Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = HPLC-FLD-MS/MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2431 KB  
Article
Chemical, Sensory, and Nutraceutical Profiling, and Shelf-Life Assessment of High-Quality Extra Virgin Olive Oil Produced in a Local Area near Florence (Italy)
by Carlotta Breschi, Lorenzo Cecchi, Federico Mattagli, Bruno Zanoni, Tommaso Ugolini, Francesca Ieri, Luca Calamai, Maria Bellumori, Nadia Mulinacci, Fabio Boncinelli, Valentina Canuti and Silvio Menghini
Molecules 2025, 30(13), 2811; https://doi.org/10.3390/molecules30132811 - 30 Jun 2025
Viewed by 556
Abstract
Consumers are increasingly willing to pay a premium for high-quality extra virgin olive oils (HQ-EVOOs) with specific sensory or nutraceutical properties, and originating from particular botanical or geographical origins. Regarding geographic origin, Italy is one of the main producers, with many local production [...] Read more.
Consumers are increasingly willing to pay a premium for high-quality extra virgin olive oils (HQ-EVOOs) with specific sensory or nutraceutical properties, and originating from particular botanical or geographical origins. Regarding geographic origin, Italy is one of the main producers, with many local production areas, each characterized by its own distinctive typicity. The aim of this study is the chemical, sensory, and nutraceutical profiling of HQ-EVOO produced over two production years in Montespertoli (province of Florence) by 12 producers involved in the “MontEspertOlio” project, funded by the Tuscan Region. Oils were produced based on a production process previously defined and specifically applied to this territory. The shelf-life of the oil was also evaluated over a 12-month period. Legal quality parameters were analyzed according to EU regulation. Phenolic compounds, tocopherols, fatty acid composition, and volatile compounds were analyzed using HPLC-DAD, HPLC-FLD, HS-SPME-GC-MS, and GC-FID, respectively. Finally, sensory analysis was conducted using the Panel Test method. Results showed that Montespertoli HQ-EVOO is characterized by distinctive sensory and chemical traits that fully match consumer preferences, even across two production years characterized by different growing conditions. The shelf-life performance was excellent over 12 months, also showing a protective effect of greater bottle sizes against oxidation. Full article
Show Figures

Figure 1

18 pages, 1191 KB  
Article
Formation of Polycyclic Aromatic Hydrocarbons on Grilled Pork Neck Loins as Affected by Different Marinades and Grill Types
by Marta Ciecierska, Urszula Komorowska, Marcin Bryła and Marek Roszko
Foods 2025, 14(10), 1673; https://doi.org/10.3390/foods14101673 - 9 May 2025
Viewed by 965
Abstract
Processing methods affect the quality and, most importantly, safety of meat. The effects of various marinades, a kind of green processing technology commonly used in Poland, on PAH contamination in pork neck loins, the most frequently grilled pork meat, were investigated, including universal, [...] Read more.
Processing methods affect the quality and, most importantly, safety of meat. The effects of various marinades, a kind of green processing technology commonly used in Poland, on PAH contamination in pork neck loins, the most frequently grilled pork meat, were investigated, including universal, pork, and honey mustard, as well as the most popular grilling tools. It is important to note that no such data have been published so far. Our previous study focused on poultry meat, another commonly grilled meat. PAH analysis was conducted using the QuEChERS–HPLC–FLD/DAD method and confirmed by the GC/MS method. Weight loss and changes in individual color parameters after grilling were also analyzed. Grilling on a charcoal grill without an aluminum tray caused statistically the greatest PAH contents. Some of these samples, according to Commission Regulation (EU) No. 915/2023 restrictions, should not be consumed by humans due to the high content of B[a]P (5.26–6.51 µg/kg). The lowest contamination levels overall were determined for the ceramic contact grill. Studies have also shown that the universal and pork marinades can reduce PAH contamination by about 24–29% for 4 heavy PAHs and by 31–32% for 15 PAHs, whereas the honey mustard marinade increases their accumulation in grilled products by 13% for 4 PAHs and 12% for 15 PAHs. Carefully choosing the grilling equipment, such as using electric grills instead of charcoal or using aluminum trays when grilling with charcoal and marinating the meat before grilling, is essential for food producers and consumers. These practices can significantly reduce the harmful health effects of PAHs, making them vital steps toward safer food preparation. Full article
(This article belongs to the Special Issue Green Processing Technology of Meat and Meat Products: 3rd Edition)
Show Figures

