Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review
Abstract
:1. Introduction
2. Elicitation
3. Ozone as an Elicitor
3.1. Phenolic Content
3.2. Vitamin C
3.3. Antioxidant Capacity
3.4. Color
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Weng, C.J.; Yen, G.C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev. 2012, 38, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Ahn-Jarvis, J.H.; Parihar, A.; Dose, A.I. Dietary flavonoids for immunoregulation and cancer: Food Design for Targeting Disease. Antioxidants 2019, 8, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flis, S.; Jastrzębski, Z.; Namiesnik, J.; Arancibia-Avila, P.; Toledo, F.; Leontowicz, H.; Leontowicz, M.; Suhaj, M.; Trakhtenberg, S.; Gorinstein, S. Evaluation of inhibition of cancer cell proliferation in vitro with different berries and correlation with their antioxidant levels by advanced analytical methods. J. Pharm. Biomed. Anal. 2012, 62, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Caillet, S.; Lorenzo, G.; Côté, J.; Doyon, G.; Sylvain, J.F.; Lacroix, M. Cancer chemopreventive effect of fractions from cranberry products. Food Res. Int. 2012, 45, 320–330. [Google Scholar] [CrossRef]
- Noratto, G.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J. Agric. Food Chem. 2009, 57, 5219–5226. [Google Scholar] [CrossRef]
- Aiyer, H.S.; Warri, A.M.; Woode, D.R.; Hilakivi-Clarke, L.; Clarke, R. Influence of berry polyphenols on receptor signalling and cell-death pathways: Implications for breast cancer prevention. J. Agric. Food Chem. 2012, 60, 5693–5708. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Butt, N.A.; Levenson, A.S. Natural epigenetic-modifying molecules in medical therapy. In Medical Epigenetics; Tollefsbol, T.O., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 747–798. [Google Scholar]
- Brown, E.M.; Gill, C.I.R.; McDougall, G.J.; Stewart, D. Mechanisms underlying the anti-proliferative effects of berry components in in vitro models of colon cancer. Curr. Pharm. Biotechnol. 2012, 13, 200–209. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M.; Materska, M.; Chilczuk, B.; Pabich, M. Modification of lipid oxidation and antioxidant capacity in canned refrigerated pork with a nitrite content reduced by half and addition of sweet pepper extract. LWT 2020, 118, 108738. [Google Scholar] [CrossRef]
- Ning, J.; Hou, G.G.; Sun, J.; Wan, X.; Dubat, A. Effect of green tea powder on the quality attributes and antioxidant activity of whole-wheat flour pan bread. LWT 2017, 79, 342–348. [Google Scholar] [CrossRef]
- Dang Vu, K.; Carlettini, H.; Bouvet, J.; Côté, J.; Doyon, G.; Sylvain, J.F.; Lacroix, M. Effect of different cranberry extracts and juices during cranberry juice processing on the antiproliferative activity against two colon cancer cell lines. Food Chem. 2012, 132, 959–967. [Google Scholar] [CrossRef]
- Roohinejad, S. Application of plant extracts to improve the shelf-life, nutritional andhealth-related properties of ready-to-eat meat products. Meat Sci. 2018, 145, 245–255. [Google Scholar] [CrossRef]
- Kambiranda, D.M.; Basha, S.M.; Stringer, S.J.; Obuya, J.O.; Snowden, J.J. Multi-year quantitative evaluation of stilbenoids levels among selected muscadine grape cultivars. Molecules 2019, 24, 981. [Google Scholar] [CrossRef] [Green Version]
