Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Derivatization Conditions
2.2. Chromatographic Separation and Mass Spectrometry Identification
2.2.1. HPLC Separation
2.2.2. MS Identification
2.3. Method Valuation
2.4. Analysis and Evaluation of Amino Acids in Nitraria tangutorum Bobr
3. Materials and Methods
3.1. Instruments
3.2. Reagents and Chemicals
3.3. Preparation of Plant Material
3.4. Preparation of Solutions
3.5. Derivatization Procedure
3.6. HPLC Separation and MS Condition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.X. Desert Flora in China; Science Press: Bejing, China, 1988; Volume 43, p. 117. [Google Scholar]
- Ni, J.W.; Yang, X.Y.; Zhu, J.F.; Liu, Z.X.; Ni, Y.Y.; Wu, H.W.; Zhang, H.X.; Liu, T. Salinity-induced metabolic profile changes in Nitraria tangutorum Bobr. suspension cells. Plant. Cell. Tissue Org. 2015, 122, 239–248. [Google Scholar] [CrossRef]
- Suo, Y.R. Research and Development of Nitraria tangutorum in Qaidam Basin; Science Press: Bejing, China, 2007; pp. 5–15. [Google Scholar]
- Gao, H.; Suo, Y.R. Amino acid content and its nutritional evaluation of Nitraria sibirica Pall. and Nitraria tangutorum Bobr. in Tsaidam Basin. Amino. Acids. Biol. Res. 2002, 4, 2. [Google Scholar]
- Song, Y.T.; Xu, C.; Kuroki, H.; Liao, Y.Y.; Tsunod, M. Recent trends in analytical methods for the determination of amino acids in biological samples. J. Pharm. Biomed. 2018, 147, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Harper, A.E.; Benevenga, N.J. Effects of disproportionate amounts of amino acids. In Proteins as Human Food; University of Nottingham: Nottingham, UK, 1970; ISBN 978-0-408-32000-9. [Google Scholar]
- Lake, A.D.; Novak, P.; Shipkova, P.; Aranibar, N.; Robertson, D.G.; Reily, M.D.; Lehman-McKeeman, L.D.; Vaillancourt, R.R.; Cherrington, N.J. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids 2002, 47, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Toshima, T.; Shirabe, K.; Kurihara, T.; Itoh, S.; Harimoto, N.; Ikegami, T.; Yoshizumi, T.; Kawanaka, H.; Iked, T.; Maehara, Y. Profile of plasma amino acids values as a predictor of sepsis in patients following living donor liver transplantation: Special reference to sarcopenia and postoperative early nutrition. Hepatol. Res. 2015, 45, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Hakuno, D.; Hamba, Y.; Toya, T.; Adachi, T. Plasma Amino Acid Profiling Identifies Specific Amino Acid Correlations with Cardiovascular Function in Patients with Systolic Heart Failure: Highlighting the Cardio-Hepatic-Skeletal Muscle Axis. Circulation 2014, 130, 11599. [Google Scholar]
