Inhibitory Effects of Antimicrobial Peptide JH-3 on Salmonella enterica Serovar Typhimurium Strain CVCC541 Infection-Induced Inflammatory Cytokine Release and Apoptosis in RAW264.7 Cells
Abstract
:1. Introduction
2. Results
2.1. High Expression of Inflammatory Cytokines by Macrophage RAW264.7 Cells Was Induced by Salmonella CVCC541 Infection
2.2. Apoptosis of RAW264.7 Cells Was Induced by Salmonella CVCC541 Infection
2.3. JH-3 Significantly Inhibited the Expression of Inflammatory Cytokines
2.4. JH-3 Inhibited the Activation of the Mitogen-Activated Protein Kinase (MAPK) and P65 Signaling Pathways
2.5. JH-3 Reduced the Release of Lactic Dehydrogenase (LDH) and the Survival of Bacteria in RAW264.7 Cells
2.6. JH-3 Inhibited the Salmonella-CVCC541-Induced Apoptosis of RAW264.7 Cells
2.7. JH-3 Downregulated the Expression of Caspase-9 and TLR4
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of RAW264.7 Cells
4.3. Evaluation of the Bactericidal Effects of JH-3 in RAW264.7 Cells
4.4. Western Blot Analysis
4.5. Cytotoxicity Detection Assay
4.6. Apoptosis Assays
4.7. Confocal Laser Scanning Microscopy Assays
4.8. Analysis of Cytochrome C Release
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
IL-2 | interleukin 2 |
IL-6 | interleukin 6 |
JH-3 | antimicrobial peptide JH-3 |
MIC | minimum inhibitory concentration |
MOI | multiplicity of infection |
RAW264.7 | macrophage |
Salmonella CVCC541 | Salmonella enterica Serovar Typhimurium strain CVCC541 |
TNF-α | tumor necrosis factor-α |
References
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. The Global Burden of Nontyphoidal Salmonella Gastroenteritis. J. Food Saf. 2010, 6, 882–889. [Google Scholar]
- Thomas, M.; Fenske, G.J.; Antony, L.; Ghimire, S.; Welsh, R.; Ramachandran, A.; Scaria, J. Whole genome sequencing-based detection of antimicrobial resistance and virulence in non-typhoidal Salmonella enterica isolated from wildlife. Gut Pathog. 2017, 1, 66. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Lan, R.; Zhang, X.; Cui, S.; Xu, J.; Guo, Y.; Li, F.; Zhang, D. Prevalence of Salmonella Isolates from Chicken and Pig Slaughterhouses and Emergence of Ciprofloxacin and Cefotaxime Co-Resistant S. enterica Serovar Indiana in Henan, China. PLoS ONE 2015, 10, e014453212. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, H.; Tahoun, A.; El-Gohary, A.E.A.; El-Abasy, M.; El-Khayat, F.; Gillespie, T.; Kitade, Y.; Hafez, H.M.; Neubauer, H.; El-Adawy, H. Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathog. 2017, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Flores- Alvarez, L.J.; Guzmán- Rodríguez, J.J.; López- Gómez, R.; Salgado- Garciglia, R.; Ochoa- Zarzosa, A.; López- Meza, J.E. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis. Int. J. Biochem. Cell Biol. 2018, 99, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Forkus, B.; Ritter, S.; Vlysidis, M.; Geldart, K.; Kaznessis, Y.N. Antimicrobial Probiotics Reduce Salmonella enterica in Turkey Gastrointestinal Tracts. Sci. Rep. 2017, 7, 40695. [Google Scholar] [CrossRef] [PubMed]
- Wang, G. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs. Pharmaceutical 2013, 6, 728–758. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 3, 491–511. [Google Scholar] [CrossRef]
- Xia, X.; Cheng, L.; Zhang, S.; Wang, L.; Hu, J. The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie van Leeuwenhoek 2018, 1, 5–26. [Google Scholar] [CrossRef]