- Żebrowska, J.; Dyduch-Siemińska, M.; Gawroński, J.; Jackowska, I.; Pabich, M. Genetic estimates of antioxidant properties in the conventionally and in vitro propagated strawberry (Fragaria × ananassa Duch.). Food Chem. 2019, 299, 125110. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, B.K.; Yu, C.Y.; Ghimire, B.; Seong, E.S.; Chung, I.M. Allelopathic potential of phenolic compounds in Secale cereale cultivars and its relationship with seeding density. Appl. Sci. 2019, 9, 3072. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Yang, T.; Medina-Bolivar, F. Production of prenylated stilbenoids in hairy root cultures of peanut (Arachis hypogaea) and its wild relatives A. ipaensis and A. duranensis via an optimized elicitation procedure. Molecules 2020, 25, 509. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.R.; Cassani, L.; Martín-Belloso, O.; Soliva-Fortuny, R. Effects of polysaccharide-based edible coatings enriched with dietary fiber on quality attributes of fresh-cut apples. J. Food Sci. Technol. 2015, 52, 7795–7805. [Google Scholar] [CrossRef] [Green Version]
- Ziarno, M.; Zaręba, D. The Use of ozone to destroy microorganisms. Przem. Chem. 2015, 6. [Google Scholar] [CrossRef]
- Selma, M.V.; Ibáñez, A.M.; Cantwell, M.; Suslow, T. Reduction by gaseous ozone of Salmonella and microbial flora associated with fresh-cut cantaloupe. Food Microbiol. 2008, 25, 558–565. [Google Scholar] [CrossRef]
- Kim, J.G.; Yousef, A.E.; Dave, S. Application of Ozone for enhancing the microbiological safety and quality of foods: A review. J. Food Prot. 1999, 62, 1071–1087. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Shi, H.; Keener, K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci. Technol. 2018, 71, 73–83. [Google Scholar] [CrossRef]
- Botondi, R.; De Sanctis, F.; Moscatelli, N.; Vettraino, A.M.; Catelli, C.; Mencarelli, F. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Food Chem. 2015, 188, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.J.; Song, W.J.; Kim, K.P.; Ryu, S.; Kang, D.H. Combination effect of ozone and heat treatments for the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in apple juice. Int. J. Food Microbiol. 2014, 173, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwi, N.A.; Ali, A. Reduction of Escherichia coli O157, Listeria monocytogenes and Salmonella enterica sv. Typhimurium populations on fresh-cut bell pepper using gaseous ozone. Food Control 2014, 46, 304–311. [Google Scholar] [CrossRef]
- Ding, W.; Jin, W.; Cao, S.; Zhou, X.; Wang, J.Q.; Huang, H.; Tu, R.; Han, S.H.; Wang, Q. Ozone disinfection of chlorine-resistant bacteria in drinking water. Water Res. 2019, 160, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Khadre, M.S.; Yousef, A.E.; Kim, J.-G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Minas, I.S.; Tanou, G.; Krokida, A.; Karagiannis, E.; Belghazi, M.; Vasilakakis, M.; Papadopoulou, K.K.; Molassiotis, A. Ozone-induced inhibition of kiwifruit ripening is amplified by 1-methylcyclopropene and reversed by exogenous ethylene. BMC Plant Biol. 2018, 18, 358. [Google Scholar] [CrossRef]
- De Souza, L.P.; Faroni, L.R.D.; Heleno, F.F. Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology. Food Chem. 2017, 243, 435–441. [Google Scholar] [CrossRef]
- Sadło, S.; Szpyrka, E.; Piechowicz, B.; Antos, P.; Balawejder, M. Reduction of captan, boscalid and pyraclostrobin residues on apples using water only, gaseous ozone and ozone aqueous solution. Ozone Sci. Eng. 2017, 39, 97–103. [Google Scholar] [CrossRef]
- Heleno, F.F.; de Queiroz, M.E.; Neves, A.A.; Freitas, R.S.; Faroni, L.R.; de Oliveira, A.F. Effects of ozone fumigation treatment on the removal of residual difenoconazole from strawberries and on their quality. J. Environ. Sci. Health Part B 2014, 49, 94–101. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Y.; Luo, X.; Wang, R.; Li, Y.; Li, Y.; Shao, H.; Chen, Z. Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control 2016, 66, 137–144. [Google Scholar] [CrossRef]
- Pascari, X.; Ramos, A.J.; Marín, S.; Sanchís, V. Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review. Food Res. Int. 2018, 103, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Trombete, F.; Porto, Y.; Freitas-Silva, O.; Pereira, R.; Direito, G.; Saldanha, T.; Fraga, M. Efficacy of ozone treatment on mycotoxins and fungal reduction in artificially contaminated soft wheat grains. J. Food Process. Preserv. 2017, 41, e12927. [Google Scholar] [CrossRef]
