Chia Seeds (Salvia Hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application
Abstract
:1. Introduction
2. Chemical Composition and Phytochemicals in Chia Seeds
2.1. Protein Content
2.2. Fibre Content
2.3. Minerals
2.4. Phenolic Compounds
3. Antioxidant and Antimicrobial Activity
4. Extraction Methods
5. Applications of Chia Seeds and Derived Products
5.1. Food Industry
5.1.1. Chia Mucilage
5.1.2. Chia Gum
5.2. Pharmaceutical Use
6. Therapeutic Value
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABST+ | Monocationic radical from ABTS diammonium salt |
CO2 | Carbon dioxide |
DPPH | 2,2-dyphenyl-1-picrylhydrazyl |
FRAP | Fluorescence recovery after photobleaching |
GC | Gas Chromatography |
HPLC | High Performance Liquid Chromatography |
DSC | Differential Scanning Calorimetry |
SFC | Supercritical fluids |
PLE | Pressured-liquid Extraction |
UHLPC | Ultra-high Performance Liquid Chromatography |
UPLC | Ultra-performance Liquid Chromatography |
References
- Ciau-Solís, N.; Rosado-Rubio, G.; Segura-Campos, M.R.; Betancur-Ancona, D.; Chel-Guerrero, L. Chemical and Functional Properties of Chia Seed (Salvia hispanica L.) Gum. Int. J. Food Sci. 2014, 2014, 1–5. [Google Scholar]
- Grancieri, M.; Martino, H.S.D.; Gonzalez de Mejia, E. Chia Seed (Salvia hispanica L.) as a Source of Proteins and Bioactive Peptides with Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 480–499. [Google Scholar] [CrossRef] [Green Version]
- Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. J. Food Sci. Technol. 2016, 53, 1750–1758. [Google Scholar] [CrossRef] [Green Version]
- Campos, B.E.; Dias Ruivo, T.; da Silva Scapim, M.R.; Madrona, G.S.; Bergamasco, R.d.C. Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. LWT-Food Sci. Technol. 2016, 65, 874–883. [Google Scholar] [CrossRef]
- Das, A. Advances in Chia Seed Research. Adv. Biotechnol. Microbiol. 2018, 5, 5–7. [Google Scholar] [CrossRef]
- Mohd Ali, N.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Tan, S.W.; Tan, S.G. The promising future of chia, Salvia hispanica L. J. Biomed. Biotechnol. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Falco, B.; Amato, M.; Lanzotti, V. Chia seeds products: An overview. Phytochem. Rev. 2017, 16, 745–760. [Google Scholar] [CrossRef]
- Gérard, F. Chia seed CO2 extract: A revolutionary ingredient for food and cosmetics. Wellness Foods Eur. 2006, 5, 1–4. [Google Scholar]
- Knez Hrnčič, M.; Cör, D.; Knez, Ž. Subcritical extraction of oil from black and white chia seeds with n-propane and comparison with conventional techniques. J. Supercrit. Fluids 2018, 140, 182–187. [Google Scholar] [CrossRef]
- Silva, C.; Garcia, V.A.S.; Zanette, C.M. Chia (Salvia hispanica L.) oil extraction using different organic solvents: Oil yield, fatty acids profile and technological analysis of defatted meal. Int. Food Res. J. 2016, 23, 998–1004. [Google Scholar]
- Coorey, R.; Grant, A.; Jayasena, V. Effects of Chia Flour Incorporation on the Nutritive Quality and Consumer Acceptance of Chips. J. Food Res. 2012, 1, 85. [Google Scholar] [CrossRef] [Green Version]
- Ixtaina, V.Y.; Nolasco, S.M.; Tomás, M.C. Physical properties of chia (Salvia hispanica L.) seeds. Ind. Crops Prod. 2008, 28, 286–293. [Google Scholar] [CrossRef]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-López, M.A. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Ayerza, R. Crop year effects on seed yields, growing cycle length, and chemical composition of chia (Salvia hispanica L) growing in Ecuador and Bolivia. Emir. J. Food Agric. 