- Guani-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.O.; Teran, L.M. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin. Immunol. 2010, 1, 1–11. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Wang, Q.; Hang, B.; Sun, Y.; Wei, X.; Hu, J. Potential of Novel Antimicrobial Peptide P3 from Bovine Erythrocytes and Its Analogs to Disrupt Bacterial Membranes in Vitro and Display Activity against Drug-Resistant Bacteria in a Mouse Model. Antimicrob. Agents Chemother. 2015, 5, 2835–2841. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Lilo, S.; Mena, P.; Bliska, J.B. YopJ-Induced Caspase-1 Activation in Yersinia-Infected Macrophages: Independent of Apoptosis, Linked to Necrosis, Dispensable for Innate Host Defense. PLoS ONE 2012, 7, e360194. [Google Scholar] [CrossRef] [PubMed]
- Alyu, F.; Dikmen, M. Inflammatory aspects of epileptogenesis: Contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr. 2017, 1, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, H.E.; Tsai, C.H.; Ho, T.Y.; Hsieh, C.T.; Chou, S.C.; Lee, Y.J.; Tsay, G.J.; Huang, P.H.; Wu, Y.Y. Radix Paeoniae Rubra stimulates osteoclast differentiation by activation of the NF-kappaB and mitogen-activated protein kinase pathways. BMC Complement. Altern. Med. 2018, 1, 132. [Google Scholar]
- Zhang, M.; Yan, Z.; Bu, L.; An, C.; Wang, D.; Liu, X.; Zhang, J.; Yang, W.; Deng, B.; Xie, J.; et al. Rapeseed protein-derived antioxidant peptide RAP alleviates renal fibrosis through MAPK/NF-kappaB signaling pathways in diabetic nephropathy. Drug Des. Dev. Ther. 2018, 12, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Rajasekaran, G.; Shin, S.Y. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur. J. Med. Chem. 2017, 136, 428–441. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Blencke, H.M.; Cheng, H.; Li, C. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris. Peptide 2018, 99, 36–43. [Google Scholar] [CrossRef]
- Xu, C.L.; Guo, Y.; Qiao, L.; Ma, L.; Cheng, Y.Y. Recombinant expressed vasoactive intestinal peptide analogue ameliorates TNBS-induced colitis in rats. World J Gastroenterol. 2018, 6, 706–715. [Google Scholar] [CrossRef]
- Fusco, A.; Savio, V.; Cammarota, M.; Alfano, A.; Schiraldi, C.; Donnarumma, G. Beta-Defensin-2 and Beta-Defensin-3 Reduce Intestinal Damage Caused by Salmonella typhimurium Modulating the Expression of Cytokines and Enhancing the Probiotic Activity of Enterococcus faecium. Clin. Dev. Immunol. 2017, 2017, 6976935. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, L.; Wang, H.; Tai, S.; Liu, H.; Zhang, D. AWRK6, A Synthetic Cationic Peptide Derived from Antimicrobial Peptide Dybowskin-2CDYa, Inhibits Lipopolysaccharide-Induced Inflammatory Response. Int. J. Mol. Sci. 2018, 19, 600. [Google Scholar] [CrossRef]
- Nijnik, A.; Madera, L.; Ma, S.; Waldbrook, M.; Elliott, M.R.; Easton, D.M.; Mayer, M.L.; Mullaly, S.C.; Kindrachuk, J.; Jenssen, H.; et al. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J. Immunol. 2010, 5, 2539–2550. [Google Scholar] [CrossRef] [PubMed]
- Kogut, M.H.; Genovese, K.J.; He, H.; Swaggerty, C.L.; Jiang, Y.W. BT cationic peptides: Small peptides that modulate innate immune responses of chicken heterophils and monocytes. Vet. Immunol. Immunopathol. 2012, 1–2, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Choi, H.; Seon, M.; Cho, D.; Bang, S.I. LL-37 stimulates the functions of adipose-derived stromal/stem cells via early growth response 1 and the MAPK pathway. Stem Cell Res. Ther. 2016, 1, 58. [Google Scholar] [CrossRef] [PubMed]
