Barbituric Acid Based Fluorogens: Synthesis, Aggregation-Induced Emission, and Protein Fibril Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dye Design and Synthesis
2.2. Structure–Property Relationships
2.2.1. Absorption and Emission Spectra
2.2.2. Effect of Solvent Polarity
2.2.3. Aggregation-Induced Emission
2.3. Application for Amyloid Protein Detection
3. Materials and Methods
3.1. Materials and General Information
3.2. Synthesis and Characterization
3.3. Sample Preparation for Spectroscopy Measurement
3.4. Quantum Yield Measurements
3.5. Protein-Formation Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weissleder, R.; Mahmood, U. Molecular imaging. Radiology 2001, 219, 316–333. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, V. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 2006, 8, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanai, N.; Eschbacher, J.; Hattendorf, G.; Coons, S.W.; Preul, M.C.; Smith, K.A.; Nakaji, P.; Spetzler, R.F. Intraoperative confocal microscopy for brain tumors: A feasibility analysis in humans. Neurosurgery 2011, 68, 282–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, C.H.; Chen, C.K.; Hsu, F.M.; Shu, C.F.; Chou, P.T.; Lai, C.H. Multifunctional Deep-Blue Emitter Comprising an Anthracene Core and Terminal Triphenylphosphine Oxide Groups. Adv. Funct. Mater. 2009, 19, 560–566. [Google Scholar] [CrossRef]
- Förster, T.; Kasper, K. Ein Konzentrationsumschlag der Fluoreszenz. Z. Phys. Chem. (MuenchenGer.) 1954, 1, 275–277. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 29, 4332. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Leung, N.L.C.; Tang, B.Z. AIE macromolecules: Syntheses, structures and functionalities. Chem. Soc. Rev. 2014, 43, 4494–4562. [Google Scholar] [CrossRef]
- Mei, J.; Hong, Y.; Lam, J.W.Y.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts. Adv. Mater. 2014, 26, 5429–5479. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Lam, J.W.Y.; Qin, A.; Liu, J.; Li, Z.; Tang, B.Z. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Appl. Phys. Lett. 2007, 91, 011111. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Xu, B.; Chen, F.; Xia, H.; Li, K.; Ye, L.; Tian, W. Aggregation-Induced Emission in the Crystals of 9,10-Distyrylanthracene Derivatives: The Essential Role of Restricted Intramolecular Torsion. J. Phys. Chem. C 2009, 113, 9892–9899. [Google Scholar] [CrossRef]
- Chen, M.; Li, L.; Nie, H.; Tong, J.; Yan, L.; Xu, B.; Sun, J.Z.; Tian, W.; Zhao, Z.; Qin, A.; et al. Tetraphenylpyrazine-based AIEgens: Facile preparation and tunable light emission. Chem. Sci. 2015, 6, 1932–1937. [Google Scholar] [CrossRef] [Green Version]
- Ntziachristos, V.; Ripoll, J.; Wang, L.V.; Weissleder, R. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol. 2005, 23, 313–320. [Google Scholar] [CrossRef]
- Li, H.; Chi, Z.; Zhang, X.; Xu, B.; Liu, S.; Zhang, Y.; Xu, J. New thermally stable aggregation-induced emission enhancement compounds for non-doped red organic light-emitting diodes. Chem. Commun. 2011, 47, 11273–11275. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, S.; Liu, Y.; Mei, J.; Chen, S.; Lu, P.; Qin, A.; Ma, Y.; Sun, J.Z.; Tang, B.Z. Tetraphenylethenyl-modified perylene bisimide: Aggregation-induced red emission, electrochemical properties and ordered microstructures. J. Mater. Chem. C 2012, 22, 7387–7394. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Geng, J.; Chang, Z.; Chen, S.; Deng, C.; Jiang, T.; Qin, W.; Lam, J.W.Y.; Kwok, H.S.; Qiu, H.; et al. A tetraphenylethene-based red luminophor for an efficient non-doped electroluminescence device and cellular imaging. J. Mater. Chem. C 2012, 22, 11018–11021. [Google Scholar] [CrossRef]
- Li, K.; Qin, W.; Ding, D.; Tomczak, N.; Geng, J.; Liu, R.; Liu, J.; Zhang, X.; Liu, H.; Liu, B.; et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci. Rep. 2013, 3, 1150. [Google Scholar] [CrossRef]
- Wang, E.; Lam, J.W.Y.; Hu, R.; Zhang, C.; Zhao, Y.S.; Tang, B.Z. Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. J. Mater. Chem. C 2014, 2, 1801–1807. [Google Scholar] [CrossRef]
- Borse, B.N.; Shukla, S.R.; Sonawane, Y.A.; Shankerling, G.S. Synthesis of some novel pyrimidinedione and pyrimidinetrione derivatives by a greener method: Study of their antimicrobial activity and photophysical properties. Synth. Commun. 2012, 43, 865–876. [Google Scholar] [CrossRef]
