, J.W.; Paterson, D.L.; Tam, V.H.; Theuretzbacher, U.; et al. Framework for optimisation of the clinical use of colistin and polymyxin B: The Prato polymyxin consensus. Lancet Infect. Dis. 2015, 15, 225–234. [Google Scholar] [CrossRef]
- Roberts, K.D.; Azad, M.A.K.; Wang, J.P.; Horne, A.S.; Thompson, P.E.; Nation, R.L.; Velkov, T.; Li, J. Antimicrobial Activity and Toxicity of the Major Lipopeptide Components of Polymyxin B and Colistin: Last-Line Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. ACS Infect. Dis. 2015, 1, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Rabanal, F.; Cajal, Y. Recent advances and perspectives in the design and development of polymyxins. Nat. Prod. Rep. 2017, 34, 886–908. [Google Scholar] [CrossRef]
- Baron, S.; Hadjadj, L.; Rolain, J.M.; Olaitan, A.O. Molecular mechanisms of polymyxin resistance: Knowns and unknowns. Int. J. Antimicrob. Ag. 2016, 48, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Chapple, D.S. Peptide antibiotics. Antimicrob. Agents Chemother. 1999, 43, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Velkov, T.; Thompson, P.E.; Nation, R.L.; Li, J. Structure-Activity Relationships of Polymyxin Antibiotics. J. Med. Chem. 2010, 53, 1898–1916. [Google Scholar] [CrossRef] [PubMed]
- Duwe, A.K.; Rupar, C.A.; Horsman, G.B.; Vas, S.I. In vitro Cytotoxicity and Antibiotic-Activity of Polymyxin-B Nonapeptide. Antimicrob. Agents Chemother. 1986, 30, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Quale, J.; Shah, N.; Kelly, P.; Babu, E.; Backer, M.; Rosas-Garcia, G.; Salamera, J.; George, A.; Bratu, S.; Landman, D. Activity of Polymyxin B and the Novel Polymyxin Analogue CB-182,804 Against Contemporary Gram-Negative Pathogens in New York City. Microb. Drug Resist. 2012, 18, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Magee, T.V.; Brown, M.F.; Starr, J.T.; Ackley, D.C.; Abramite, J.A.; Aubrecht, J.A.; Butler, J.L.; Crandon, F.; Dib-Hajj, M.E.; Flanagan, K.; et al. Discovery of Dap-3 Polymyxin Analogues for the Treatment of Multidrug-Resistant Gram-Negative Nosocomial Infections. J. Med. Chem. 2013, 56, 5079–5093. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.; Boakes, S.; Duperchy, E.; Simonovic, M.; Abdulle, O.; Divall, N.; Stanway, S.J.; Wilson, A.; Moss, S.F.; Dawson, M.J. Synthesis and Structure-Activity Relationships of Polymyxin Nonapeptide Derivatives with N-terminal Aminoacyl Moieties. In Proceedings of the 55th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA, USA, 17–21 September 2015. [Google Scholar]
- Gordeev, M.F.; Liu, J.; Wang, X.; Yuan, Z. Antimicrobial Polymyxins for Treatment of Bacterial Infections. WO Patent 2016/100578, 23 June 2016. [Google Scholar]
- Rabanal, F.; Grau-Campistany, A.; Vila-Farres, X.; Gonzalez-Linares, J.; Borras, M.; Vila, J.; Manresa, A.; Cajal, Y. A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity. Sci. Rep. 2015, 5, 10558. [Google Scholar] [CrossRef] [Green Version]
- Vaara, M.; Vaara, T.; Tyrrell, J.M. Structure-activity studies on polymyxin derivatives carrying three positive charges only reveal a new class of compounds with strong antibacterial activity. Peptides 2017, 91, 8–12. [Google Scholar] [CrossRef]