- Han, H.M.; Ko, S.; Cheong, M.J.; Bang, J.K.; Seo, C.H.; Luchian, T.; Park, Y. Myxinidin2 and myxinidin3 suppress inflammatory responses through STAT3 and MAPKs to promote wound healing. Oncotarget 2017, 50, 87582–87597. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.; Chamorro, C.I.; Granath, F.; Liljegren, A.; Zreika, S.; Saidak, Z.; Sandstedt, B.; Rotstein, S.; Mentaverri, R.; Sanchez, F.; et al. Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Res. 2009, 1, R6. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shan, Z.; Yang, B.; Yang, D.; Men, C.; Cui, Y.; Wu, J. Cathelicidin LL37 Promotes Epithelial and Smooth-Muscle-Like Differentiation of Adipose-Derived Stem Cells through the Wnt/beta-Catenin and NF-kappaB Pathways. Biochemistry 2017, 11, 1336–1345. [Google Scholar]
- Hu, C.; Chen, X.; Huang, Y.; Chen, Y. Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Sci. Rep. 2018, 1, 2274. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.M.; Tseng, C.C.; Chen, N.F.; Tai, M.H.; Hung, H.C.; Feng, C.W.; Cheng, S.Y.; Huang, S.Y.; Jean, Y.H.; Wen, Z.H. MSP-4, an Antimicrobial Peptide, Induces Apoptosis via Activation of Extrinsic Fas/FasL- and Intrinsic Mitochondria-Mediated Pathways in One Osteosarcoma Cell Line. Mar. Drugs 2018, 16, 8. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, D.; Zhang, J.; Ren, L. TT-1, an analog of melittin, triggers apoptosis in human thyroid cancer TT cells via regulating caspase, Bcl-2 and Bax. Oncol. Lett. 2018, 1, 1271–1278. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Xu, Y.; Li, Q.; Chu, Y.; Huang, R.; Qin, Z. A Salmonella enterica serovar Typhi plasmid induces rapid and massive apoptosis in infected macrophages. Cell. Mol. Immunol. 2010, 4, 271–278. [Google Scholar] [CrossRef]
- Hersh, D.; Monack, D.M.; Smith, M.R.; Ghori, N.; Falkow, S.; Zychlinsky, A. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA 1999, 5, 2396–2401. [Google Scholar] [CrossRef]
- Chanana, V.; Majumdar, S.; Rishi, P. Involvement of caspase-3, lipid peroxidation and TNF-alpha in causing apoptosis of macrophages by coordinately expressed Salmonella phenotype under stress conditions. Mol. Immunol. 2007, 7, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Yuan, Z.; Du, Y.; Yang, G.; Wang, Q. Recombinant adeno-associated virus delivered human thioredoxin-PR39 prevents hypoxia-induced apoptosis of ECV304 cells. NRR 2012, 9, 708–713. [Google Scholar]
- Chanana, V.; Majumdar, S.; Rishi, P. Tumour necrosis factor alpha mediated apoptosis in murine macrophages by Salmonella enterica serovar Typhi under oxidative stress. FEMS Immunol. Med. Microbiol. 2006, 2, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Boza-Serrano, A.; Dunning, C.; Clausen, B.H.; Lambertsen, K.L.; Deierborg, T. Inflammation leads to distinct populations of extracellular vesicles from microglia. J. Neuroinflamm. 2018, 1, 168. [Google Scholar] [CrossRef]
- Fang, X.; Ge, K.; Song, C.; Ge, Y.; Zhang, J. Effects of n-3PUFAs on autophagy and inflammation of hypothalamus and body weight in mice. Biochem. Biophys. Res. Commun. 2018, 501, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qin, W.; Zhai, R.; Liu, S.; Zhang, H.; Sun, C.; Feng, X.; Gu, J.; Du, C.; Han, W.; et al. Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets. Microb. Pathog. 2015, 78, 74–86. [Google Scholar] [CrossRef]