Graphical abstract

15 pages, 935 KB  
Review
Cloud Point Extraction as an Environmentally Friendly Technique for Sample Preparation
by Bartosz Sznek, Olga Kupczyk and Andrzej Czyrski
Processes 2025, 13(2), 430; https://doi.org/10.3390/pr13020430 - 6 Feb 2025
Cited by 2 | Viewed by 2123
Abstract
Cloud point extraction is a sample preparation technique that involves using surfactants that are not harmful to the environment. It is based on micelle formation in which the extracted compound is encapsulated in the hydrophobic core of the micelles, which are the extracting [...] Read more.
Cloud point extraction is a sample preparation technique that involves using surfactants that are not harmful to the environment. It is based on micelle formation in which the extracted compound is encapsulated in the hydrophobic core of the micelles, which are the extracting agent. The most commonly used surfactants are nonionic. The others are anionic, cationic, or zwitterionic. The effectiveness of cloud point extraction might be enhanced by the addition of neutral salts, the application of proper pH, as well as acidic conditions and temperature. This sample preparation technique may be applied to extract analytes from the following matrices, such as biological and environmental samples. Cloud point extraction may be combined with various analytical techniques and detectors such as HPLC-UV, HPLC-MS, HPLC-FLD, inductively coupled plasma–optical emission spectrometry, gas chromatography, and flame atomic absorption spectrometry. When it is combined with electrothermal atomic absorption spectrometry, the limit of quantitation is low—even of the order of ng/L. The recovery of the analyte may reach the value of 100%. Full article
Show Figures

Figure 1

27 pages, 6354 KB  
Article
Potential Clinical Application of Analysis of Bisphenols in Pericardial Fluid from Patients with Coronary Artery Disease with the Use of Liquid Chromatography Combined with Fluorescence Detection and Triple Quadrupole Mass Spectrometry
by Tomasz Tuzimski, Szymon Szubartowski, Janusz Stążka, Kamil Baczewski, Daria Janiszewska, Viorica Railean, Bogusław Buszewski and Małgorzata Szultka-Młyńska
Molecules 2025, 30(1), 140; https://doi.org/10.3390/molecules30010140 - 1 Jan 2025
Cited by 1 | Viewed by 1338
Abstract
Bisphenols may negatively impact human health. In this study, we propose the use of HPLC–FLD for the simultaneous determination of bisphenols in pericardial fluid samples collected from patients with coronary artery disease undergoing coronary artery bypass surgery. For sample preparation, a fast, simple, [...] Read more.
Bisphenols may negatively impact human health. In this study, we propose the use of HPLC–FLD for the simultaneous determination of bisphenols in pericardial fluid samples collected from patients with coronary artery disease undergoing coronary artery bypass surgery. For sample preparation, a fast, simple, and ”green” DLLME method was used, achieving mean recovery values in the range of 62%–98% with relative standard deviations between 2% and 6% for all analytes. Quantitative analysis of bisphenols in the samples was then performed by LC–MS/MS on a triple quadrupole (QqQ) mass spectrometer and electrospray ionization (ESI-/ESI+) was applied in the negative and positive ion modes, respectively. The LODs and LOQs ranged from 0.04 ng/mL to 0.37 ng/mL and 0.12 ng/mL to 1.11 ng/mL, respectively. Pericardial fluid was collected from patients with coronary artery disease during coronary artery bypass surgery. Bisphenol residues were identified and quantified in samples from 19 patients. The procedure was successfully applied to the biomonitoring of free forms of 14 bisphenols in pericardial fluid. After statistical examination of the relationships between the selected variables, a strongly positive correlation was found between creatinine kinase and troponin I, as well as the number of venous anastomoses, circulation time, and clamp cap time. Full article
Show Figures