- Sato, Y.; Shindo, M.; Sakura, N.; Uchida, Y.; Kato, I. Novel Des-Fatty Acyl-Polymyxin B Derivatives with Pseudomonas aeruginosa-Specific Antimicrobial Activity. Chem. Pharm. Bull. 2011, 59, 597–602. [Google Scholar] [CrossRef]
- Sakura, N.; Itoh, T.; Uchida, Y.; Ohki, K.; Okimura, K.; Chiba, K.; Sato, Y.; Sawanishi, H. The contribution of the N-terminal structure of polymyxin B peptides to antimicrobial and lipopolysaccharide binding activity. Bull. Chem. Soc. Jpn. 2004, 77, 1915–1924. [Google Scholar] [CrossRef]
- Tsubery, H.; Ofek, I.; Cohen, S.; Fridkin, M. Structure-function studies of polymyxin B nonapeptide: Implications to sensitization of gram-negative bacteria. J. Med. Chem. 2000, 43, 3085–3092. [Google Scholar] [CrossRef] [PubMed]
- Corbett, D.; Wise, A.; Langley, T.; Skinner, K.; Trimby, E.; Birchall, S.; Dorali, A.; Sandiford, S.; Williams, J.; Warn, P.; et al. Potentiation of Antibiotic Activity by a Novel Cationic Peptide: Potency and Spectrum of Activity of SPR741. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Godoy, A.; Muldoon, C.; Becker, B.; Elliott, A.G.; Lash, L.H.; Huang, J.X.; Butler, M.S.; Pelingon, R.; Kavanagh, A.M.; Ramu, S.; et al. Activity and Predicted Nephrotoxicity of Synthetic Antibiotics Based on Polymyxin B. J. Med. Chem. 2016, 59, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- O’Dowd, H.; Kim, B.; Margolis, P.; Wang, W.; Wu, C.; Lopez, S.L.; Blais, J. Preparation of tetra-Boc-protected polymyxin B nonapeptide. Tetrahedron Lett. 2007, 48, 2003–2005. [Google Scholar] [CrossRef]
- Vaara, M.; Fox, J.; Loidl, G.; Siikanen, O.; Apajalahti, J.; Hansen, F.; Frimodt-Moller, N.; Nagai, J.; Takano, M.; Vaara, T. Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob. Agents Chemother. 2008, 52, 3229–3236. [Google Scholar] [CrossRef] [PubMed]
- Leese, R.A. Antibiotic Compositions for the Treatment of Gram Negative Infections. U.S. Patent 8343912B2, 1 January 2013. [Google Scholar]
- Velkov, T.; Roberts, K.D.; Nation, R.L.; Wang, J.P.; Thompson, P.E.; Li, J. Teaching ‘Old’ Polymyxins New Tricks: New-Generation Lipopeptides Targeting Gram-Negative ‘Superbugs’. ACS Chem. Biol. 2014, 9, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Govender, T.; Kruger, H.G.; Albericio, F.; de la Torre, B.G. An improved and efficient strategy for the total synthesis of a colistin-like peptide. Tetrahedron Lett. 2016, 57, 1885–1888. [Google Scholar] [CrossRef]
- Xu, W.L.; Cui, A.L.; Hu, X.X.; You, X.F.; Li, Z.R.; Zheng, J.S. A new strategy for total solid-phase synthesis of polymyxins. Tetrahedron Lett. 2015, 56, 4796–4799. [Google Scholar] [CrossRef]
- Huang, J.X.; Blaskovich, M.A.; Cooper, M.A. Cell- and biomarker-based assays for predicting nephrotoxicity. Expert Opin. Drug Met. 2014, 10, 1621–1635. [Google Scholar] [CrossRef]
- Huang, J.X.; Kaeslin, G.; Ranall, M.V.; Blaskovich, M.A.; Becker, B.; Butler, M.S.; Little, M.H.; Lash, L.H.; Cooper, M.A. Evaluation of biomarkers for in vitro prediction of drug induced nephrotoxicity: Comparison of HK-2, immortalized human proximal tubule epithelial, and primary cultures of human proximal tubular cells. Pharmacol. Res. Perspect. 2015, 3. [Google Scholar] [CrossRef]