2016, 28, 196–200. [Google Scholar]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- de Falco, B.; Fiore, A.; Rossi, R.; Amato, M.; Lanzotti, V. Metabolomics driven analysis by UAEGC-MS and antioxidant activity of chia (Salvia hispanica L.) commercial and mutant seeds. Food Chem. 2018, 254, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds-Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.; Lee, A.S.; Jovanovski, E.; Jenkins, A.L.; DeSouza, R.; Vuksan, V. Effect of whole and ground Salba seeds (Salvia Hispanica L.) on postprandial glycemia in healthy volunteers: A randomized controlled, dose-response trial. Eur. J. Clin. Nutr. 2013, 67, 786–788. [Google Scholar]
- da Luz, J.M.R.; Nunes, M.D.; Paes, S.A.; Torres, D.P.; Silva, M.D.C.S.D.; Kasuya, M.C.M. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes. Braz. J. Microbiol. 2012, 43, 1508–1515. [Google Scholar] [CrossRef]
- Coates, W.; Ayerza, R. Pontencial De Produção Da Chia No Noroeste Argentino. Ind. Crops. Prod. 1996, 6690. [Google Scholar]
- Villanueva-Bermejo, D.; Calvo, M.V.; Castro-Gómez, P.; Fornari, T.; Fontecha, J. Production of omega 3-rich oils from underutilized chia seeds. Comparison between supercritical fluid and pressurized liquid extraction methods. Food Res. Int. 2019, 115, 400–407. [Google Scholar] [CrossRef]
- Musa Özcan, M.; Al-Juhaimi, F.Y.; Mohamed Ahmed, I.A.; Osman, M.A.; Gassem, M.A. Effect of different microwave power setting on quality of chia seed oil obtained in a cold press. Food Chem. 2019, 278, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Noshe, A.S.; Al-bayyar, A.H. Effect of extraction method of Chia seeds Oil on its content of fatty acids and antioxidants. Int. Res. J. Eng. Technol. 2017, 234, 1–9. [Google Scholar]
- Singh, D. Quinoa (Chenopodium Quinoa Willd); Scientific Publishers: Rajasthan, India, 2019; ISBN 978-93-87991-67-5. [Google Scholar]
- Siger, A.; Nogala-Kalucka, M.; Lampart-Szczapa, E. The Content and Antioxidant Activity of Phenolic Compounds in Cold-Pressed Plant Oils. J. Food Lipids 2008, 15, 137–149. [Google Scholar] [CrossRef]
- Gunstone, F.D. Fatty Acid and Lipid Chemistry; Springer: New York, NY, USA, 2012; ISBN 978-1-4615-4131-8. [Google Scholar]
- Paśko, P.; Sajewicz, M.; Gorinstein, S.; Zachwieja, Z. Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. Acta Chromatogr. 2008, 20, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [Green Version]
- Rosero, O.; Marounek, M.; Břeňová, N.; Lukeova, D. Phytase activity and comparison of chemical composition, phytic acid P content of four varieties of quinoa grain (Chenopodium quinoa Willd.). Acta Agronómica 2013, 62, 13–20. [Google Scholar]
- Martirosyan, D.M.; Miroshnichenko, L.A.; Kulakova, S.N.; Pogojeva, A.V.; Zoloedov, V.I. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis. 2007, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Repo-Carrasco-Valencia, R.; Hellström, J.K.; Pihlava, J.-M.; Mattila, P.H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Coelho, M.S.; de las Mercedes Salas-Mellado, M. How extraction method affects the physicochemical and functional properties of chia proteins. LWT 2018, 96, 26–33. [Google Scholar] [CrossRef]
- Urbizo-Reyes, U.; San Martin-González, M.F.; Garcia-Bravo, J.; López Malo, A.; Liceaga, A.M. Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave-assisted hydrolysis; Elsevier Ltd: Amsterdam, The Netherlands, 2019; ISBN 1765430909. [Google Scholar]
- Rahman, M.J.; de Camargo, A.C.; Shahidi, F. Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. J. Funct. Foods 2017, 35, 622–634. [Google Scholar] [CrossRef]
- Uribe, J.A.R.; Perez, J.I.N.; Kauil, H.C.; Rubio, G.R.; Alcocer, C.G. Extraction of oil from chia seeds with supercritical CO2. J. Supercrit. Fluids 2011, 56, 174–178. [Google Scholar] [CrossRef]
