Extraction and Separation of Eight Ginsenosides from Flower Buds of Panax Ginseng Using Aqueous Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of IL
2.2. Optimization of IL-UAE
2.2.1. Single Factor Analysis
2.2.2. Experimental Design for Optimization and Statistical Analysis
2.3. Comparison of Different UAE Methods
2.4. Preconcentration and Separation of Eight Ginsenosides Using IL-ABS
3. Materials and Methods
3.1. Materials and Reagents
3.2. Sample Preparation
3.3. HPLC/UV Analysis
3.4. Aqueous Biphasic System (ABS)
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huang, K.C. The Pharmacology of Chinese Herbs; CRC Press: Boca Raton, FL, USA, 1999; pp. 1–16. [Google Scholar]
- Kitts, D.; Hu, C. Efficacy and safety of ginseng. Public Health Nutr. 2000, 3, 473–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.D.; Rhee, D.K.; Lee, Y.H. Biological activities and chemistry of saponins from Panax ginseng C.A. Meyer. Phytochem. Rev. 2005, 4, 159–175. [Google Scholar] [CrossRef]
- Dong, H.; Bai, L.P.; Wong, V.K.; Zhou, H.; Wang, J.R.; Liu, Y.; Jiang, Z.H.; Liu, L. The in vitro structure-related anti-cancer activity of ginsenosides and their derivatives. Molecules 2011, 16, 10619–10630. [Google Scholar] [CrossRef] [PubMed]
- Li, T. Asian and American ginseng–a review. Hort-Technol. 1995, 5, 27–34. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Song, G.Y.; Kim, J.A.; Hyun, J.H.; Kang, H.K.; Kim, Y.H. Dammarane-type saponins from the flower buds of Panax ginseng and their effects on human leukemia cells. Bioorg. Med. Chem Lett. 2010, 20, 309–314. [Google Scholar] [PubMed]
- Nguyen, H.T.; Song, G.Y.; Nhiem, N.X.; Ding, Y.; Tai, B.H.; Jin, L.G.; Lim, C.M.; Hyun, J.W.; Park, C.J.; Kang, H.K. Dammarane-type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J. Agric. Food Chem. 2010, 58, 868–874. [Google Scholar]
- Niki, E.; Yoshida, Y.; Saito, Y.; Noguchi, N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 2005, 338, 668–676. [Google Scholar] [CrossRef]
- Nakamura, S.; Sugimoto, S.; Matsuda, H.; Yoshikawa, M. Structures of dammarane-type triterpene triglycosides from the flower buds of Panax ginseng. Heterocycles 2007, 71, 577–588. [Google Scholar]
- Zhang, J.; Xia, J.; Sun, G.; Mu, J.; Ruan, C.; Liu, Z. Determination of 11 kinds of ginsenosides from Ginseng Bud by RP-HPLC. Chin. J. Pharm. Anal. 2015, 35, 1596–1600. [Google Scholar]
- Rout, A.; Karmakar, S.; Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R. Room temperature ionic liquid diluent for the mutual separation of europium (III) from americium (III). Sep. Purif. Technol. 2011, 81, 109–115. [Google Scholar] [CrossRef]
- Coutinho, J.A.P.; Neves, C.M.S.S.; Ventura, S.P.M.; Freire, M.G.; Marrucho, I.M. Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. J. Phys. Chem. B 2009, 113, 5194–5199. [Google Scholar]
- Tang, S.; Baker, G.A.; Zhao, H. Ether- and alcohol-functionalized task-specific ionic liquids: Attractive properties and applications. Chem. Soc. Rev. 2012, 41, 4030–4066. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, M.G.; Keremedchieva, R.; Svinyarov, I. Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. III. Ionic liquid regeneration and glaucine recovery from ionic liquid-aqueous crude extract of Glaucium flavum Cr. (Papaveraceae). Sep. Purif. Technol. 2015, 155, 13–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Li, Y.; Chi, R. Optimization of ionic liquid-based microwave-assisted extraction of isoflavones from Radix puerariae by response surface methodology. Sep. Purif. Technol. 2014, 135, 285. [Google Scholar] [CrossRef]