- Würtz, P.; Soininen, P.; Kangas, A.J.; Rönnemaa, T.; Lehtimäki, T.; Kähönen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013, 36, 648–655. [Google Scholar] [CrossRef]
- Shah, S.H.; Crosslin, D.R.; Haynes, C.S.; Nelson, S.; Turer, C.B.; Stevens, R.D.; Muehlbauer, M.J.; Wenner, B.R.; Bain, J.R.; Laferrère, B.; et al. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2012, 55, 321–330. [Google Scholar] [CrossRef]
- Amelio, I.; Cutruzzolá, F.; Antonov, A.; Agostini, M.; Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 2014, 39, 191–198. [Google Scholar] [CrossRef]
- Prendergast, G.C. Cancer: Why tumours eat tryptophan. Nature 2011, 478, 192–194. [Google Scholar] [CrossRef]
- Tönjes, M.; Barbus, S.; Park, Y.J.; Wang, W.; Schlotter, M.; Lindroth, A.M.; Pleier, S.V.; Bai, A.H.C.; Karra, D.; Piro, R.M.; et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med. 2013, 19, 901–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebane, R.; Herodes, K. Evaluation of the botanical origin of Estonian uni-and polyfloral honeys by amino acid content. J. Agric. Food. Chem. 2008, 56, 10716–10720. [Google Scholar] [CrossRef] [PubMed]
- Erbe, T.; Brückner, H. Chromatographic determination of amino acid enantiomers in beers and raw materials used for their manufacture. J. Chromatogr. A 2000, 881, 81–91. [Google Scholar] [CrossRef]
- Yemm, E.W.; Cocking, E.C.; Ricketts, R.E. The determination of amino-acids with ninhydrin. Analyst 1955, 80, 209–214. [Google Scholar] [CrossRef]
- de Paiva, M.J.N.; Menezes, H.C.; Christo, P.P.; Resende, R.R.; de Lourdes Cardeal, Z. An alternative derivatization method for the analysis of amino acids in cerebrospinal fluid by gas chromatography–mass spectrometry. J. Chromatogr. B 2013, 931, 97–102. [Google Scholar] [CrossRef]
- Rashaid, A.H.B.; Harrington, P.B.; Jackson, G.P. Profiling amino acids of Jordanian scalp hair as a tool for diabetes mellitus diagnosis: A pilot study. Anal Chem. 2015, 87, 7078–7084. [Google Scholar] [CrossRef]
- Sharma, G.; Attri, S.V.; Behra, B.; Bhisikar, S.; Kumar, P.; Tageja, M.; Sharda, S.; Singhi, P.; Singhi, S. Analysis of 26 amino acids in human plasma by HPLC using AQC as derivatizing agent and its application in metabolic laboratory. Amino Acids 2014, 46, 1253–1263. [Google Scholar] [CrossRef]
- Azuma, K.; Hirao, Y.; Hayakawa, Y.; Murahata, Y.; Osaki, T.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Ito, N. Application of pre-column labeling liquid chromatography for canine plasma-free amino acid analysis. Metabolites 2016, 6, 3. [Google Scholar] [CrossRef]