Figure 1

19 pages, 1965 KB  
Article
Purple Yampee Derivatives and Byproduct Characterization for Food Applications
by Sandra V. Medina-López, Cristian Molina García, Maria Cristina Lizarazo-Aparicio, Maria Soledad Hernández-Gómez and Juan Pablo Fernández-Trujillo
Foods 2024, 13(24), 4148; https://doi.org/10.3390/foods13244148 - 21 Dec 2024
Cited by 1 | Viewed by 1462
Abstract
This study assessed the technological potential and bioactive compounds present in purple yampee (Dioscorea trifida L.f.) lyophilized powder, peeled and whole flour, as well as the tuber peel, starch residual fiber, and wastewater mucilage. Although most values approached neutrality, flour showed a [...] Read more.
This study assessed the technological potential and bioactive compounds present in purple yampee (Dioscorea trifida L.f.) lyophilized powder, peeled and whole flour, as well as the tuber peel, starch residual fiber, and wastewater mucilage. Although most values approached neutrality, flour showed a lower pH and high density, while greater acidity was observed in the mucilage. Color differed statistically and perceptibly between all samples, with similar values of °hue to purple flours from other sources, and the maximum chroma was found in lyophilized pulp and lightness in fiber. Average moisture levels around 7.2% and water activity levels of 0.303 (0.194 for whole flour) in fractions suggested favorable storability, while the interaction of the powders with water was similar to other root and tuber powdered derivatives. Yampee periderm had the highest swelling power, oil absorption capacity, water holding capacity, and absorption index and capacity. Mucilage had a higher solubility index and outstanding emulsion activity, greater than 90%. Twelve anthocyanins, with new reports of petunidin derivatives for the species, and more than 30 phytochemicals were identified through advanced liquid chromatography techniques. The greatest amounts of pinitol and myo-inositol were found in the mucilage, and sucrose, glucose, and fructose prevailed in the other powders. Successfully characterized yampee fractions showed high potential as functional food ingredients. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Graphical abstract

11 pages, 2116 KB  
Article
Enzymatic Oxidation of Aflatoxin M1 in Milk Using CotA Laccase
by Yongpeng Guo, Hao Lv, Zhiyong Rao, Zhixiang Wang, Wei Zhang, Yu Tang and Lihong Zhao
Foods 2024, 13(22), 3702; https://doi.org/10.3390/foods13223702 - 20 Nov 2024
Viewed by 1135
Abstract
Aflatoxin M1 (AFM1) in milk poses a significant threat to human health. This study examined the capacity of Bacillus licheniformis CotA laccase to oxidize AFM1. The optimal conditions for the CotA laccase-catalyzed AFM1 oxidation were observed at [...] Read more.
Aflatoxin M1 (AFM1) in milk poses a significant threat to human health. This study examined the capacity of Bacillus licheniformis CotA laccase to oxidize AFM1. The optimal conditions for the CotA laccase-catalyzed AFM1 oxidation were observed at pH 8.0 and 70 °C, achieving an AFM1 oxidation rate of 86% in 30 min. The Km and Vmax values for CotA laccase with respect to AFM1 were 18.91 μg mL−1 and 9.968 μg min−1 mg−1, respectively. Computational analysis suggested that AFM1 interacted with CotA laccase via hydrogen bonding and van der Waals interactions. Moreover, the oxidation products of AFM1 mediated by CotA laccase were identified as the C3-hydroxy derivatives of AFM1 by HPLC-FLD and UPLC-TOF/MS. Toxicological assessment revealed that the hepatotoxicity of AFM1 was substantially reduced following oxidation by CotA laccase. The efficacy of CotA laccase in removing AFM1 in milk was further tested, and the result showed that the enzyme agent achieved an AFM1 removal rate of 83.5% in skim milk and 65.1% in whole milk. These findings suggested that CotA laccase was a novel AFM1 oxidase capable of eliminating AFM1 in milk. More effort is still needed to improve the AFM1 oxidase activity of CotA laccase in order to shorten the processing time when applying the enzyme in the milk industry. Full article
Show Figures