- Becker, B.; Butler, M.S.; Hansford, K.A.; Gallardo-Godoy, A.; Elliott, A.G.; Huang, J.X.; Edwards, D.J.; Blaskovich, M.A.T.; Cooper, M.A. Synthesis of octapeptin C4 and biological profiling against NDM-1 and polymyxin-resistant bacteria. Bioorg. Med. Chem. Lett. 2017, 27, 2407–2409. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Selected compounds are available from the authors. |
Strains 1 | E. coli ATCC 25922 | K. pneumoniae ATCC 700603 | K. pneumoniae ATCC 13833 | K. pneumoniae BAA 2146 | A. baumannii ATCC 19606 | P. aeruginosa ATTC 27853 | S. aureus ATCC 25923 | CC50 HK-2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ctrls | PmxB 1 | 1 | 0.5 | 1 | 0.25 | 0.25 | 0.5 | >32 | >300 | ||||
Col 2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.5 | >32 | >300 | |||||
Gent | 0.25 | 8 | 0.25 | >32 | 32 | >32 | 0.5 | >300 | |||||
Vanc | >32 | >32 | >32 | >32 | >32 | >32 | 2 | >300 | |||||
ID | FA | P1 | P2 | P3 | P4 | ||||||||
PMBN a | -- | -- | l-Thr | l-Dab | l-Dab | >32 | >32 | >32 | >32 | >32 | 2 | >32 | >300 |
PmxB3 b | FA-1 | l-Dab | l-Dab | 0.5 | 1 | 2 | 0.5 | 0.5 | 0.5 | >32 | >300 | ||
8 c | FA-1 | -- | l-Dab | 1 | 2 | 1 | 2 | 2 | 0.5 | >32 | 209 | ||
9 d | FA-1 | -- | l-Dab | >32 | >32 | >32 | >32 | >32 | 32 | >32 | 79 | ||
10 | FA-5 | -- | l-Dab | 4 | 16 | >32 | 16 | >32 | 1 | >32 | >300 | ||
11 | FA-4 | -- | l-Dab | 8 | 32 | >32 | 8 | >32 | 2 | >32 | 93 | ||
12 | FA-6 | -- | l-Dab | 2 | 4 | 16 | 2 | 32 | 1 | 8 | 46 | ||
13 | FA-2 | -- | l-Dab | 1 | 2 | 8 | 1 | 8 | 1 | >32 | 189 | ||
14 | FA-3 | -- | l-Dab | 8 | 32 | >32 | 16 | >32 | 2 | >32 | 182 | ||
15 | FA-7 | -- | l-Dab | 32 | 32 | >32 | 32 | >32 | 1 | >32 | 206 | ||
16 e | FA-7 | -- | l-Dab | 1 | 2 | 2 | 4 | 1 | 0.5 | >32 | >300 | ||
17 | FA-1 | -- | l-Orn | 2 | 16 | 32 | 16 | >32 | 2 | >32 | 88 | ||
18 | FA-1 | -- | l-Lys | 16 | >32 | >32 | >32 | >32 | 16 | >32 | 88 | ||
19 | FA-1 | -- | d-Dab | >32 | >32 | >32 | >32 | >32 | >32 | >32 | >300 |
Strains 1 | E. coli ATCC 25922 | K. pneumoniae ATCC 700603 | K. pneumoniae ATCC 13833 | K. pneumoniae BAA 2146 | A. baumannii ATCC 19606 | P. aeruginosa ATTC 27853 | P. aeruginosa FADDI PA070 | S. aureus ATCC 25923 | CC50 HK-2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ctrls | PmxB 1 | 1 | 0.5 | 1 | 0.25 | 0.25 | 0.5 | 32 | >32 | >300 | |||
Col 2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.5 | >32 | >32 | >300 | ||||
Gent | 0.25 | 8 | 0.25 | >32 | 32 | >32 | 32 | 0.5 | >300 | ||||
Vanc | >32 | >32 | >32 | >32 | >32 | >32 | >32 | 2 | >300 | ||||
ID | FA | P1 | P2 | P3 | |||||||||
20 | FA-1 | l-Dab | l-Thr | d-Dab | 4 | 1 | 0.5 | 4 | 1 | 2 | >32 | >32 | 183 |
21 | FA-1 | -- | l-Thr | 0.5 | 1 | 4 | 1 | 8 | 2 | 8 | >32 | 289 | |
22 | FA-7 | -- | l-Thr | 16 | 16 | 16 | 16 | >32 | 2 | >32 | >32 | >300 | |
23 | FA-8 | -- | l-Thr | 8 | 8 | 32 | 16 | 8 | 4 | 2 | 4 | 29 | |
24 | FA-9 | -- | l-Thr | 4 | 8 | >32 | 4 | 32 | 4 | 4 | 16 | 60 | |
25 | FA-2 | -- | l-Thr | 0.5 | 1 | 4 | 0.5 | 2 | 2 | 8 | >32 | >300 | |
26 | FA-10 | -- | l-Thr | 1 | 1 | 4 | 1 | 16 | 2 | >32 | >32 | >300 | |
27 | FA-3 | -- | l-Thr | 4 | 16 | 32 | 8 | >32 | 2 | 8 | >32 | >300 | |
28 | FA-1 | -- | l-Asn | 32 | >32 | >32 | >32 | >32 | 4 | 8 | >32 | >300 | |
29 | FA-1 | -- | l-Tyr | 16 | 16 | >32 | >32 | >32 | 4 | 8 | >32 | >300 | |
30 | FA-1 | -- | l-Ser | 8 | 4 | >32 | 8 | >32 | 1 | 16 | >32 | >300 | |
31 | FA-1 | -- | l-Hse | 16 | 8 | >32 | 8 | >32 | 2 | 8 | >32 | 181 | |