- Albishri, H.M.; Abd El-Hady, D. Eco-friendly ionic liquid based ultrasonic assisted selective extraction coupled with a simple liquid chromatography for the reliable determination of acrylamide in food samples. Talanta 2014, 118, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, D.; Liu, W.; Wang, X.; Bai, A.; Huang, L. Ionic liquid-based ultrahigh pressure extraction of five tanshinones from Salvia miltiorrhiza Bunge. Sep. Purif. Technol. 2013, 110, 86–92. [Google Scholar] [CrossRef]
- Duan, M.H.; Luo, M.; Zhao, C.J.; Wang, W.; Zu, Y.G.; Zhang, D.Y.; Yao, X.H.; Fu, Y.J. Ionic liquid-based negative pressure cavitation-assisted extraction of three main flavonoids from the pigeonpea roots and its pilot-scale application. Sep. Purif. Technol. 2013, 107, 26–36. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Zu, Y.-G.; Zhao, C.; Zhang, L.; Chen, X.; Zhang, Z. Ultrasound-assisted extraction of the three terpenoid indole alkaloids vindoline, catharanthine and vinblastine from Catharanthus roseus using ionic liquid aqueous solutions. Chem. Eng. J. 2011, 172, 705–712. [Google Scholar] [CrossRef]
- Cao, X.; Ye, X.; Lu, Y.; Yu, Y.; Mo, W. Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal. Chim. Acta. 2009, 640, 47–51. [Google Scholar] [CrossRef]
- Li, X.; Guo, R.; Zhang, X.; Li, X. Extraction of glabridin using imidazolium-based ionic liquids. Sep. Purif. Technol. 2012, 88, 146–150. [Google Scholar] [CrossRef]
- Stroescu, M.; Stoica-Guzun, A.; Ghergu, S.; Chira, N.; Jipa, I. Optimization of fatty acids extraction from Portulaca oleracea seed using response surface methodology. Industrial Crops and Products 2013, 43, 405–411. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.; Ghazali, H.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity and oxidation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, Z.; Yue, X.; Fan, X.; Li, T.; Chen, S. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chem. 2009, 116, 513–518. [Google Scholar] [CrossRef]
- Gutowski, K.E.; Broker, G.A.; Willauer, H.D.; Huddleston, J.G.; Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D. Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J. Am. Chem. Soc. 2003, 125, 6632–6633. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Li, F.; Xu, X. Isolation and purification of aloe anthraquinones based on an ionic liquid/salt aqueous two-phase system. Sep. Purif. Technol. 2012, 98, 150–157. [Google Scholar] [CrossRef]
- Freire, M.G.; Neves, C.M.S.S.; Marrucho, I.M.; Lopes, J.N.C.; Rebelo, L.P.N.; Coutinho, J.A.P. High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem. 2010, 12, 1715–1718. [Google Scholar] [CrossRef]
- Claudio, A.F.M.; Ferreira, A.M.; Freire, C.S.R.; Silvestre, A.J.D.; Freire, M.G.; Coutinho, J.A.P. Optimization of the gallic acid extraction using ionic-liquid-based aqueous two-phase systems. Sep. Purif. Technol. 2012, 97, 142–149. [Google Scholar] [CrossRef]
- Ma, W.Y.; Lu, Y.B.; Hu, R.L.; Chen, J.H.; Zhang, Z.Z.; Pan, Y.J. Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta 2010, 80, 1292–1297. [Google Scholar] [CrossRef]
- Claudio, A.F.M.; Swift, L.; Hallett, J.P.; Welton, T.; Coutinho, J.A.P.; Freire, M.G. Extended scale for the hydrogen-bond basicity of ionic liquids. Phys. Chem. Chem. Phys. 2014, 16, 6593–6601. [Google Scholar] [CrossRef]
