Antimicrobial Effect of Picea abies Extracts on E. coli Growth
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermokinetic Parameters of E. coli Growth by Isothermal Calorimetry
- an initial lag-time, where the rate of heat generation is negligible;
- an exponential rise of the heat-flow signal, indicating the metabolic growth of the cells;
- a rapid decay of the heat-flow signal, which occurs when either oxygen or substrates limit further growth.
2.2. Extraction by Supercritical Carbon Dioxide
2.3. Microbial Growth Inhibition and Metabolic Activity Inhibition
- (1)
- the heat-flow peak was shifted to longer times;
- (2)
- the exponential rise of the signal became less pronounced;
- (3)
- the calorimetric peak area was reduced.
2.4. Metabolic Activity Inhibition
3. Materials and Methods
3.1. Preparation of Wood Extracts
3.2. Extraction of Essential Oil by Supercritical Fluid
3.3. Antimicrobial Activity of Extracts
3.3.1. Test Microorganisms and Growth Media
3.3.2. Antimicrobial Activity by Isothermal Calorimetry
3.3.3. Antimicrobial Activity by the Plate Count Technique
3.4. Characterization of Picea abies Extract by HPLC-HRMS
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Durazzo, A.; Lucarini, M.; Novellino, E.; Souto, E.B.; Daliu, P.; Santini, A. Abelmoschus esculentus (L.): Bioactive components’ beneficial properties-focused on antidiabetic role-for sustainable health applications. Molecules 2019, 24, 38. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Daliu, P.; Narciso, V.; Tenore, G.C.; Novellino, E. Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion. Nutrients 2018, 10, 1711. [Google Scholar] [CrossRef] [PubMed]
- Angelis, A.; Hubert, J.; Aligiannis, N.; Michalea, R.; Abedini, A.; Nuzillard, J.M.; Gangloff, S.C.; Skaltsounis, A.L.; Renault, J.H. Bio-guided isolation of methanol-soluble metabolites of common spruce (Picea abies) bark by-products and investigation of their dermo-cosmetic properties. Molecules 2016, 21, 1586. [Google Scholar] [CrossRef] [PubMed]
- Burčová, Z.; Kreps, F.; Greifová, M.; Jablonský, M.; Ház, A.; Schmidt, Š.; Šurina, I. Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. J. Biotechnol. 2018, 282, 18–24. [Google Scholar] [CrossRef]
- Chizzola, R. Regular monoterpenes and sesquiterpenes (essential oils). In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, 1st ed.; Springer: New York, NY, USA, 2013; pp. 2973–3008. [Google Scholar]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Koroch, A.R.; Juliani, H.R.; Zygadlo, J.A. Bioactivity of essential oils and their components. In Flavours and Fragrances, Ralf Günter Berger, 1st ed.; Springer: Heidelberg/Berlin, Germany, 2007; pp. 87–115. [Google Scholar]
- Salem, M.Z.M.; Elansary, H.O.; Elkelish, A.A.; Zeidler, A.; Ali, H.M.; Mervat, E.H.; Yessoufou, K. In vitro bioactivity and antimicrobial activity of Picea abies and Larix decidua wood and bark extracts. BioResources 2016, 11, 9421–9437. [Google Scholar] [CrossRef]