- Avilov, V.; Zeng, Q.; Shippy, S.A. Threads for tear film collection and support in quantitative amino acid analysis. Anal. Bioanal. Chem. 2016, 408, 5309–5317. [Google Scholar] [CrossRef]
- Lorenzo, M.P.; Navarrete, A.; Balderas, C.; Garcia, A. Optimization and validation of a CE-LIF method for amino acid determination in biological samples. J. Pharm. Biomed. 2013, 73, 116–124. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhao, T.; Cheng, T.; Liu, X.Y.; Zhang, H.X. Rapid resolution liquid chromatography (RRLC) analysis of amino acids using pre-column derivatization. J. Chromatogr. B 2012, 906, 91–95. [Google Scholar] [CrossRef]
- Acquaviva, A.; Romero, L.M.; Castells, C.B. Analysis of citrulline and metabolic related amino acids in plasma by derivatization and RPLC. Application of the extrapolative internal standard calibration method. Microchem. J. 2016, 129, 29–35. [Google Scholar] [CrossRef]
- Castellanos, M.; Van Van Eendenburg, C.; Gubern, C.; Sanchez, J.M. Ethyl-bridged hybrid column as an efficient alternative for HPLC analysis of plasma amino acids by pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. J. Chromatogr. B 2016, 1029, 137–144. [Google Scholar] [CrossRef]
- Wang, Y.N.; Zhao, M.; Wang, M.; Zhao, C.J. Profiling analysis of amino acids from hyperlipidaemic rats treated with Gynostemma pentaphyllum and atorvastatin. Pharm. Biol. 2016, 54, 2254–2263. [Google Scholar] [CrossRef]
- Borowczyk, K.; Chwatko, G.; Kubalczyk, P.; Jakubowski, H.; Kubalska, J.; Głowacki, R. Simultaneous Determination of Methionine and Homocysteine by on-column derivatization with o-phtaldialdehyde. Talanta 2016, 161, 917–924. [Google Scholar] [CrossRef]
- Song, Y.T.; Funatsu, T.; Tsunoda, M. Amino acid analysis using core–shell particle column. J. Chromatogr. B 2013, 927, 214–217. [Google Scholar] [CrossRef]
- Li, G.L.; Cui, Y.Y.; You, J.M.; Zhao, X.E.; Sun, Z.W.; Xia, L.; Suo, Y.R.; Wang, X. Determination of trace amino acids in human serum by a selective and sensitive pre-column derivatization method using HPLC-FLD-MS/MS and derivatization optimization by response surface methodology. Amino Acids 2011, 40, 1185–1193. [Google Scholar] [CrossRef]
- Li, G.L.; Sun, Z.W.; Song, C.H.; Xia, L.; Zheng, J.; Suo, Y.R.; You, J.M. A sensitive fluorescence reagent, 2-[2-(7H-dibenzo[a,g]carbazol-7-yl)-ethoxy]ethyl chloroformate, for amino acids determination in Saussurea involucrate and Artemisia capillaris Thunb using high-performance liquid chromatography with fluorescence detection. Biomed. Chromatogr. 2011, 25, 689–696. [Google Scholar] [CrossRef]