- Martínez-Cruz, O.; Paredes-López, O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J. Chromatogr. A 2014, 1346, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Sargi, S.C.; Silva, B.C.; Santos, H.M.C.; Montanher, P.F.; Boeing, J.S.; Santos Júnior, O.O.; Souza, N.E.; Visentainer, J.V. Antioxidant capacity and chemical composition in seeds rich in omega-3: Chia, flax, and perilla. Food Sci. Technol. 2013, 33, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Guindani, C.; Podestá, R.; Block, J.M.; Rossi, M.J.; Mezzomo, N.; Ferreira, S.R.S. Valorization of chia (Salvia hispanica) seed cake by means of supercritical fluid extraction. J. Supercrit. Fluids 2016, 112, 67–75. [Google Scholar] [CrossRef]
- Alcântara, M.A.; de Lima Brito Polari, I.; de Albuquerque Meireles, B.R.L.; de Lima, A.E.A.; da Silva Junior, J.C.; de Andrade Vieira, É.; dos Santos, N.A.; de Magalhães Cordeiro, A.M.T. Effect of the solvent composition on the profile of phenolic compounds extracted from chia seeds. Food Chem. 2019, 275, 489–496. [Google Scholar] [CrossRef]
- Kondo, S.; Teongtip, R.; Srichana, D.; Itharat, A. Antimicrobial activity of rice bran extracts for diarrheal disease. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2011, 94, S117–S121. [Google Scholar]
- Morshed, S.; Islam, S.S. Antimicrobial activity and phytochemical properties of corn (Zea mays L.) silk. SKUAST J. Res. 2015, 17, 8–14. [Google Scholar]
- Saha, S.; Islam, Z.; Islam, S.; Hossain, M.S.; Islam, S.M. Evaluation of antimicrobial activity of wheat (Triticum aestivum L.) against four bacterial strains. SKUAST J. Res. 2018, 20, 58–62. [Google Scholar]
- Park, J.H.; Lee, Y.J.; Kim, Y.H.; Yoon, K.S. Antioxidant and Antimicrobial Activities of Quinoa (Chenopodium quinoa Willd.) Seeds Cultivated in Korea. Prev. Nutr. Food Sci. 2017, 22, 195–202. [Google Scholar]
- Cherian, P.; Sheela, D. Antimicrobial activity of Amaranth Alkaloid against pathogenic microbes. Int. J. Herb. Med. 2016, 4, 70–72. [Google Scholar]
- Labanca, R.A.; Svelander, C.; Eliasson, L.; Linhares, R.; De Araújo, B.; Ahrné, L.; Alminger, M. Supercritical carbon dioxide extraction and conventional extraction of chia seed oils: chemical composition and lipid oxidation. Int. J. Res. Available 2017, 4, 563–572. [Google Scholar]
- Ixtaina, V.Y.; Vega, A.; Nolasco, S.M.; Tomás, M.C.; Gimeno, M.; Bárzana, E.; Tecante, A. Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): Characterization and process optimization. J. Supercrit. Fluids 2010, 55, 192–199. [Google Scholar] [CrossRef]
- Ixtaina, V.Y.; Martínez, M.L.; Spotorno, V.; Mateo, C.M.; Maestri, D.M.; Diehl, B.W.K.; Nolasco, S.M.; Tomás, M.C. Characterization of chia seed oils obtained by pressing and solvent extraction. J. Food Compos. Anal. 2011, 24, 166–174. [Google Scholar] [CrossRef]
- Da Silva, C.M.; Zanqui, A.B.; Gohara, A.K.; De Souza, A.H.P.; Cardozo-Filho, L.; Visentainer, J.V.; Rovigatti Chiavelli, L.U.; Bittencourt, P.R.S.; Da Silva, E.A.; Matsushita, M. Compressed n-propane extraction of lipids and bioactive compounds from Perilla (Perilla frutescens). J. Supercrit. Fluids 2015, 102, 1–8. [Google Scholar] [CrossRef]
- de Campo, C.; dos Santos, P.P.; Costa, T.M.H.; Paese, K.; Guterres, S.S.; de Oliveira Rios, A.; Flôres, S.H. Nanoencapsulation of chia seed oil with chia mucilage (Salvia hispanica L.) as wall material: Characterization and stability evaluation. Food Chem. 2017, 234, 1–9. [Google Scholar] [CrossRef] [PubMed]