Figure 1

26 pages, 7922 KB  
Article
Microplastics, Polycyclic Aromatic Hydrocarbons, and Heavy Metals in Milk: Analyses and Induced Health Risk Assessment
by Andreea Laura Banica, Cristiana Radulescu, Ioana Daniela Dulama, Ioan Alin Bucurica, Raluca Maria Stirbescu and Sorina Geanina Stanescu
Foods 2024, 13(19), 3069; https://doi.org/10.3390/foods13193069 - 26 Sep 2024
Cited by 3 | Viewed by 3717
Abstract
The current study aims to develop isolation protocols for several contaminants of emerging concern (i.e., microplastics (MPs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs)) from different commercial brands and raw milk samples and also to quantify and characterize the risks of these [...] Read more.
The current study aims to develop isolation protocols for several contaminants of emerging concern (i.e., microplastics (MPs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals (HMs)) from different commercial brands and raw milk samples and also to quantify and characterize the risks of these contaminants pose to human health. The quantification, shape, color, and chemical composition of MPs were achieved using optical microscopy, micro-Fourier transform infrared spectroscopy, and scanning electron microscopy coupled with energy-dispersive spectroscopy. Based on the MP dimensions highlighted by the aforementioned techniques, it can be stated that their length ranges between tens of micrometers and a few centimeters; plus, the thickness in some cases reaches more than 15 µm, and the structure of the MPs can be mostly described as a fibriform with a glossy/matte aspect. The polymeric structures identified were polyamides, poly(methyl methacrylate), polyurethane, polyester, and polyethylene. Chemical investigations (PAHs and HMs concentrations) were performed by high-performance liquid chromatography with fluorescence detection and inductively coupled plasma mass spectrometry, respectively. The pollution load index (1.091–7.676) and daily intake of MPs for adults (0.021–1.061 n·kg−1·d−1) and children (0.089–4.420 n·kg−1·d−1) were calculated. It can be concluded that the presence of MPs in milk supports the hypothesis that microplastics can act as carriers for other contaminants (HMs and PAHs), thus increasing the threat to health. Full article
(This article belongs to the Special Issue Food Contaminants: Detection, Toxicity and Safety Risk Assessment)
Show Figures

Graphical abstract

23 pages, 3119 KB  
Review
Chromatographic Methods for the Determination of Glyphosate in Cereals Together with a Discussion of Its Occurrence, Accumulation, Fate, Degradation, and Regulatory Status
by Maurizio Masci, Roberto Caproni and Teresina Nevigato
Methods Protoc. 2024, 7(3), 38; https://doi.org/10.3390/mps7030038 - 2 May 2024
Cited by 3 | Viewed by 4343
Abstract
The European Union’s recent decision to renew the authorization for the use of glyphosate until 15 December 2033 has stimulated scientific discussion all around the world regarding its toxicity or otherwise for humans. Glyphosate is a chemical of which millions of tons have [...] Read more.
The European Union’s recent decision to renew the authorization for the use of glyphosate until 15 December 2033 has stimulated scientific discussion all around the world regarding its toxicity or otherwise for humans. Glyphosate is a chemical of which millions of tons have been used in the last 50 years worldwide to dry out weeds in cultivated fields and greenhouses and on roadsides. Concern has been raised in many areas about its possible presence in the food chain and its consequent adverse effects on health. Both aspects that argue in favor of toxicity and those that instead may indicate limited toxicity of glyphosate are discussed here. The widespread debate that has been generated requires further investigations and field measurements to understand glyphosate’s fate once dispersed in the environment and its concentration in the food chain. Hence, there is a need for validated analytical methods that are available to analysts in the field. In the present review, methods for the analytical determination of glyphosate and its main metabolite, AMPA, are discussed, with a specific focus on chromatographic techniques applied to cereal products. The experimental procedures are explained in detail, including the cleanup, derivatization, and instrumental conditions, to give the laboratories involved enough information to proceed with the implementation of this line of analysis. The prevalent chromatographic methods used are LC-MS/MS, GC-MS/SIM, and GC-MS/MS, but sufficient indications are also given to those laboratories that wish to use the better performing high-resolution MS or the simpler HPLC-FLD, HPLC-UV, GC-NPD, and GC-FPD techniques for screening purposes. The concentrations of glyphosate from the literature measured in wheat, corn, barley, rye, oats, soybean, and cereal-based foods are reported, together with its regulatory status in various parts of the world and its accumulation mechanism. As for its accumulation in cereals, the available data show that glyphosate tends to accumulate more in wholemeal flours than in refined ones, that its concentration in the product strictly depends on the treatment period (the closer it is to the time of harvesting, the higher the concentration), and that in cold climates, the herbicide tends to persist in the soil for a long time. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