- Vainio-Kaila, T.; Zhang, X.; Hänninen, T.; Kyyhkynen, A.; Johansson, L.S.; Willför, S.; Österberg, M.; Siitonen, A.; Rautkari, L. Antibacterial effects of wood structural components and extractives from Pinus sylvestris and Picea abies on Methicillin-Resistant Staphylococcus aureus and Escherichia coli O157: H7. BioResources 2017, 12, 7601–7614. [Google Scholar]
- Tanase, C.; Cosarca, S.; Toma, F.; Mare, A.; Cosarca, A.; Man, A.; Miklos, A.; Imre, S.I. Antibacterial activities of spruce bark (Picea abies L.) extract and its components against human pathogens. Rev. Chim. 2018, 69, 1462–1467. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Braissant, O.; Wirz, D.; Göpfert, B.; Daniels, A.U. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol. Lett. 2010, 303, 1–8. [Google Scholar] [CrossRef]
- Haman, N.; Signorelli, M.; Duce, C.; Franzetti, L.; Fessas, D. Isothermal calorimetry protocols to monitor the shelf life and aftermarket follow-up of fresh cut vegetables. J. Therm. Anal. Calorim. 2019, 137, 1673–1680. [Google Scholar] [CrossRef] [Green Version]
- Braissant, O.; Bonkat, G.; Wirz, D.; Bachmann, A. Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data. Thermochim. Acta 2013, 555, 64–71. [Google Scholar] [CrossRef]
- Morozova, K.; Andreotti, C.; Armani, M.; Cavani, L.; Cesco, S.; Cortese, L.; Gerbi, V.; Mimmo, T.; Spena, P.R.; Scampicchio, M. Indirect effect of glyphosate on wine fermentation studied by microcalorimetry. J. Therm. Anal. Calorim. 2017, 127, 1351–1360. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar]
- Deng, C.; Yao, N.; Wang, A.; Zhang, X. Determination of essential oil in a traditional Chinese medicine, Fructus amomi by pressurized hot water extraction followed by liquid-phase microextraction and gas chromatography–mass spectrometry. Anal. Chim. Acta 2005, 536, 237–244. [Google Scholar] [CrossRef]
- Jimenez-Carmona, M.M.; Ubera, J.L.; De Castro, M.L. Comparison of continuous subcritical water extraction and hydrodistillation of marjoram essential oil. J. Chromatogr. A 1999, 855, 625–632. [Google Scholar] [CrossRef]
- Glišić, S.B.; Mišić, D.R.; Stamenić, M.D.; Zizovic, I.T.; Ašanin, R.M.; Skala, D.U. Supercritical carbon dioxide extraction of carrot fruit essential oil: Chemical composition and antimicrobial activity. Food Chem. 2007, 105, 346–352. [Google Scholar] [CrossRef]
- Gironi, F.; Maschietti, M. Continuous countercurrent deterpenation of lemon essential oil by means of supercritical carbon dioxide: Experimental data and process modelling. Chem. Eng. Sci. 2008, 63, 651–661. [Google Scholar] [CrossRef]
- Lis-Balchin, M.; Deans, S.G.; Eaglesham, E. Relationship between bioactivity and chemical composition of commercial essential oils. Flavour Fragr. J. 1998, 13, 98–104. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Avena-Bustillos, R.J.; Olsen, C.; Friedman, M.; Henika, P.R.; Martín-Belloso, O.; Pan, Z.; McHugh, T.H. Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. J. Food Eng. 2007, 81, 634–641. [Google Scholar] [CrossRef]