32 | FA-1 | -- | l-Glu | >32 | 32 | >32 | >32 | >32 | 4 | >32 | >32 | >300 | |
33 | FA-1 | -- | Gly | 16 | 32 | >32 | >32 | >32 | 1 | >32 | >32 | 262 |
Strains 1 | E. coli ATCC 25922 | K. pneumoniae ATCC 700603 | K. pneumoniae ATCC 13833 | K. pneumoniae BAA 2146 | A. baumannii ATCC 19606 | P. aeruginosa ATTC 27853 | S. aureus ATCC 25923 | CC50 HK-2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ctrls | PmxB 1 | 1 | 0.5 | 1 | 0.25 | 0.25 | 0.5 | >32 | >300 | |||
Col 2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.5 | >32 | >300 | ||||
Gent | 0.25 | 8 | 0.25 | >32 | 32 | >32 | 0.5 | >300 | ||||
Vanc | >32 | >32 | >32 | >32 | >32 | >32 | 2 | >300 | ||||
ID | FA | P1 | P2 | P3 | ||||||||
34 a | FA-1 | l-Dab | l-Thr | d-Ser | 4 | 2 | 0.5 | 16 | 1 | 2 | >32 | 139 |
35 | FA-1 | -- | l-Ser | 8 | 32 | >32 | 16 | >32 | 16 | >32 | 220 | |
36 b | FA-1 | -- | d-Ser | 4 | >32 | >32 | 16 | 32 | 16 | >32 | 213 | |
37 | FA-1 | -- | l-Hse | 16 | >32 | >32 | >32 | >32 | >32 | >32 | 271 | |
38 | FA-1 | -- | l-Asn | 32 | >32 | >32 | >32 | >32 | >32 | >32 | 284 | |
39 | FA-1 | -- | l-Dap | 1 | 1 | 1 | 0.5 | 1 | 1 | >32 | 290 | |
40 | FA-1 | -- | l-Orn | 2 | 4 | 8 | 4 | 16 | 2 | >32 | >300 | |
41 | FA-1 | -- | d-Orn | 1 | 4 | 32 | 1 | 16 | 4 | >32 | >300 | |
42 | FA-1 | -- | l-Lys | 4 | 16 | 16 | 8 | 32 | 4 | >32 | >300 | |
43 | FA-1 | -- | d-Lys | 1 | 4 | >32 | 4 | 16 | 4 | >32 | >300 | |
44 | FA-1 | -- | l-Cit | 32 | >32 | >32 | 32 | >32 | >32 | >32 | >300 | |
45 | FA-1 | -- | l-Arg | 2 | 8 | >32 | 16 | 32 | 4 | >32 | >300 | |
46 | FA-1 | -- | l-Trp | >32 | 32 | >32 | >32 | >32 | >32 | >32 | >300 | |
47 | FA-1 | -- | l-His | 4 | 32 | >32 | 16 | >32 | 16 | >32 | >300 | |
48 | FA-1 | -- | d-His | 2 | 4 | 4 | 4 | 4 | 16 | >32 | >300 | |
49 a | FA-1 | -- | Gly | 4 | >32 | >32 | >32 | >32 | >32 | >32 | 163 | |
50 | FA-1 | l-Dab | Gly | 0.5 | 1 | 0.5 | 0.5 | 1 | 2 | >32 | >300 | |
51 | FA-10 | -- | Gly | 2 | 16 | >32 | 4 | 16 | 8 | >32 | >300 | |
52 | FA-11 | -- | Gly | 1 | 4 | >32 | 4 | 32 | 4 | >32 | >300 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo-Godoy, A.; Hansford, K.A.; Muldoon, C.; Becker, B.; Elliott, A.G.; Huang, J.X.; Pelingon, R.; Butler, M.S.; Blaskovich, M.A.T.; Cooper, M.A. Structure-Function Studies of Polymyxin B Lipononapeptides. Molecules 2019, 24, 553. https://doi.org/10.3390/molecules24030553
Gallardo-Godoy A, Hansford KA, Muldoon C, Becker B, Elliott AG, Huang JX, Pelingon R, Butler MS, Blaskovich MAT, Cooper MA. Structure-Function Studies of Polymyxin B Lipononapeptides. Molecules. 2019; 24(3):553. https://doi.org/10.3390/molecules24030553
Chicago/Turabian StyleGallardo-Godoy, Alejandra, Karl A. Hansford, Craig Muldoon, Bernd Becker, Alysha G. Elliott, Johnny X. Huang, Ruby Pelingon, Mark S. Butler, Mark A. T. Blaskovich, and Matthew A. Cooper. 2019. "Structure-Function Studies of Polymyxin B Lipononapeptides" Molecules 24, no. 3: 553. https://doi.org/10.3390/molecules24030553
APA StyleGallardo-Godoy, A., Hansford, K. A., Muldoon, C., Becker, B., Elliott, A. G., Huang, J. X., Pelingon, R., Butler, M. S., Blaskovich, M. A. T., & Cooper, M. A. (2019). Structure-Function Studies of Polymyxin B Lipononapeptides. Molecules, 24(3), 553. https://doi.org/10.3390/molecules24030553