- Bogdanov, M.G. Ionic liquids as alternative solvents for extraction of natural products. In Alternative Solvents for Natural Products Extraction; Chemat, F., Abert-Vian, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 127–166. [Google Scholar]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Han, D.; Zhu, T.; Row, K.H. Ultrasonic extraction of phenolic compounds from Laminaria japonica aresch using ionic liquid as extraction solvent. Bull. Korean Chem. Soc. 2011, 32, 2212–2216. [Google Scholar] [CrossRef]
- Cao, X.; Qiao, J.; Wang, L.; Ye, X.; Zheng, L.; Jiang, N.; Mo, W. Screening of glycoside isomers in P. Scrophulariiflora using ionic liquid-based ultrasonic-assisted extraction and ultra-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Goula, A. Ultrasound-assisted extraction of pomegranate seed oil—Kinetic modeling. J. Food Eng. 2013, 117, 492–498. [Google Scholar] [CrossRef]
- Xiao, W.H.; Han, L.J.; Shi, B. Microwave-assisted extraction of flavonoids from Radix Astragali. Sep. Purif. Technol. 2008, 62, 616–620. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Li, D.; Jiao, S.; Chen, X.; Mao, Z. Ultrasound-Assisted Extraction of Oil from Flaxseed, Sep. Purif. Technol. 2008, 62, 192–198. [Google Scholar] [CrossRef]
- Box, G.E.P.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Yolmeh, M.; Habibi Najafi, M.; Farhoosh, R. Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem. 2014, 155. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Run | A: Liquid-Solid Ratio | B: Time (min) | C: Concentration of IL (M) | Extraction Yield (%) |
---|---|---|---|---|
1 | −1 (20:1) | −1 (20) | 0 (0.2) | 8.19 |
2 | 1 (40:1) | −1 (20) | 0 (0.2) | 7.91 |
3 | −1 (20:1) | 1 (40) | 0 (0.2) | 7.45 |
4 | 1 (40:1) | 1 (40) | 0 (0.2) | 7.60 |
5 | −1 (20:1) | 0 (30) | −1 (0.1) | 6.89 |
6 | 1 (40:1) | 0 (30) | −1 (0.1) | 6.04 |
7 | −1 (20:1) | 0 (30) | 1 (0.3) | 7.69 |
8 | 1 (40:1) | 0 (30) | 1 (0.3) | 7.75 |
9 | 0 (30:1) | −1 (20) | −1 (0.1) | 7.46 |
10 | 0 (30:1) | 1 (40) | −1 (0.1) | 7.22 |
11 | 0 (30:1) | −1 (20) | 1 (0.3) | 9.11 |
12 | 0 (30:1) | 1 (40) | 1 (0.3) | 8.34 |
13 | 0 (30:1) | 0 (30) | 0 (0.2) | 9.45 |
14 | 0 (30:1) | 0 (30) | 0 (0.2) | 9.34 |
15 | 0 (30:1) | 0 (30) | 0 (0.2) | 9.28 |
Source | Sum of Squares | DF | Mean Square | F-Value |
---|---|---|---|---|
Model | 13.44 | 9 | 1.49 | 95.77 *** |
A | 0.11 | 1 | 0.11 | 6.78 * |
B | 0.53 | 1 | 0.53 | 34.02 ** |
C | 3.48 | 1 | 3.48 | 223.48 *** |
AB | 0.046 | 1 | 0.05 | 2.96 NS |
AC | 0.21 | 1 | 0.21 | 13.28 * |
BC | 0.070 | 1 | 0.07 | 4.50 NS |
A2 | 5.81 | 1 | 5.81 | 372.70 *** |
B2 | 0.37 | 1 | 0.37 | 23.43 ** |
C2 | 3.76 | 1 | 3.76 | 241.35 *** |
Residual | 0.078 | 5 | 0.02 | |
Lack of fit | 0.063 | 3 | 0.02 | 2.83NS |
Pure Error | 0.015 | 2 | 7.43 × 103 | |
Total | 13.52 | 14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Zhang, J.; Su, X.; Meng, Q.; Dou, J. Extraction and Separation of Eight Ginsenosides from Flower Buds of Panax Ginseng Using Aqueous Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System. Molecules 2019, 24, 778. https://doi.org/10.3390/molecules24040778
Liang Q, Zhang J, Su X, Meng Q, Dou J. Extraction and Separation of Eight Ginsenosides from Flower Buds of Panax Ginseng Using Aqueous Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System. Molecules. 2019; 24(4):778. https://doi.org/10.3390/molecules24040778
Chicago/Turabian StyleLiang, Qing, Jinsong Zhang, Xingguang Su, Qingwei Meng, and Jianpeng Dou. 2019. "Extraction and Separation of Eight Ginsenosides from Flower Buds of Panax Ginseng Using Aqueous Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System" Molecules 24, no. 4: 778. https://doi.org/10.3390/molecules24040778