- de Mello, B.T.F.; dos Santos Garcia, V.A.; da Silva, C. Ultrasound-Assisted Extraction of Oil from Chia (Salvia hispânica L.) Seeds: Optimization Extraction and Fatty Acid Profile. J. Food Process Eng. 2017, 40, e12298. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Tonato, D.; Mazutti, M.A.; de Abreu, B.R.; da Costa Cabrera, D.; D’Oca, C.D.R.M.; Prentice-Hernández, C.; de las Mercedes Salas-Mellado, M. Yield and quality of chia oil extracted via different methods. J. Food Eng. 2019, 262, 200–208. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E.; Henika, P.R. Addition of phytochemical-rich plant extracts mitigate the antimicrobial activity of essential oil/wine mixtures against Escherichia coli O157:H7 but not against Salmonella enterica. Food Control 2017, 73, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Laczkowski, M.S.; Gonçalves, T.R.; Gomes, S.T.M.; Março, P.H.; Valderrama, P.; Matsushita, M. Application of chemometric methods in the evaluation of antioxidants activity from degreased chia seeds extracts. Lwt 2018, 95, 303–307. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.C.; Vendramini-Costa, D.B.; Betim Cazarin, C.B.; Maróstica Júnior, M.R.; Borges Ferreira, J.P.; Silva, A.B.; Prado, M.A.; Bronze, M.R. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem. 2017, 232, 295–305. [Google Scholar] [CrossRef]
- Nieman, D.C.; Cayea, E.J.; Austin, M.D.; Henson, D.A.; McAnulty, S.R.; Jin, F. Chia seed does not promote weight loss or alter disease risk factors in overweight adults. Nutr. Res. 2009, 29, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Ixtaina, V.Y.; Mattea, F.; Cardarelli, D.A.; Mattea, M.A.; Nolasco, S.M.; Tomás, M.C. Supercritical Carbon Dioxide Extraction and Characterization of Argentinean Chia Seed Oil. J. Am. Oil Chem. Soc. 2010, 88, 289–298. [Google Scholar] [CrossRef]
- Fernandes, S.S.; de las Mercedes Salas-Mellado, M. Addition of chia seed mucilage for reduction of fat content in bread and cakes. Food Chem. 2017, 227, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Castejón, N.; Moreno-Pérez, S.; Abreu Silveira, E.; Fernández Lorente, G.; Guisán, J.M.; Señoráns, F.J. Synthesis of omega-3 ethyl esters from chia oil catalyzed by polyethylene glycol-modified lipases with improved stability. Food Chem. 2019, 271, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Kobus-Cisowska, J.; Szymanowska, D.; Maciejewska, P.; Kmiecik, D.; Gramza-Michałowska, A.; Kulczyński, B.; Cielecka-Piontek, J. In vitro screening for acetylcholinesterase and butyrylcholinesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Electron. J. Biotechnol. 2019, 37, 1–10. [Google Scholar] [CrossRef]
- Dick, M.; Costa, T.M.H.; Gomaa, A.; Subirade, M.; de Oliveira Rios, A.; Flôres, S.H. Edible film production from chia seed mucilage: Effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr. Polym. 2015, 130, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr. Polym. 2016, 136, 128–136. [Google Scholar] [CrossRef]
- Julio, L.M.; Ixtaina, V.Y.; Fernández, M.A.; Sánchez, R.M.T.; Wagner, J.R.; Nolasco, S.M.; Tomás, M.C. Chia seed oil-in-water emulsions as potential delivery systems of ω-3 fatty acids. J. Food Eng. 2015, 162, 48–55. [Google Scholar] [CrossRef]
- Julio, L.M.; Copado, C.N.; Diehl, B.W.K.; Ixtaina, V.Y.; Tomás, M.C. Chia bilayer emulsions with modified sunflower lecithins and chitosan as delivery systems of omega-3 fatty acids. LWT 2018, 89, 581–590. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food Hydrocoll. 2017, 66, 71–81. [Google Scholar] [CrossRef]