- You, J.M.; Shan, Y.C.; Zhen, L.; Zhang, L.; Zhang, Y.K. Determination of peptides and amino acids from wool and beer with sensitive fluorescent reagent 2-(9-carbazole)-ethyl chloroformate by reverse phase high-performance liquid chromotography and liquid chromotography mass spectrometry. Anal. Biochem. 2003, 313, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Li, F.Q.; Xu, W.H.; Zhou, G.Y.; You, J.M.; Chen, G.C. LC–ESI–MS Determination of 20 Free Amino Acids in Tibetan Medicine Gentiana dahurica with Pre-Column Fluorescence Derivatization. Chromatographia 2009, 70, 1627–1633. [Google Scholar] [CrossRef]
- Song, C.H.; Zhang, S.J.; Ji, Z.Y.; Li, Y.P.; You, J.M. Accurate Determination of Amino Acids in Serum Samples by Liquid Chromatography-Tandem Mass Spectrometry Using a Stable Isotope Labeling Strategy. J. Chromatogr. Sci. 2015, 53, 1536–1541. [Google Scholar] [CrossRef]
- You, J.M.; Liu, L.J.; Zhao, W.C.; Zhao, X.E.; Suo, Y.R.; Wang, H.L.; Li, Y.L. Study of a new derivatizing reagent that improves the analysis of amino acids by HPLC with fluorescence detection: Application to hydrolyzed rape bee pollen. Anal. Bioanal. Chem. 2007, 387, 2705–2718. [Google Scholar] [CrossRef]
- Guang, C.; Jun, L.; Sun, Z.W.; Zhang, S.J.; Li, G.L.; Song, C.H.; Suo, Y.R.; You, J. Rapid and sensitive ultrasonic-assisted derivatisation microextraction (UDME) technique for bitter taste-free amino acids (FAA) study by HPLC-FLD. Food. Chem. 2014, 143, 97–105. [Google Scholar]
- You, J.M.; Zhao, H.X.; Sun, Z.W.; Xia, L.; Yan, T.; Suo, Y.R.; Li, Y.L. Application of 10-ethyl-acridine-3-sulfonyl chloride for HPLC determination of aliphatic amines in environmental water using fluorescence and APCI-MS. J. Sep. Sci. 2009, 32, 1351–1362. [Google Scholar] [CrossRef] [Green Version]
- You, J.M.; Zhao, H.X.; Sun, Z.W.; Suo, Y.R.; Chen, G.C. 10-Ethyl-acridine-2-sulfonyl Chloride: A New Derivatization Agent for Enhancement of Atmospheric Pressure Chemical Ionization of Estrogens in Urine. Chromatographia 2009, 70, 45–55. [Google Scholar] [CrossRef]
- Kang, L.; You, J.M.; Sun, Z.W.; Wang, C.Y.; Ji, Z.Y.; Gao, Y.P.; Suo, Y.R.; Li, Y.L. LC Determination of Trace Biogenic Amines in Foods Samples with Fluorescence Detection and MS Identification. Chromatographia 2011, 73, 43–50. [Google Scholar] [CrossRef]