- Zhu, F. Effect of ozone treatment on the quality of grain products. Food Chem. 2018, 264, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wang, R.; Wang, L.; Li, Y.; Bian, Y.; Chen, Z. Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn. Food Control 2014, 37, 171–176. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Kaavya, R.; Yasendra, J.; Kornautchaya, V.; Piraya, L.; Divya, V.; Anjineyulu, K.; Ramesh, S.V. Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–a review. Trends Food Sci. Technol. 2020, 97, 38–54. [Google Scholar] [CrossRef]
- Velioglu, S.; Ergen, Ş.F.; Aksu, P.; Altındağ, A. Effects of ozone treatment on the degradation and toxicity of several pesticides in different groups. J. Agric. Sci. 2018, 24, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Piechowiak, T.; Antos, P.; Kosowski, P.; Skrobacz, K.; Józefczyk, R.; Balawejder, M. Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agr. Food Sci. 2019, 28, 35–44. [Google Scholar] [CrossRef]
- Onopiuk, A.; Półtorak, A.; Moczkowska, M.; Szpicer, A.; Wierzbicka, A. The impact of ozone on health-promoting, microbiological, and colour properties of Rubus ideaus raspberries. CyTA J. Food 2017, 15, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Sachadyn-Król, M.; Materska, M.; Chilczuk, B. Ozonation of hot red pepper fruits increases their antioxidant activity and changes some antioxidant contents. Antioxidants 2019, 8, 356. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sánchez, A.; Aguayo, E. Effects of ozonated water irrigation on the quality of grafted watermelon seedlings. Sci. Hortic. 2020, 261, 109047. [Google Scholar] [CrossRef]
- Ahmad, E.; Arshad, M.; Khan, M.Z.; Amjad, M.S.; Sadaf, H.M.; Riaz, I.; Sabir, S.; Sabaoon, N.A. Secondary metabolites and their multidimensional prospective in plant life. J. Pharmacogn. Phytochem. 2017, 6, 205–214. [Google Scholar]
- Gawlik-Dziki, U.; Dziki, D.; Nowak, R.; Świeca, M.; Olech, M.; Pietrzak, W. Influence of sprouting and elicitation on phenolic acids profile and antioxidant activity of wheat seedlings. J. Cereal Sci. 2016, 70, 221–228. [Google Scholar] [CrossRef]
- Baenas, N.; Garcıa-Viguera, C.; Moreno, D.A. Elicitation: A tool for enriching the bioactive composition of foods. Molecules 2014, 19, 13541–13563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, M.; Bhattacharya, S.; Khosla, P.K.; Puri, S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. Appl. Res. Med. Aromat. Plants 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Złotek, U.; Świeca, M.; Jakubczyk, A. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chem. 2014, 148, 253–260. [Google Scholar] [CrossRef]
- Viacava, G.E.; Goyeneche, R.; Goñi, M.G.; Roura, S.I.; Agüero, M.V. Natural elicitors as preharvest treatments to improve postharvest quality of Butterhead lettuce. Sci. Hortic. 2018, 228, 145–152. [Google Scholar] [CrossRef]
- Świeca, M.; Baraniak, B. Nutritional and antioxidant potential of lentil sprouts affected by elicitation with temperature stress. J. Agric. Food Chem. 2014, 12, 3306–3313. [Google Scholar] [CrossRef]
- Natella, F.; Maldini, M.; Nardini, M.; Azzini, E.; Foddai, M.S.; Giusti, A.M.; Baima, S.; Morelli, G.; Scaccini, C. Improvement of the nutraceutical quality of broccoli sprouts by elicitation. Food Chem. 2016, 201, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Złotek, U. Effect of jasmonic acid and yeast extract elicitation on low-molecular antioxidants and antioxidant activity of marjoram (Origanum majorana L.). Acta Sci. Pol. Technol. Aliment. 2017, 16, 371–377. [Google Scholar] [CrossRef]