- Vuksan, V.; Jenkins, A.L.; Brissette, C.; Choleva, L.; Jovanovski, E.; Gibbs, A.L.; Bazinet, R.P.; Au-Yeung, F.; Zurbau, A.; Ho, H.V.T.; et al. Salba-chia (Salvia hispanica L.) in the treatment of overweight and obese patients with type 2 diabetes: A double-blind randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Vuksan, V.; Choleva, L.; Jovanovski, E.; Jenkins, A.L.; Au-Yeung, F.; Dias, A.G.; Ho, H.V.T.; Zurbau, A.; Duvnjak, L. Comparison of flax (Linum usitatissimum) and Salba-chia (Salvia hispanica L.) seeds on postprandial glycemia and satiety in healthy individuals: a randomized, controlled, crossover study. Eur. J. Clin. Nutr. 2017, 71, 234. [Google Scholar] [CrossRef] [PubMed]
- Toscano, L.T.; da Silva, C.S.O.; Toscano, L.T.; de Almeida, A.E.M.; da Cruz Santos, A.; Silva, A.S. Chia flour supplementation reduces blood pressure in hypertensive subjects. Plant Foods Hum. Nutr. 2014, 69, 392–398. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Seed yield, oil content and fatty acid composition of three botanical sources of ω-3 fatty acid planted in the Yungas ecosystem of tropical Argentina. Trop. Sci. 2007, 47, 183–187. [Google Scholar] [CrossRef]
- Segura Campos, M.R.; Peralta González, F.; Chel Guerrero, L.; Betancur Ancona, D. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis. Int. J. Food Sci. 2013, 2013, 158482. [Google Scholar] [CrossRef] [Green Version]
- Rodea-González, D.A.; Cruz-Olivares, J.; Román-Guerrero, A.; Rodríguez-Huezo, M.E.; Vernon-Carter, E.J.; Pérez-Alonso, C. Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. J. Food Eng. 2012, 111, 102–109. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Chia: Rediscovering a Forgotten Crop of the Aztecs; University of Arizona Press: Tuscon, AZ, USA, 2005; ISBN 978-0-8165-2488-4. [Google Scholar]
- Adams, J.D.; Wang, R.; Yang, J.; Lien, E.J. Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions. Chin. Med. 2006, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.D.; Wall, M.; Garcia, C. Salvia columbariae contains tanshinones. Evid. Based Complement. Alternat. Med. 2005, 2, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.; Gillitt, N.; Meaney, M.; Dew, D. No positive influence of ingesting chia seed oil on human running performance. Nutrients 2015, 7, 3666–3676. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Gillitt, N.; Jin, F.; Henson, D.A.; Kennerly, K.; Shanely, R.A.; Ore, B.; Su, M.; Schwartz, S. Chia seed supplementation and disease risk factors in overweight women: A metabolomics investigation. J. Altern. Complement. Med. 2012, 18, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Cruz, M.; Tovar, A.R.; Aguilar-Salinas, C.A.; Medina-Vera, I.; Gil-Zenteno, L.; Hernández-Viveros, I.; López-Romero, P.; Ordaz-Nava, G.; Canizales-Quinteros, S.; Guillen Pineda, L.E. A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome. J. Nutr. 2011, 142, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illian, T.G.; Casey, J.C.; Bishop, P.A. Omega 3 chia seed loading as a means of carbohydrate loading. J. Strength Cond. Res. 2011, 25, 61–65. [Google Scholar] [CrossRef] [PubMed]
Chia Seeds | Rice | Corn | Wheat | Quinoa | Amaranth | |
---|---|---|---|---|---|---|
Carbohydrates (g) | 42 | 80 | 74 | 71 | 64.2 | 71 |
Protein (g) | 17 | 6.5 | 9.4 | 12.6 | 14.1 | 12.6 |
Fat (g) | 31 | 1.5 | 1.92 | 1.5 | ||
Minerals (mg) | ||||||
Magnesium | 335 | 25 | 127 | 126 | 197 | 126 |
Phosphorus | 860 | 115 | 210 | 288 | 457 | 288 |
Calcium | 631 | 28 | 7 | 29 | 29 | |
Potassium | 407 | 115 | 287 | 363 | 563 | 363 |
Natrium | 16 | / | / | / | / | / |
Other (g) | 13 | / | / | / | / | / |
Vitamins (mg) | ||||||
Vitamin A eq. | 54 μg | 0 | 214 | 9 | 0 | n.d. |
Vitamin E | 0.5 | 0.11 | 0.49 | 1.01 | 0.63 | 1.19 |
Vitamin C | 1.6 | 0 | 0 | 0 | 0 | 4.2 |
Thiamine (B1) | 0.62 | 0.07 | 0.39 | 0.30 | 0.11 | 0.12 |
Riboflavin (B2) | 0.17 | 0.05 | 0.20 | 0.12 | 0.11 | 0.2 |
Niacin (B3) | 8.83 | 1.6 | 3.63 | 5.46 | 0.412 | 0.92 |