- Zhou, K.; Fu, H.; Feng, L.; Cui, M.; Dai, J.; Liu, B. The synthesis and evaluation of near-infrared probes with barbituric acid acceptors for in vivo detection of amyloid plaques. Chem. Commun. 2015, 51, 11665–11668. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Ma, Y.; Xiong, Y.; Cao, X.; Li, Y.; Chen, L. Enhanced AIE and different stimuli-responses in red fluorescent (1,3-dimethyl)barbituric acid-functionalized anthracenes. J. Mater. Chem. C 2016, 4, 751–757. [Google Scholar] [CrossRef]
- Mercaldi, G.F.; D’Antonio, E.L.; Aguessi, A.; Rodriguez, A.; Cordeiro, A.T. Discovery of antichagasic inhibitors by high-throughput screening with Trypanosoma cruzi glucokinase. Bioorganic Med. Chem. Lett. 2019, 29, 1948–1953. [Google Scholar] [CrossRef]
- Ahmed, E.; Sharif, A.; Chohan, S.; Khan, M.A.; Munawar, M.A.; Farrukh, A.; Begum, R.; Afza, N.; Ashraf, M.; Arshad, S. A convenient Synthesis of Bioactive 5-Arylidenebarbiturates. J. Chem. Soc. Pak. 2012, 34, 1305–1311. [Google Scholar]
- Liu, M.; Onchaiya, S.; Tan, L.Y.F.; Haghighatbin, M.A.; Luu, T.; Owyong, T.C.; Hushiarian, R.; Hogan, C.F.; Smith, T.A.; Hong, Y. 9-Vinylanthracene based fluorogens: Synthesis, structure-property relationships and applications. Molecules 2017, 22, 2148. [Google Scholar] [CrossRef] [Green Version]
- Suppan, P. Invited review solvatochromic shifts: The influence of the medium on the energy of electronic states. J. Photochem. Photobiol. A Chem. 1990, 50, 293–330. [Google Scholar] [CrossRef]
- Cao, J.K.; Yang, J. Translational opportunities for amyloid-targeting fluorophores. Chem. Commun. 2018, 54, 9107–9118. [Google Scholar] [CrossRef]
- Verwilst, P.; Kim, S.H.; Kim, S.; Kang, C.; Kim, S.J. Shedding light on tau protein aggregation: The progress in developing highly selective fluorophores. Chem. Sov. Rev. 2018, 47, 2249–2265. [Google Scholar] [CrossRef]
- Kumar, M.; Hong, Y.; Thorn, C.D.; Ecroyd, H.; Carver, A.J. Monitoring Early-Stage Protein Aggregation by an AggregationInduced Emission Fluorogen. Anal. Chem. 2017, 89, 9322–9329. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.S.; Liu, K.N.; Lee, W.H. Effect of curcumin on the amyloid fibrillogenesis of hen egg-white lysozyme. Biophys. Chem. 2009, 144, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ravi, V.K.; Swaminathan, R. Suppression of lysozyme aggregation at alkaline pH by tri-N-acetylchitotriose. Biochim. Biophys. Acta 2009, 1794, 913–920. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the all the BA-based dyes are available from the authors. |
Compound | Solution Absorbance λmax (nm) [1] | Molar Absorptivity at λmax (M−1 cm−1) [1] | Solution Emission λmax (nm) [1] | Solid Emission λmax (nm) | Quantum Yield of Solid Film (%) |
---|---|---|---|---|---|
MeB | 464 | 6.58 × 104 | 526 | 629 | 10.6 |
MeB-M | 468 | 6.06 × 104 | 538 | 595 | 29.2 |
MoB | 455 | 4.90 × 104 | 527 | 589 | 15.5 |
MoB-M | 459 | 5.22 × 104 | 537 | 621 | \ [2] |
PyB | 469 | 7.02 × 104 | 527 | 640 | 9.0 |
PyB-M | 473 | 6.54 × 104 | 536 | 616 | 14.1 |
EtHB | 471 | 6.84 × 104 | 521 | 644 | 1.5 |
EtHB-M | 474 | 1.09 × 105 | 530 | 603 | 2.5 |
EtB | 469 | 5.76 × 104 | 532 | 638 | 19.1 |
EtB-M | 473 | 6.63 × 104 | 541 | 656 | 32.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Yao, B.; Schobben, L.; Hong, Y. Barbituric Acid Based Fluorogens: Synthesis, Aggregation-Induced Emission, and Protein Fibril Detection. Molecules 2020, 25, 32. https://doi.org/10.3390/molecules25010032
Ding S, Yao B, Schobben L, Hong Y. Barbituric Acid Based Fluorogens: Synthesis, Aggregation-Induced Emission, and Protein Fibril Detection. Molecules. 2020; 25(1):32. https://doi.org/10.3390/molecules25010032
Chicago/Turabian StyleDing, Siyang, Bicheng Yao, Louis Schobben, and Yuning Hong. 2020. "Barbituric Acid Based Fluorogens: Synthesis, Aggregation-Induced Emission, and Protein Fibril Detection" Molecules 25, no. 1: 32. https://doi.org/10.3390/molecules25010032
APA StyleDing, S., Yao, B., Schobben, L., & Hong, Y. (2020). Barbituric Acid Based Fluorogens: Synthesis, Aggregation-Induced Emission, and Protein Fibril Detection. Molecules, 25(1), 32. https://doi.org/10.3390/molecules25010032