- Puthusseri, B.; Divya, P.; Lokesh, V.; Neelwarne, B. Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.). Plant Foods Hum. Nutr. 2012, 67, 162–170. [Google Scholar] [CrossRef]
- Flores, G.; Ruiz Del Castillo, M.L. Accumulation of anthocyanins and flavonols in black currants (Ribes nigrum L.) by pre-harvest methyl jasmonate treatments. J. Sci. Food Agric. 2016, 96, 4026–4031. [Google Scholar] [CrossRef]
- Kumari, R.S.B.; Agrawal, S.; Singh, N.K.D. Supplemental ultraviolet-B induced changes in essential oil composition and total phenolics of Acorus calamus L. (sweet flag). Ecotoxicol. Environ. Saf. 2009, 72, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Rudolf, J.R.; Resurreccion, A.V. Elicitation of resveratrol in peanut kernels by application of abiotic stresses. J. Agric. Food Chem. 2005, 53, 10186–10192. [Google Scholar] [CrossRef]
- Darré, M.; Valerga, L.; Araque, L.C.O.; Lemoine, M.L.; Demkura, P.V.; Vicente, A.R. Role of UV-B irradiation dose and intensity on color retention and antioxidant elicitation in broccoli florets (Brassica oleracea, var. italica). Postharvest Biol. Technol. 2017, 128, 76–82. [Google Scholar] [CrossRef]
- De la Peña Moreno, F.; Monagas, M.; Blanch, G.P.; Bartolomé, B.; Ruiz del Castillo, M.L. Enhancement of anthocyanins and selected aroma compounds in strawberry fruits through methyl jasmonate vapor treatment. Eur. Food Res. Technol. 2010, 230, 989–999. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Borland, A.; Singleton, I.; Barnes, J. Impact of atmospheric ozone-enrichment on quality-related attributes of tomato fruit. Postharvest Biol. Technol. 2007, 45, 317–326. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Z.; Zhu, H.; Li, T.; Zhu, X.; Gao, H.; Yun, Z.; Jiang, Y. Comparative volatile compounds and primary metabolites profiling of pitaya fruit peel after ozone treatment. J. Sci. Food Agric. 2019, 99, 2610–2621. [Google Scholar] [CrossRef] [PubMed]
- Karaca, H.; Velioglu, S. Effects of ozone treatments on microbial quality and some chemical properties of lettuce, spinach, and parsley. Postharvest Biol. Technol. 2014, 88, 46–53. [Google Scholar] [CrossRef]
- Oksanen, E.; Häikiö, E.; Sober, J.; Karnosky, D. Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol. 2004, 161, 791–799. [Google Scholar] [CrossRef]
- Yaseen, T.; Ricelli, A.; Turan, B.; Albanese, P.; D’onghia, A.M. Ozone for post-harvest treatment of apple fruits. Phytopathol. Mediterr. 2015, 54, 94–103. [Google Scholar] [CrossRef]
- Damara, E. Ozone and Electrolyzed Water Application to Preserve Quality of Citrus Fruit and Effect of Gene Expression Related to Plant Defense Mechanisms. Ph.D. Thesis, Università di Foggia, Foggia, Italy, November 2017. [Google Scholar]
- Ludwikow, A.; Sadowski, J. Gene networks in plant ozone stress response and tolerance. J. Integr. Plant Biol. 2008, 50, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Campayo, A.; Serrano de la Hoz, K.; García-Martínez, M.M.; Sánchez-Martínez, J.F.; Salinas, M.R.; Alonso, G.L. Spraying ozonated water on Bobal grapevines: Effect on grape quality. Food Res. Int. 2019, 125, 108540. [Google Scholar] [CrossRef]
- Flores, P.; Hernández, V.; Fenoll, J.; Hellín, P. Pre-harvest application of ozonated water on broccoli crops: Effect on head quality. J. Food Compos. Anal. 2019, 83, 103260. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Encarna, A. Effect of irrigation with ozonated water on the quality of capsicum seedlings grown in the nursery. Agric. Water Manag. 2019, 221, 547–555. [Google Scholar] [CrossRef]
- Fernandes, F.F.; Esposito, M.p.; da Silva Engela, M.R.G.; Cardoso-Gustavson, P.; Furlan, C.M.; Hoshika, Y.; Carrari, E.; Magni, G.; Domingos, M.; Paoletti, E. The passion fruit liana (Passiflora edulis Sims, Passifloraceae) is tolerant to ozone. Sci. Total Environ. 2019, 656, 1091–1101. [Google Scholar] [CrossRef]