Fatty acid content (%) | ||||||
Linolenic acid (C18:3, ω-3) | 63.79 | 2.1 | 1 | 0.08 | 6.7 | 1.01 |
Linoleic acid (C18:2, ω-6) | 18.89 | 39.7 | 52 | 0.68 | 56.4 | 0.35 |
Olec acid (C18:1, ω-9) | 7.3 | 35.1 | 31 | 0.24 | 20.4 | 22.69 |
Palmitoleic acid (C16:1) | 0.03 | / | / | / | n.d. | 0.08 |
Eicosenic acid (20:1) | n.d. | / | / | 0.005 | n.d. | 1.49 |
Palmitic acid (C16:0) | 7.04 | 20.8 | 13 | 3.02 | 9.7 | 18.59 |
Phenolic compunds (μg) | ||||||
Caffeic acid | 27 | n.d. | 26 | 40 | 37 | 0.90 |
Quercetin | 0.17 | / | / | 30.1 | 43.3 | / |
Kaempferol | 0.013 | / | / | / | 36.7 | / |
Daidzin | 6.6 | / | / | / | / | / |
Glycitin | 1.4 | / | / | / | / | / |
Genistin | 3.4 | / | / | / | / | / |
Active Compounds in Salvia Hispanica L. Seeds | Chemical Structure | Biological Activity | Reference |
---|---|---|---|
Omega-3 fatty acid, ω-3 fatty acid, ω-3 ALA | | - anti-inflammatory | [6] |
- antidiabetic | |||
-anticancer | |||
Omega-6 fatty acid, ω-6 fatty acid, ω-6 LA | | - inflammatory | [6] |
- anticancer | |||
Flavonoids | |||
Mycertin | | - antioxidant | [6] |
[7] | |||
[34] | |||
Quercetin | | - antioxidant | [7] |
- anti-cancerogenic | [6] | ||
- anti-hypertensive | [34] | ||
Kaempferol | | - antioxidant | [6,7] |
[6] | |||
Caffeic acid | | - antioxidant | [7] |
- anti-cancerogenic | [34] | ||
- anti-hypertensive | [36] | ||
Rosmarinic acid | | - antioxidant | [7] |
[34] | |||
[36] | |||
Chlorogenic acid | | - antioxidant | [34] |
- anti-cancerogenic | |||
- anti-hypertensive | |||
Vitamins | A | - healthy skin | [34] |
B1 | - for synthesizing ATP | [34] | |
B2 | - for normal red blood cells working | [34] | |
B3 | - for normal nervous and digestion system working | [34] |
Methods of Extraction | Solvent | Extraction Yield (%) a | Fatty Acid Content (%)a | Reference | |||||
---|---|---|---|---|---|---|---|---|---|
White Chia Seeds | Black Chia Seeds | ω-3 | ω-6 | ||||||
White Chia Seeds | Black Chia Seeds | White Chia Seeds | Black Chia Seeds | ||||||
1 | Cold solvent extraction | n-hexane | 30.0 | 30.0 | Not evaluated | 3.5 | 4.0 | 2.97 | [23] |
2 | Cold solvent extraction | n-hexane | 42 | Not evaluated | Not evaluated | [52] | |||
3 | Cold solvent extraction | n-hexane | 19.3 | 67.9 | 17.6 | [53] | |||
4 | Soxhlet extraction | n-hexane | 13.8 | 62.8 | 20.1 | [39] | |||
ethyl acetate | 12.10 | Not evaluated | Not evaluated | ||||||
ethanol | 15.4 | 64.1 | 19.9 | ||||||
5 | Soxhlet extraction | n-hexane | Not evaluated | Not evaluated | 48.52 | 48.66 | 17.98 | 17.98 | [9] |
6 | Soxhlet extraction | n-hexane | 10.9 | Not evaluated | Not evaluated | [1] | |||
7 | Soxhlet extraction | n-hexane | 34.6 | 35.6 | Not evaluated | 3.5 | 4.0 | 2.97 | [23] |
8 | Soxhlet extraction | n-hexane | 25.7–32.2 | 54.4–54.4 | 20.2–21.8 | [46] | |||
9 | Soxhlet extraction | n-hexane | Not evaluated | Not evaluated | Not evaluated | [12] | |||
10 | Soxhlet extraction | n-hexane | 26.7–33.6 | 65.6–69.3 | 16.6–19.7 | [48] | |||
11 | Soxhlet, Ultrasonic extraction | n-hexane, ethyl acetate, isopropanol | 33.6 | 62.4 | 19.6 | [10] | |||
30.2 | 62.4 | 19.4 | |||||||
25.6 | 62.9 | 19.8 | |||||||
12 | Ultrasonic extraction | n-hexane | Not evaluated | 51.5 | 46.4 | 19.5 | 19.5 | [9] | |
13 | Ultrasound extraction | n-hexane | 10.6 | 59.6 | 22.1 | [39] | |||
ethyl acetate | 11.2 | Not evaluated | Not evaluated | ||||||
ethanol | 11.3 | Not evaluated | Not evaluated | ||||||
14 | Cold pressing and DCS | ethanol | Not evaluated | Not evaluated | Not evaluated | [54] | |||
15 | Ultrasound extraction | acetone | Not evaluated | Not evaluated | Not evaluated | [34] | |||
16 | Ultrasound liquid-liquid extraction | methanol-water solution | Not evaluated | Not evaluated | Not evaluated | [55] | |||