- Szabados, L.; Savoure, A. Proline: A multifunctional amino acid. Trends. Plant. Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Wu, G.Y. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
Sample Availability: Samples of the Nitraria tangutorum Bobr. are available from the authors. |
Amino Acid | MS [M + H]+ | Retention Time (min) | Correlation Coefficient | LODs (nmol/L) | LOQs (nmol/L) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|---|
Cys | 461.5 | 9.094 | 0.9981 | 0.60 | 1.45 | 96.4 | 1.56 |
His | 441.1 | 9.352 | 0.9978 | 0.89 | 2.52 | 96.9 | 1.73 |
Orn | 418.1 | 9.571 | 0.9992 | 0.22 | 0.58 | 94.5 | 1.65 |
Arg | 460.1 | 9.798 | 0.9989 | 0.19 | 0.63 | 103.4 | 2.12 |
Lys | 432.1 | 9.989 | 0.9991 | 1.13 | 3.10 | 98.7 | 2.32 |
Ser | 391 | 10.355 | 0.9995 | 0.45 | 1.13 | 95.8 | 1.76 |
Asp | 417.9 | 10.713 | 0.9983 | 0.18 | 0.49 | 97.6 | 2.21 |
Glu | 433 | 11.394 | 0.9985 | 0.29 | 0.67 | 99.1 | 2.09 |
Thr | 405 | 11.633 | 0.9987 | 0.15 | 0.53 | 95.4 | 1.87 |
Gly | 361 | 12.036 | 0.9993 | 0.14 | 0.38 | 93.8 | 2.14 |
Trp | 490 | 13.102 | 0.9978 | 0.38 | 1.09 | 98.0 | 2.05 |
Ala | 375 | 13.403 | 0.9996 | 1.06 | 2.97 | 94.7 | 2.64 |
Tyr | 466.9 | 13.641 | 0.9991 | 0.31 | 0.89 | 98.1 | 1.89 |
Pro | 401 | 15.812 | 0.9972 | 0.27 | 0.92 | 101.3 | 1.57 |
Met | 435.1 | 16.311 | 0.9988 | 0.14 | 0.49 | 95.6 | 1.37 |
Val | 403 | 16.817 | 0.9979 | 0.23 | 0.58 | 96.9 | 2.27 |
Phe | 451.1 | 17.205 | 0.9991 | 0.78 | 2.21 | 98.5 | 2.51 |
Ile | 417.1 | 17.497 | 0.9984 | 0.16 | 0.42 | 95.2 | 1.44 |
Leu | 417.1 | 17.738 | 0.9993 | 0.13 | 0.40 | 99.9 | 2.23 |
Amino Acid | Region | ||||||
---|---|---|---|---|---|---|---|
Dagele | Zongjia | Nuomuhong | Delingha | Hedong | Dulan | Gahai | |
His | 1.35 ± 0.04 | 1.76 ± 0.07 | 2.12 ± 0.10 | 1.89 ± 0.08 | 1.65 ± 0.06 | 2.03 ± 0.09 | 1.78 ± 0.08 |
Orn | 0.42 ± 0.02 | 0.35 ± 0.01 | 0.47 ± 0.02 | 0.33 ± 0.01 | 0.27 ± 0.01 | 0.65 ± 0.03 | 0.29 ± 0.02 |
Arg | 2.87 ± 0.11 | 3.12 ± 0.13 | 3.34 ± 0.11 | 2.99 ± 0.10 | 3.54 ± 0.12 | 4.13 ± 0.14 | 3.77 ± 0.13 |
Lys * | 0.24 ± 0.01 | 0.18 ± 0.02 | 0.43 ± 0.02 | 0.11 ± 0.01 | 0.23 ± 0.01 | 0.31 ± 0.01 | 0.27 ± 0.01 |
Ser | 2.10 ± 0.09 | 2.97 ± 0.12 | 3.54 ± 0.15 | 4.11 ± 0.14 | 3.06 ± 0.11 | 2.96 ± 0.09 | 4.03 ± 0.16 |
Asp | 1.51 ± 0.04 | 1.76 ± 0.04 | 1.32 ± 0.05 | 1.65 ± 0.04 | 1.87 ± 0.06 | 2.02 ± 0.07 | 1.43 ± 0.05 |
Glu | 0.98 ± 0.03 | 0.79 ± 0.02 | 1.11 ± 0.04 | 0.87 ± 0.02 | 1.54 ± 0.03 | 1.05 ± 0.03 | 0.95 ± 0.02 |
Thr * | 17.21 ± 0.64 | 18.41 ± 0.67 | 19.76 ± 0.69 | 16.79 ± 0.58 | 19.23 ± 0.66 | 18.56 ± 0.54 | 18.09 ± 0.63 |
Gly | 1.09 ± 0.02 | 1.32 ± 0.03 | 0.98 ± 0.03 | 1.43 ± 0.04 | 1.25 ± 0.02 | 0.87 ± 0.02 | 1.29 ± 0.05 |