16 pages, 345 KB  
Article
High-Value Compounds in Papaya By-Products (Carica papaya L. var. Formosa and Aliança): Potential Sustainable Use and Exploitation
by Ana F. Vinha, Anabela S. G. Costa, Liliana Espírito Santo, Diana M. Ferreira, Carla Sousa, Edgar Pinto, Agostinho Almeida and Maria Beatriz P. P. Oliveira
Plants 2024, 13(7), 1009; https://doi.org/10.3390/plants13071009 - 1 Apr 2024
Cited by 9 | Viewed by 6309
Abstract
Background: Food waste is a global and growing problem that is gaining traction due to its environmental, ethical, social, and economic repercussions. Between 2022 and 2027, the worldwide papaya market is expected to have a huge increase, meaning a growth in organic waste, [...] Read more.
Background: Food waste is a global and growing problem that is gaining traction due to its environmental, ethical, social, and economic repercussions. Between 2022 and 2027, the worldwide papaya market is expected to have a huge increase, meaning a growth in organic waste, including peels and seeds. Thus, this study evaluated the potential use of peels and seeds of two mature papaya fruits as a source of bioactive compounds, converting these by-products into value-added products. Proximate analysis (AOAC methods), mineral content (ICP-MS), free sugars (HPLC-ELSD), fatty acid composition (GC-FID), vitamin E profile (HPLC-DAD-FLD), and antioxidant activity (DPPH and FRAP assays) were evaluated. Results: Both by-products showed high total protein (20–27%), and dietary fiber (32–38%) contents. Papaya peels presented a high ash content (14–16%), indicating a potential application as a mineral source. 14 fatty acids were detected, with α-linolenic acid (30%) as the most abundant in the peels and oleic acid (74%) in the seeds. Both by-products showed high antioxidant activity. Conclusion: Papaya by-products display great potential for industrial recovery and application, such as formulation of new functional food ingredients. Full article
(This article belongs to the Special Issue Chemistry of Plant Natural Products)
16 pages, 2608 KB  
Article
Profiling of Volatile Compounds in ‘Muscat Hamburg’ Contaminated with Aspergillus carbonarius before OTA Biosynthesis Based on HS-SPME-GC-MS and DLLME-GC-MS
by Yayun Guo, Zhe Wang, Yi He, Huanhuan Gao and Hongmei Shi
Molecules 2024, 29(3), 567; https://doi.org/10.3390/molecules29030567 - 23 Jan 2024
Cited by 5 | Viewed by 1726
Abstract
Aspergillus carbonarius is known to produce the carcinogenic ochratoxin A (OTA) in grapes. The metabolism process before OTA biosynthesis influences the content and composition of the volatile compounds in grapes. In this study, a self-established method based on QuEChERS coupled with high-performance liquid [...] Read more.
Aspergillus carbonarius is known to produce the carcinogenic ochratoxin A (OTA) in grapes. The metabolism process before OTA biosynthesis influences the content and composition of the volatile compounds in grapes. In this study, a self-established method based on QuEChERS coupled with high-performance liquid chromatography–fluorescence detection (HPLC-FLD) was used to determine the OTA levels during a seven-day contamination period. The results showed that OTA was detected on the second day after contamination with A. carbonarius. Thus, the first day was considered as the critical sampling timepoint for analyzing the volatiles in grapes before OTA biosynthesis. Additionally, the volatile compounds in grapes were analyzed using headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS) and dispersive liquid–liquid microextraction gas chromatography–mass spectrometry (DLLME-GC-MS). The corresponding data were evaluated via multivariate data analysis using projection methods, including PCA and OPLS-DA. The results indicated significant differences in the nine volatile compounds in grapes contaminated with A. carbonarius before OTA biosynthesis. The results of the Pearson correlation analysis showed positive correlations between ethyl acetate, styrene, 1-hexanol and OTA; (E)-2-hexenal and nerolic acid were negatively correlated with OTA. Overall, these findings provide a theoretical basis for the early prediction of OTA formation in grape and grape products using GC-MS technology. Full article
Show Figures

Graphical abstract

52 pages, 1161 KB  
Review
Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis
by Christodoulos Deligeorgakis, Christopher Magro, Adriana Skendi, Haileeyesus Habtegebriel Gebrehiwot, Vasilis Valdramidis and Maria Papageorgiou
Foods 2023, 12(23), 4328; https://doi.org/10.3390/foods12234328 - 29 Nov 2023
Cited by 17 | Viewed by 7048
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity’s caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to [...] Read more.
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity’s caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation. Full article
(This article belongs to the Special Issue New Insights into Cereals and Cereal-Based Foods (Volume III))
Show Figures