- Auger, E.; Deslandes, V.; Ramjeet, M.; Contreras, I.; Nash, J.H.E.; Harel, J.; Gottschalk, M.; Olivier, M.; Jacques, M. Host-Pathogen Interactions of Actinobacillus pleuropneumoniae with Porcine Lung and Tracheal Epithelial Cells. Infect. Immun. 2009, 4, 1426–1441. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Tang, J.; Zhao, S.; Li, C.; Huang, Y.P.; Yi, M. Oxymatrine Inhibits Homocysteine-Mediated Autophagy via MIF/mTOR Signaling in Human Umbilical Vein Endothelial Cells. Cell. Physiol. Biochem. 2018, 5, 1893–1903. [Google Scholar] [CrossRef]
- Dreschers, S.; Gille, C.; Haas, M.; Grosse-Ophoff, J.; Schneider, M.; Leiber, A.; Buhring, H.J.; Orlikowsky, T.W. Infection-induced bystander-apoptosis of monocytes is TNF-alpha-mediated. PLoS ONE 2013, 1, e53589. [Google Scholar] [CrossRef]
- Li, P.; Xu, J.; Rao, H.M.; Li, X.; Zhang, Y.K.; Jiang, F.; Wu, W.X. Mechanism of Apoptosis Induction by Mycoplasmal Nuclease MGA_0676 in Chicken Embryo Fibroblasts. Front. Cell. Infect. Microbiol. 2018, 8, 105. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Genes | Sequence | Temperature (°C) |
---|---|---|
IL-6 | F:5’-TGGATGGTCTTGGTCCTTAGCC-3’ | 58 |
R:5’-ACTGATGGTGACAACCACG-3’ | ||
ERK | F:5’-ACCCTGGAAGCCATGAGA-3’ | 60 |
R:5’-TAAGGTCGCAGGTGGTGT-3’ | ||
JNK | F:5’-TATACGCATAAGTACGGCTACA-3’ | 60 |
R:5’-GTCCTGGTGGGAAATGAAC-3’ | ||
p38 | F:5’-TCGAGACCGTTTCAGTCCATC-3’ | 60 |
R:5’-GGGTCACCAGGTACACGTCATT-3’ | ||
GAPDH | F:5’-CCTTCCGTGTTCCTACCC-3’ | 59 |
R: 5’-GCCCTCAGATGCCTGCT-3’ | ||
TNF-α | F:5’-GGCAGGTCTACTTTGGAGTCATTGC-3’ | 58 |
R: 5’-ACATTCGAGGCTCCAGTGAATTCGG-3’ | ||
IL-2 | F:5’-CTGCAGCGTGTGTTGGATTT-3’ | 60 |
R: 5’-GGCTCATCATCGAATTGGCAC-3’ | ||
Caspase-3 | F:5’-AGCTTGGAACGGTACGCTAA-3’ | 60 |
R: 5’-TGCATATGCCCATTTCAGGA-3’ | ||
Caspase-8 | F:5’-TGCCTCCTCCTATGTCCTGT-3’ | 60 |
R: 5’-AGAGCTGTAACCTTATCAGAAACA-3’ | ||
Caspase-9 | F:5’-CCATGAGAGCTTCGGAGAGAA-3’ | 58 |
R: 5’-ACCTTCCCAGGTTGCCAATG-3’ | ||
TNF-αR1 | F: 5′-GCCTCCCGCGATAAAGCCAACC-3′ | 58 |
R: 5′-CTTTGCCCACTTTCACCCACAGG-3′ | ||
TNF-αR2 | F: 5′-ACACCCTACAAACCGGAACC-3′ | 58 |
R: 5′-AGCCTTCCTGTCATAGTATTCCT-3′ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhao, X.; Xia, X.; Zhu, C.; Zhang, H.; Qin, W.; Xu, Y.; Hang, B.; Sun, Y.; Chen, S.; et al. Inhibitory Effects of Antimicrobial Peptide JH-3 on Salmonella enterica Serovar Typhimurium Strain CVCC541 Infection-Induced Inflammatory Cytokine Release and Apoptosis in RAW264.7 Cells. Molecules 2019, 24, 596. https://doi.org/10.3390/molecules24030596
Wang L, Zhao X, Xia X, Zhu C, Zhang H, Qin W, Xu Y, Hang B, Sun Y, Chen S, et al. Inhibitory Effects of Antimicrobial Peptide JH-3 on Salmonella enterica Serovar Typhimurium Strain CVCC541 Infection-Induced Inflammatory Cytokine Release and Apoptosis in RAW264.7 Cells. Molecules. 2019; 24(3):596. https://doi.org/10.3390/molecules24030596
Chicago/Turabian StyleWang, Lei, Xueqin Zhao, Xiaojing Xia, Chunling Zhu, Huihui Zhang, Wanhai Qin, Yanzhao Xu, Bolin Hang, Yawei Sun, Shijun Chen, and et al. 2019. "Inhibitory Effects of Antimicrobial Peptide JH-3 on Salmonella enterica Serovar Typhimurium Strain CVCC541 Infection-Induced Inflammatory Cytokine Release and Apoptosis in RAW264.7 Cells" Molecules 24, no. 3: 596. https://doi.org/10.3390/molecules24030596
APA StyleWang, L., Zhao, X., Xia, X., Zhu, C., Zhang, H., Qin, W., Xu, Y., Hang, B., Sun, Y., Chen, S., Jiang, J., Zhang, G., & Hu, J. (2019). Inhibitory Effects of Antimicrobial Peptide JH-3 on Salmonella enterica Serovar Typhimurium Strain CVCC541 Infection-Induced Inflammatory Cytokine Release and Apoptosis in RAW264.7 Cells. Molecules, 24(3), 596. https://doi.org/10.3390/molecules24030596