Trp * | 1.44 ± 0.04 | 2.12 ± 0.05 | 2.34 ± 0.03 | 4.33 ± 0.12 | 3.05 ± 0.06 | 1.75 ± 0.05 | 1.54 ± 0.04 |
Ala | 19.81 ± 0.72 | 17.98 ± 0.65 | 19.04 ± 0.70 | 18.90 ± 0.66 | 19.03 ± 0.71 | 17.98 ± 0.69 | 21.22 ± 0.81 |
Tyr | 8.05 ± 0.31 | 8.97 ± 0.34 | 9.87 ± 0.37 | 10.11 ± 0.41 | 9.07 ± 0.33 | 9.98 ± 0.38 | 8.79 ± 0.32 |
Pro | 27.47 ± 1.08 | 28.07 ± 1.02 | 29.54 ± 1.21 | 28.05 ± 1.14 | 30.13 ± 1.20 | 28.09 ± 1.07 | 26.08 ± 0.99 |
Met * | 0.43 ± 0.02 | 0.35 ± 0.01 | 0.61 ± 0.02 | 0.33 ± 0.01 | 0.67 ± 0.02 | 0.54 ± 0.02 | 0.89 ± 0.03 |
Val * | 5.12 ± 0.21 | 6.02 ± 0.19 | 6.78 ± 0.25 | 7.03 ± 0.26 | 6.92 ± 0.25 | 4.89 ± 0.17 | 7.43 ± 0.25 |
Phe * | 9.14 ± 0.31 | 10.11 ± 0.38 | 11.22 ± 0.40 | 8.09 ± 0.30 | 8.96 ± 0.29 | 10.22 ± 0.40 | 9.99 ± 0.39 |
Ile * | 3.12 ± 0.12 | 4.05 ± 0.11 | 4.32 ± 0.14 | 2.98 ± 0.09 | 3.05 ± 0.10 | 4.87 ± 0.15 | 4.77 ± 0.13 |
Leu * | 7.69 ± 0.29 | 5.63 ± 0.21 | 8.05 ± 0.31 | 6.09 ± 0.23 | 7.24 ± 0.26 | 7.06 ± 0.27 | 9.08 ± 0.33 |
T | 110.04 ± 1.57 | 113.96 ± 1.52 | 124.84 ± 1.72 | 116.08 ± 1.59 | 120.76 ± 1.66 | 117.96 ± 1.55 | 121.69 ± 1.59 |
E | 44.39 ± 0.81 | 46.87 ± 0.83 | 53.51 ± 0.90 | 45.75 ± 0.75 | 49.35 ± 0.81 | 48.2 ± 0.76 | 52.06 ± 0.86 |
NE | 65.65 ± 1.34 | 67.09 ± 1.27 | 71.33 ± 1.46 | 70.33 ± 1.39 | 71.41 ± 1.45 | 69.76 ± 1.34 | 69.63 ± 1.34 |
E/T (%) | 40.34 | 41.13 | 42.86 | 39.41 | 40.87 | 40.86 | 42.78 |
E/NE (%) | 67.62 | 69.86 | 75.02 | 65.05 | 69.11 | 69.09 | 74.77 |
Amino Acid | Region | ||||||
---|---|---|---|---|---|---|---|
Dagele | Zongjia | Nuomuhong | Delingha | Hedong | Dulan | Gahai | |
His | 1.54 ± 0.06 | 1.35 ± 0.04 | 1.62 ± 0.05 | 2.13 ± 0.07 | 1.98 ± 0.06 | 1.80 ± 0.04 | 1.47 ± 0.05 |
Orn | 0.58 ± 0.02 | 0.34 ± 0.01 | 0.65 ± 0.02 | 0.29 ± 0.01 | 0.51 ± 0.01 | 0.49 ± 0.01 | 0.36 ± 0.01 |
Arg | 10.98 ± 0.38 | 12.06 ± 0.41 | 13.16 ± 0.45 | 10.78 ± 0.42 | 8.93 ± 0.29 | 9.56 ± 0.39 | 8.78 ± 0.31 |
Lys * | 0.43 ± 0.01 | 0.34 ± 0.01 | 0.29 ± 0.01 | 0.62 ± 0.02 | 0.52 ± 0.02 | 0.45 ± 0.01 | 0.69 ± 0.02 |
Ser | 3.90 ± 0.14 | 4.31 ± 0.16 | 3.89 ± 0.11 | 5.02 ± 0.19 | 7.08 ± 0.25 | 2.97 ± 0.11 | 2.76 ± 0.11 |
Asp | 6.91 ± 0.24 | 6.56 ± 0.26 | 5.98 ± 0.23 | 8.09 ± 0.31 | 6.32 ± 0.22 | 6.70 ± 0.25 | 6.99 ± 0.28 |
Glu | 16.21 ± 0.61 | 14.89 ± 0.53 | 17.34 ± 0.60 | 17.87 ± 0.63 | 16.43 ± 0.61 | 15.89 ± 0.59 | 14.79 ± 0.55 |
Thr * | 2.22 ± 0.07 | 2.67 ± 0.08 | 1.99 ± 0.07 | 3.13 ± 0.11 | 2.78 ± 0.09 | 4.01 ± 0.13 | 3.90 ± 0.14 |
Gly | 4.31 ± 0.16 | 5.12 ± 0.20 | 4.67 ± 0.18 | 3.32 ± 0.13 | 6.03 ± 0.24 | 5.21 ± 0.21 | 3.65 ± 0.13 |