Figure 1

16 pages, 840 KB  
Article
Evaluation of Selected Medicinal, Timber and Ornamental Legume Species’ Seed Oils as Sources of Bioactive Lipophilic Compounds
by Anna Grygier, Suryakant Chakradhari, Katarzyna Ratusz, Magdalena Rudzińska, Khageshwar Singh Patel, Danija Lazdiņa, Dalija Segliņa and Paweł Górnaś
Molecules 2023, 28(10), 3994; https://doi.org/10.3390/molecules28103994 - 9 May 2023
Cited by 4 | Viewed by 2885
Abstract
Bioactive lipophilic compounds were investigated in 14 leguminous tree species of timber, agroforestry, medicinal or ornamental use but little industrial significance to elucidate their potential in food additive and supplement production. The tree species investigated were: Acacia auriculiformis, Acacia concinna, Albizia [...] Read more.
Bioactive lipophilic compounds were investigated in 14 leguminous tree species of timber, agroforestry, medicinal or ornamental use but little industrial significance to elucidate their potential in food additive and supplement production. The tree species investigated were: Acacia auriculiformis, Acacia concinna, Albizia lebbeck, Albizia odoratissima, Bauhinia racemosa, Cassia fistula, Dalbergia latifolia, Delonix regia, Entada phaseoloides, Hardwickia binata, Peltophorum pterocarpum, Senegalia catechu, Sesbania sesban and Vachellia nilotica. The hexane-extracted oils of ripe seeds were chromatographically analysed for their fatty acid composition (GC-MS), tocochromanol (RP-HPLC/FLD), squalene and sterol (GC-FID) content. A spectrophotometrical method was used to determine total carotenoid content. The results showed generally low oil yield (1.75–17.53%); the highest was from H. binata. Linoleic acid constituted the largest proportion in all samples (40.78 to 62.28% of total fatty acids), followed by oleic (14.57–34.30%) and palmitic (5.14–23.04%) acid. The total tocochromanol content ranged from 100.3 to 367.6 mg 100 g−1 oil. D. regia was the richest and the only to contain significant amount of tocotrienols while other oils contained almost exclusively tocopherols, dominated by either α-tocopherol or γ-tocopherol. The total carotenoid content was highest in A. auriculiformis (23.77 mg 100 g−1), S. sesban (23.57 mg 100 g−1) and A. odoratissima (20.37 mg 100 g−1), and ranged from 0.7 to 23.7 mg 100 g−1 oil. The total sterol content ranged from 240.84 to 2543 mg 100 g−1; A. concinna seed oil was the richest by a wide margin; however, its oil yield was very low (1.75%). Either β-sitosterol or Δ5-stigmasterol dominated the sterol fraction. Only C. fistula oil contained a significant amount of squalene (303.1 mg 100 g−1) but was limited by the low oil yield as an industrial source of squalene. In conclusion, A. auriculiformis seeds may hold potential for the production of carotenoid-rich oil, and H. binata seed oil has relatively high yield and tocopherol content, marking it as a potential source of these compounds. Full article
Show Figures

Graphical abstract

14 pages, 3006 KB  
Article
Quantification of Ergot Alkaloids via Lysergic Acid Hydrazide—Development and Comparison of a Sum Parameter Screening Method
by Maximilian Kuner, Jan Lisec, Tatjana Mauch, Jörg Konetzki, Hajo Haase and Matthias Koch
Molecules 2023, 28(9), 3701; https://doi.org/10.3390/molecules28093701 - 25 Apr 2023
Cited by 2 | Viewed by 2901
Abstract
Ergot alkaloids are a group of mycotoxins occurring in products derived from various grasses (e.g., rye) and have been regulated in the EU recently. The new maximum levels refer to the sum of the six most common ergot alkaloids in their two stereoisomeric [...] Read more.
Ergot alkaloids are a group of mycotoxins occurring in products derived from various grasses (e.g., rye) and have been regulated in the EU recently. The new maximum levels refer to the sum of the six most common ergot alkaloids in their two stereoisomeric forms in different food matrices. Typically, these twelve compounds are individually quantified via HPLC-MS/MS or -FLD and subsequently summed up to evaluate food safety in a time-consuming process. Since all these structures share the same ergoline backbone, we developed a novel sum parameter method (SPM) targeting all ergot alkaloids simultaneously via lysergic acid hydrazide. After extraction and clean-up, in analogy to the current European standard method EN 17425 (ESM) for ergot alkaloid quantitation, the samples were derivatized by an optimized hydrazinolysis protocol, which allowed quantitative conversion after 20 min at 100 °C. The new SPM was evaluated against another established HPLC-FLD-based method (LFGB) and the HPLC-MS/MS-based ESM using six naturally contaminated rye and wheat matrix reference materials. While the SPM provided comparable values to the ESM, LFGB showed deviating results. Determined recovery rates, limits of detection and quantification of all three employed methods confirm that the new SPM is a promising alternative to the classical approaches for ergot alkaloid screening in food. Full article
Show Figures