17 | Supercritical fluid extraction | CO2 | 88.1 | 63.4 | 35.8 | [47] | |||
18 | Supercritical fluid extraction | CO2 | 7.2 | 66.0 | 18.2 | [35] | |||
19 | Supercritical fluid extraction | CO2 | 10.6 | 62.3 | 19.7 | [39] | |||
20 | Supercritical fluid extraction | CO2 | 27.8–31.8 | 52.5–55.9 | 19.8–20.9 | [46] | |||
21 | Supercritical fluid extraction | CO2 | 17.5 | Not evaluated | Not evaluated | [52] | |||
22 | Supercritical fluid extraction | ethanol | 64.5–90.3 | 65.0–68.0 | 17.0–23.0 | [21] | |||
23 | Supercritical fluid extraction (with/without ultrasound and cosolvent) | CO2 | 24.6 | 68.3 | 18.6 | [56] | |||
24 | Subcritical fluid extraction | n-propane | Not evaluated | 47.3 | 46.2 | 17.8 | 17.5 | [9] | |
25 | Pressing | / | 20.3–24.8 | 64.5–69.3 | 16.6–17.5 | [57] | |||
26 | Pressing | / | 20.1 | 67.9 | 19.1 | [58] | |||
27 | Pressurized liquid extraction | ethanol | 17.7–19.9 | 65.0–68.0 | 17.0–23.0 | [21] | |||
28 | Pressurized liquid extraction | n-hexane | Not evaluated | 65.5 | 18.1 | [59] | |||
29 | Screw pressing | n-hexane | 9.5 | 9 | Not evaluated | 3.5 | 4.0 | 2.97 | [23] |
30 | Seed compression | / | Not evaluated | Not evaluated | Not evaluated | [9] | |||
31 | Cold press and ultrasound | Methanol | Not evaluated | 66.8–68.7 | 19.2–21.7 | [22] | |||
32 | High pressure extraction | / | 20.01 | Not evaluated | Not evaluated | [52] | |||
33 | Alkaline extraction and isoelectric precipitation | / | Not evaluated | Not evaluated | Not evaluated | [32] | |||
34 | Ultrasound-assisted extraction | n-hexane | Not evaluated | Not evaluated | Not evaluated | [16] | |||
36 | Hot solvent extraction | Water and aqueous ethanol | Not evaluated | Not evaluated | Not evaluated | [60] |
Aim of the Study | Clinical Setting | Study Description | Result | Reference |
---|---|---|---|---|
Assessment of the effect of Salba-chia on body weight, visceral obesity and obesity-related risk factors in overweight and obese adults with type 2 diabetes. | - Changes in body weight and in waist circumference, - body composition, - glycemic control, - level of C-reactive protein and obesity-related satiety hormones. | - Two parallel groups with 77 over-weight or obese patients with type 2 diabetes were evaluated. | - Significant weight loss, - reduction in waist circumference and C-reactive protein - increase of plasma adiponectin. | [66] |
Comparison of the effect of two seeds (flax (Linum usitatissimum) and Salba-chia (Salvia hispanica L.)) on postprandial glycemia and satiety scores. | Blood glucose samples and satiety ratings were collected at fasting and over 2 h postprandially. | - Fifteen healthy participants - randomized to receive a 50 g glucose challenge, alone or supplemented with either 25 g ground Salba-chia or 31.5 g flax. | - Salba-chia appears to have the ability to convert glucose into a slow-release carbohydrate - and affect satiety to a greater extent than flax (due to the higher fiber viscosity). | [67] |
Influence of Ingesting Chia Seed Oil on Human Running Performance | - A randomized (1:1 allocation, random number generator), - crossover approach, and - subjects engaged in two run-to-exhaustion trials after acute ingestion of flavored water with chia seed oil or flavored water alone (no blinding), with at least a two-week washout period. | - After providing a blood sample at 8:00 am, subjects ingested 0.5 L flavored water alone or 0.5 L water with 7 kcal kg−1 chia seed oil (random order), provided another blood sample at 8:30 am, and then started running to exhaustion. - Additional blood samples were collected immediately post- and 1 h post-exercise. | - Ingestion ofchia seed oil 30 min before running caused an increase in plasma ALA levels, - no discernable benefits for the athletes in this study. | [75] |