Trp * | 0.98 ± 0.03 | 1.23 ± 0.04 | 0.87 ± 0.03 | 0.62 ± 0.02 | 1.15 ± 0.03 | 0.96 ± 0.03 | 0.69 ± 0.02 |
Ala | 3.65 ± 0.13 | 2.87 ± 0.08 | 3.54 ± 0.12 | 4.12 ± 0.16 | 2.98 ± 0.12 | 3.76 ± 0.13 | 3.02 ± 0.12 |
Tyr | 1.76 ± 0.07 | 1.23 ± 0.03 | 2.03 ± 0.07 | 1.69 ± 0.06 | 0.98 ± 0.03 | 1.54 ± 0.05 | 1.43 ± 0.04 |
Pro | 4.13 ± 0.15 | 5.09 ± 0.20 | 3.89 ± 0.14 | 4.54 ± 0.17 | 3.67 ± 0.15 | 5.54 ± 0.22 | 3.67 ± 0.13 |
Met * | 0.23 ± 0.01 | 0.11 ± 0.01 | 0.34 ± 0.01 | 0.24 ± 0.01 | 0.17 ± 0.01 | 0.09 ± 0.01 | 0.14 ± 0.01 |
Val * | 4.33 ± 0.15 | 4.78 ± 0.18 | 3.98 ± 0.16 | 3.34 ± 0.13 | 5.12 ± 0.19 | 4.68 ± 0.17 | 5.42 ± 0.21 |
Phe * | 3.23 ± 0.14 | 3.45 ± 0.12 | 3.76 ± 0.13 | 2.87 ± 0.09 | 4.05 ± 0.12 | 4.65 ± 0.18 | 3.97 ± 0.16 |
Ile * | 2.35 ± 0.09 | 1.89 ± 0.07 | 3.11 ± 0.12 | 2.67 ± 0.09 | 2.09 ± 0.08 | 3.56 ± 0.13 | 2.54 ± 0.10 |
Leu * | 5.46 ± 0.21 | 5.78 ± 0.24 | 6.04 ± 0.23 | 4.79 ± 0.18 | 5.88 ± 0.23 | 5.34 ± 0.20 | 5.41 ± 0.24 |
T | 73.2 ± 0.88 | 74.07 ± 0.87 | 77.15 ± 0.90 | 76.13 ± 0.93 | 76.67 ± 0.89 | 77.20 ± 0.91 | 69.68 ± 0.84 |
E | 19.23 ± 0.32 | 20.25 ± 0.34 | 20.38 ± 0.34 | 18.28 ± 0.28 | 21.76 ± 0.35 | 23.74 ± 0.37 | 22.76 ± 0.40 |
NE | 53.97 ± 0.82 | 53.82 ± 0.79 | 56.77 ± 0.84 | 57.85 ± 0.89 | 54.91 ± 0.82 | 53.46 ± 0.83 | 46.92 ± 0.74 |
E/T (%) | 26.27 | 27.34 | 26.42 | 24.01 | 28.38 | 30.75 | 32.66 |
E/NE (%) | 35.63 | 37.63 | 35.90 | 31.60 | 39.63 | 44.41 | 48.51 |
Amino Acid | Region | ||||||
---|---|---|---|---|---|---|---|
Dagele | Zongjia | Nuomuhong | Delingha | Hedong | Dulan | Gahai | |
His | 1.34 ± 0.03 | 1.54 ± 0.05 | 2.11 ± 0.08 | 2.09 ± 0.07 | 1.87 ± 0.06 | 1.02 ± 0.03 | 2.05 ± 0.05 |
Orn | 0.23 ± 0.01 | 0.11 ± 0.01 | 0.32 ± 0.01 | 0.09 ± 0.01 | 0.33 ± 0.01 | 0.26 ± 0.01 | 0.29 ± 0.01 |
Arg | 3.87 ± 0.13 | 3.45 ± 0.14 | 4.12 ± 0.16 | 3.98 ± 0.13 | 2.56 ± 0.11 | 4.09 ± 0.16 | 3.37 ± 0.13 |
Lys * | 0.16 ± 0.01 | 0.23 ± 0.01 | 0.45 ± 0.01 | 0.51 ± 0.01 | 0.64 ± 0.02 | 0.38 ± 0.01 | 0.25 ± 0.01 |
Ser | 4.62 ± 0.18 | 4.76 ± 0.17 | 5.32 ± 0.21 | 3.99 ± 0.19 | 4.21 ± 0.17 | 4.34 ± 0.16 | 6.04 ± 0.24 |
Asp | 8.98 ± 0.34 | 9.32 ± 0.33 | 8.23 ± 0.32 | 7.98 ± 0.31 | 10.34 ± 0.40 | 8.42 ± 0.33 | 9.25 ± 0.37 |
Glu | 17.65 ± 0.68 | 18.93 ± 0.71 | 18.32 ± 0.69 | 16.87 ± 0.64 | 17.34 ± 0.55 | 17.54 ± 0.62 | 16.99 ± 0.52 |
Thr * | 3.98 ± 0.15 | 2.76 ± 0.11 | 4.12 ± 0.16 | 3.46 ± 0.13 | 5.60 ± 0.22 | 4.09 ± 0.16 | 3.78 ± 0.15 |
Gly | 4.12 ± 0.15 | 5.09 ± 0.19 | 4.89 ± 0.17 | 3.98 ± 0.18 | 5.43 ± 0.22 | 4.01 ± 0.16 | 3.45 ± 0.13 |
Trp * | 1.43 ± 0.06 | 1.21 ± 0.04 | 1.89 ± 0.06 | 0.95 ± 0.03 | 1.67 ± 0.06 | 1.45 ± 0.06 | 1.32 ± 0.04 |