Graphical abstract

13 pages, 1841 KB  
Article
Quantification of Cyclo-di-BADGE and Identification of Several BADGE Derivatives in Canned Food Samples
by Juana Bustos, Antía Lestido-Cardama, Mª Isabel Santillana, Raquel Sendón, Perfecto Paseiro Losada and Ana Rodríguez Bernaldo de Quirós
Coatings 2023, 13(4), 792; https://doi.org/10.3390/coatings13040792 - 19 Apr 2023
Cited by 2 | Viewed by 2896
Abstract
Most cans intended to come into contact with food require the application of an internal coating made from synthetic polymers. The most widely used type of coating are epoxy resins based on bisphenol A diglycidyl ether (BADGE). It has been found that some [...] Read more.
Most cans intended to come into contact with food require the application of an internal coating made from synthetic polymers. The most widely used type of coating are epoxy resins based on bisphenol A diglycidyl ether (BADGE). It has been found that some components like cyclo-di-BADGE (CdB) and other BADGE derivatives can migrate into food. In this study, the polymeric coating of forty-eight cans was assessed using an infrared spectrometer with attenuated total reflectance. The food samples were extracted, and a targeted analysis was carried out to quantify CdB using liquid chromatography with fluorescence detection (HPLC-FLD). The first estimation of the exposure of the adult population was estimated by combining the concentration of CdB in the samples and the Spanish consumption data. In addition, a non-targeted screening by LC-MS was performed in the food sample extracts for the identification of other BADGE derivatives. Twenty samples were positive for the presence of CdB reaching concentrations of 2623 µg/kg. However, the tolerable daily intake of 1.5 µg/kg bw/day recommended for chemical compounds with high toxicological risk was not exceeded. A total of 18 epoxy oligomers could be tentatively identified in the food extracts being BADGE.H2O.BuEtOH the derivative with the highest incidence. Full article
(This article belongs to the Special Issue Trends in Sustainable Food Packaging and Coatings)
Show Figures

Figure 1

20 pages, 2334 KB  
Article
Polycyclic Aromatic Hydrocarbons (PAHs) in Roasted Pork Meat and the Effect of Dried Fruits on PAH Content
by Sylwia Bulanda and Beata Janoszka
Int. J. Environ. Res. Public Health 2023, 20(6), 4922; https://doi.org/10.3390/ijerph20064922 - 10 Mar 2023
Cited by 14 | Viewed by 3534
Abstract
Diet is one of the main factors affecting human health. The frequent consumption of heat-treated meat has been classified as both directly carcinogenic to humans and as a risk factor, especially in the case of cancers of the gastrointestinal tract. Thermally processed meat [...] Read more.
Diet is one of the main factors affecting human health. The frequent consumption of heat-treated meat has been classified as both directly carcinogenic to humans and as a risk factor, especially in the case of cancers of the gastrointestinal tract. Thermally processed meat may contain harmful muta- and carcinogenic compounds, including polycyclic aromatic hydrocarbons (PAHs). However, there are natural ways to reduce the risk of diet-related cancers by reducing the formation of PAHs in meat. The purpose of this study was to determine changes in PAH levels in pork loin dishes prepared by stuffing the meat with dried fruits (prunes, apricots and cranberries) and baking it in a roasting bag. High-performance liquid chromatography with fluorescence detection (HPLC-FLD) was used to conduct a quantitative analysis of seven PAHs. Recovery results ranged from 61 to 96%. The limit of detection (LOD) was 0.003 to 0.006 ng/g, and the limit of quantification (LOQ) was 0.01 to 0.02 ng/g. Gas chromatography–mass spectrometry (GC-MS/MS) was used to confirm the presence of PAHs in food. The total PAH content of the roasted pork loin was 7.4 ng/g. This concentration decreased by 35%, 48% and 58% when the meat was roasted with apricots, prunes and cranberries, respectively. The cranberries also inhibited the formation of benzo(a)pyrene to the greatest extent. Thermally treating meat stuffed with dry fruits may be a simple and effective way to prepare foods with reduced levels of mutagens and carcinogens belonging to PAHs, and thus reduce the risk of cancer. Full article
Show Figures

Graphical abstract

Back to TopTop