Effect of chia supplementation (Salvia hispanica L.) on blood pressure (BP) and its associated cardiometabolic factors. | - Hypertensive individuals of both sexes, –randomized, double-blind, experimental and placebo-controlled study. | - Nutritional assessment, -clinical BP measurement, - ambulatory blood pressure monitoring (ABPM), - collection of blood samples. | - The consumption of the chia or the placebo caused no gastrointestinal, hepatic or renal disorders, - decrease of the BP in hypertensive individuals. | [68] |
Effectiveness of milled and whole chia seed in altering disease risk factors in overweight, postmenopausal women. | - Metabolomics approach using gas chromatography–mass spectrometry with multivariate statistical methods, - including principal component analysis and partial least-square discriminant analysis (PLS-DA). | - Subjects ingested 25 g chia seed or placebo supplements each day for 10 weeks, - body mass and composition, blood pressure and augmentation index, serum lipid profile, inflammation markers from fasting blood samples, plasma fatty acids, and metabolic profiling. | Ingestion of 25 g/day milled chia seed compared to whole chia seed or placebo for 10 weeks by overweight women increased plasma ALA and EPA, but had no influence on inflammation or disease risk factors using both traditional and metabolomics-based measures. | [76] |
Evaluation of the effects of a dietary pattern (DP; soy protein, nopal, chia seed, and oat) on the biochemical variables of MetS, the AUC for glucose and insulin, glucose intolerance (GI), the relationship of the presence of certain polymorphisms related to MetS, and the response to the DP. | A single-center, randomized, placebo-controlled, double-blind, parallel-arm study. | - In the first stage, participants were instructed to consume a reduced energy diet according to (23) and a low-saturated fat and low-cholesterol diet for 2 wk (5). - During the second stage of the study, participants were randomly assigned to consume either the dietary pattern (DP) or placebo (P) in addition to the reduced energy diet for 2 mo. | - BW, BMI, and WC decreased, - no changes in the percentages of the lean or fat mass in either group after the dietary treatment. | [77] |
Assessment of Omega 3 chia seed loading as a means of Carbohydrate loading. | -CHO-loading treatments were based on the subject’s body weight and were thus isocaloric. | Comparison of the performance testing results between 2 different CHO-loading treatments | - No statistical difference between Omega 3 Chia loading and CHO loading. | [78] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knez Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia Hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application. Molecules 2020, 25, 11. https://doi.org/10.3390/molecules25010011
Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž. Chia Seeds (Salvia Hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application. Molecules. 2020; 25(1):11. https://doi.org/10.3390/molecules25010011
Chicago/Turabian StyleKnez Hrnčič, Maša, Maja Ivanovski, Darija Cör, and Željko Knez. 2020. "Chia Seeds (Salvia Hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application" Molecules 25, no. 1: 11. https://doi.org/10.3390/molecules25010011
APA StyleKnez Hrnčič, M., Ivanovski, M., Cör, D., & Knez, Ž. (2020). Chia Seeds (Salvia Hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application. Molecules, 25(1), 11. https://doi.org/10.3390/molecules25010011