Ala | 4.54 ± 0.17 | 4.89 ± 0.16 | 3.98 ± 0.15 | 5.45 ± 0.19 | 4.67 ± 0.17 | 3.69 ± 0.14 | 4.56 ± 0.18 |
Tyr | 2.57 ± 0.09 | 2.78 ± 0.08 | 3.05 ± 0.13 | 1.98 ± 0.07 | 2.23 ± 0.09 | 2.87 ± 0.08 | 3.42 ± 0.14 |
Pro | 19.87 ± 0.87 | 20.12 ± 0.79 | 18.90 ± 0.67 | 19.45 ± 0.75 | 18.34 ± 0.78 | 19.67 ± 0.80 | 17.87 ± 0.69 |
Met * | 0.34 ± 0.01 | 0.25 ± 0.01 | 0.43 ± 0.01 | 0.39 ± 0.01 | 0.48 ± 0.02 | 0.33 ± 0.01 | 0.46 ± 0.01 |
Val * | 5.67 ± 0.23 | 4.57 ± 1.76 | 5.08 ± 0.21 | 6.12 ± 0.24 | 5.23 ± 0.21 | 5.62 ± 0.19 | 4.38 ± 0.17 |
Phe * | 5.43 ± 0.21 | 4.78 ± 0.20 | 6.02 ± 0.24 | 5.56 ± 0.22 | 5.78 ± 0.19 | 4.76 ± 0.15 | 5.21 ± 0.18 |
Ile * | 3.88 ± 0.14 | 4.83 ± 0.16 | 5.08 ± 0.21 | 3.98 ± 0.15 | 4.03 ± 0.14 | 4.67 ± 1.18 | 5.21 ± 0.21 |
Leu * | 5.97 ± 0.24 | 4.65 ± 0.19 | 5.98 ± 0.23 | 6.32 ± 0.25 | 5.57 ± 0.22 | 5.90 ± 0.25 | 4.09 ± 0.15 |
T | 94.65 ± 1.28 | 94.27 ± 2.14 | 98.29 ± 1.18 | 93.15 ± 1.19 | 96.32 ± 1.18 | 93.11 ± 1.67 | 91.99 ± 1.09 |
E | 26.86 ± 0.45 | 23.28 ± 1.79 | 29.05 ± 0.48 | 27.29 ± 0.46 | 29 ± 0.45 | 27.2 ± 1.24 | 24.7 ± 0.39 |
N | 67.79 ± 1.20 | 70.99 ± 1.16 | 69.24 ± 1.08 | 65.86 ± 1.10 | 67.32 ± 1.10 | 65.91 ± 1.11 | 67.29 ± 1.01 |
E/T (%) | 28.38 | 24.70 | 29.56 | 29.30 | 30.11 | 29.21 | 26.85 |
E/NE (%) | 39.62 | 32.79 | 41.96 | 41.44 | 43.08 | 41.27 | 36.71 |
Region | Elevation (m) | Longitude | Latitude |
---|---|---|---|
Dagele | 2679 | 95°45.202′ | 36°27.216′ |
Zongjia | 2778 | 96°56.850′ | 36°15.959′ |
Nuomuhong | 2703 | 96°28.233′ | 36°32.338′ |
Keluke Lake | 2816 | 96°54.180′ | 37°19.024′ |
Hedong Farm | 2783 | 96°07.799′ | 36°25.657′ |
Dulan | 3198 | 97°59.375′ | 36°01.921′ |
Gahai | 2854 | 97°35.766′ | 37°07.535′ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Wang, Y.; Yang, F.; Dong, Q.; Wang, H.; Hu, N. Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method. Molecules 2019, 24, 1665. https://doi.org/10.3390/molecules24091665
Zhou W, Wang Y, Yang F, Dong Q, Wang H, Hu N. Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method. Molecules. 2019; 24(9):1665. https://doi.org/10.3390/molecules24091665
Chicago/Turabian StyleZhou, Wu, Yuwei Wang, Fang Yang, Qi Dong, Honglun Wang, and Na Hu. 2019. "Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method" Molecules 24, no. 9: 1665. https://doi.org/10.3390/molecules24091665
APA StyleZhou, W., Wang, Y., Yang, F., Dong, Q., Wang, H., & Hu, N. (2019). Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method. Molecules, 24(9), 1665. https://doi.org/10.3390/molecules24091665