- Moon, T.; Wilkinson, J.M.; Cavanagh, H.M. Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol. Res. 2006, 99, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Veldhuizen, E.J.; Tjeerdsma-van Bokhoven, J.L.; Zweijtzer, C.; Burt, S.A.; Haagsman, H.P. Structural requirements for the antimicrobial activity of carvacrol. J. Agr. Food Chem. 2006, 54, 1874–1879. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.M. Mint: The genus Mentha, 1st ed.; Lawrence, B.M., Ed.; CRC Press: London, UK, 2006; p. 576. [Google Scholar]
- Tanase, C.; Boz, I.; Oroian, S.; Coșarcă, S.; Toma, F.; Mare, A.; Man, A. Antibacterial activity of spruce bark (picea abies l.) Extract against escherichia coli. Acta Biol. Marisiensis 2018, 1, 5–9. [Google Scholar]
Sample Availability: Samples of Picea abies extracts are not available from the authors. |
Compound | Formula | [M − H]− Theoretical | [M − H]− Measured | Δmi * (Da) | Δppm | RT in ESI (−) | Area × 106 |
---|---|---|---|---|---|---|---|
Cinnamic acid | C9H8O2 | 147.0451 | 147.0452 | 0.0001 | 0.7 | 4.9 | 2.03 ± 0.1 |
Protocatechuic acid | C7H6O4 | 153.0193 | 153.0192 | −0.00001 | −0.1 | 3.44 | 1.5 ± 0.1 |
p-Coumaric acid | C9H8O3 | 163.0401 | 163.0401 | −0.00002 | −0.1 | 11.7 | 1.6 ± 0.1 |
Gallic acid | C7H6O5 | 169.0142 | 169.0143 | 0.0001 | 0.6 | 1.96 | 4.1 ± 0.3 |
Ferulic acid | C10H10O4 | 193.0506 | 193.0507 | 0.0001 | 0.4 | 4.6 | 0.60 ± 0.13 |
(+)-Catechin | C15H14O6 | 289.0718 | 289.072 | 0.0002 | 0.7 | 6.7 | 1.6 ± 0.3 |
Dihydroquercetin (Taxifolin) | C15H12O7 | 303.0513 | 303.0513 | 0.0000 | 0.0 | 14.74 | 59 ± 2 |
Hydroxypinoresinol | C20H22O7 | 373.1293 | 373.1293 | 0.0000 | 0.0 | 18.4 | 312 ± 23 |
Astringin | C20H22O2 | 405.1191 | 405.1196 | 0.0005 | 1.2 | 11.16 | 16 ± 1 |
Isorhapontin | C21H24O9 | 419.1348 | 419.1349 | 0.0001 | 0.2 | 18.4 | 432 ± 56 |
Gompertz Function | Metabolism Inhibition | Plate Count | ||||
---|---|---|---|---|---|---|
Extract Concentration | Qtot | λ | µmax | R2 | 100 (1 − Q1/Q0) | |
mg/mL | J | h | H−1 | - | % | log(CFU/mL) |
- | 2120 ± 39 | 9.5 ± 0.6 | 0.18 ± 0.06 | 0.999 | - | 4.11 ± 1.5 |
1 | 218 ± 17 | 14.1 ± 0.3 | 0.12 ± 0.09 | 0.995 | 89.7 ± 0.5 | 2.91 ± 0.7 |
3 | 5.3 ± 0.5 | 27.3 ± 1.7 | 0.10 ± 0.02 | 0.994 | 99.8 ± 0.2 | 1.53 ± 0.5 |
5 | 2.4 ± 0.2 | 33.7 ± 1.1 | 0.12 ± 0.05 | 0.999 | 99.9 ± 0.1 | 0.70 ± 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haman, N.; Morozova, K.; Tonon, G.; Scampicchio, M.; Ferrentino, G. Antimicrobial Effect of Picea abies Extracts on E. coli Growth. Molecules 2019, 24, 4053. https://doi.org/10.3390/molecules24224053
Haman N, Morozova K, Tonon G, Scampicchio M, Ferrentino G. Antimicrobial Effect of Picea abies Extracts on E. coli Growth. Molecules. 2019; 24(22):4053. https://doi.org/10.3390/molecules24224053
Chicago/Turabian StyleHaman, Nabil, Ksenia Morozova, Giustino Tonon, Matteo Scampicchio, and Giovanna Ferrentino. 2019. "Antimicrobial Effect of Picea abies Extracts on E. coli Growth" Molecules 24, no. 22: 4053. https://doi.org/10.3390/molecules24224053
APA StyleHaman, N., Morozova, K., Tonon, G., Scampicchio, M., & Ferrentino, G. (2019). Antimicrobial Effect of Picea abies Extracts on E. coli Growth. Molecules, 24(22), 4053. https://doi.org/10.3390/molecules24224053