- Bortolin, R.C.; Caregnato, F.F.; Divan Junior, A.M.; Zanotto-Filho, A.; Moresco, K.S.; Rios, A.D.O.; Salvi Ade, O.; Ortmann, C.F.; de Carvalho, P.; Reginatto, F.H.; et al. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum. Ecotoxicol. Environ. Saf. 2016, 129, 16–24. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pawelzik, E. Influence of preharvest ozone exposure on quality of strawberry fruit under simulated retail conditions. Postharvest Biol. Technol. 2008, 49, 10–18. [Google Scholar] [CrossRef]
- Horvitz, S.; Cantalejo, M.J. Application of ozone for the postharvest treatment of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2014, 54, 312–339. [Google Scholar] [CrossRef]
- Segade, S.R.; Vincenzi, S.; Giacosa, S.; Rolle, L. Changes in stilbene composition during postharvest ozone treatment of ‘Moscato bianco’ winegrapes. Food Res. Int. 2019, 123, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Cullen, P.J.; Tiwari, B.K.; O’Donnell, C.P.; Muthukumarappan, K. Modelling approaches to ozone processing of liquid foods. Trends Food Sci. Technol. 2009, 20, 125–136. [Google Scholar] [CrossRef]
- Patil, S.; Torres, B.; Tiwari, B.K.; Hilde Wijngaard, H.; Bourke, P.; Cullen, P.J.; O’ Donnell, C.P.; Valdramidis, V.P. Safety and quality assessment during the ozonation of cloudy apple juice. J. Food Sci. 2010, 75, M437–M443. [Google Scholar] [CrossRef] [PubMed]
- Criegee, R. Mechanism of ozonolysis. Angew. Chem. Int. Ed. Engl. 1975, 14, 745–752. [Google Scholar] [CrossRef]
- Shah, N.N.A.K.; Sulaiman, A.; Sidek, N.S.M.; Supian, N.A.M. Quality assessment of ozone-treated citrus fruit juices. Int. Food Res. J. 2019, 26, 1405–1415. [Google Scholar]
- Augspole, I.; Rakcejeva, T.; Dukalska, L.; Skudra, L. Providing quality of shredded carrots during storage by treatment with ozonated water. Mater. Sci. Appl. Chem. 2014, 30, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Yang, M.; Zhang, G.; He, H.; Yang, T. Antioxidant activities and phenolic compositions of wheat germ as affected by the roasting process. J. Am. Oil Chem. Soc. 2015, 92, 1303–1312. [Google Scholar] [CrossRef]
- Paissoni, M.A.; Segade, S.R.; Giacosa, S.; Torchio, F.; Cravero, F.; Englezos, V.; Rantsiou, K.; Carboni, C.; Gerbi, V.; Teissedre, P.L. Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo (Vitis vinifera L.). Food Res. Int. 2017, 98, 68. [Google Scholar] [CrossRef]
- Ranieri, A.; D’Urso, G.; Nali, C.; Lorenzini, G.; Soldatini, G.F. Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiol. Plant. 1996, 97, 381–387. [Google Scholar] [CrossRef]
- Wiese, C.B.; Pell, E.J. Oxidative modification of the cell wall in tomato plants exposed to ozone. Plant Physiol. Biochem. 2003, 41, 375–382. [Google Scholar] [CrossRef]
- Rodoni, L.; Casadei, N.; Concellón, A.; Chaves Alicia, A.R.; Vicente, A.R. Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. J. Agric. Food Chem. 2010, 58, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Alothman, M.; Kaur, B.; Fazilah, A.; Bhat, R.; Karim, A.A. Ozone-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. Technol. 2010, 11, 666–671. [Google Scholar] [CrossRef]
- Sachadyn-Król, M.; Materska, M.; Chilczuk, B.; Karaś, M.; Jakubczyk, A.; Perucka, I.; Jackowska, I. Ozone-induced changes in the content of bioactive compounds and enzyme activity during storage of pepper fruits. Food Chem. 2016, 211, 59–67. [Google Scholar] [CrossRef]
- de Souza Sartori, J.A.; Angolini, C.F.; Eberlin, M.N.; Aguiar, C.L. Criegee mechanism as a safe pathway of color reduction in sugarcane juice by ozonation. Food Chem. 2017, 225, 181–187. [Google Scholar] [CrossRef]
- Asokapandian, S.; Periasamy, S.; Swamy, G. Ozone for fruit juice preservation. In Fruit Juices: Extraction, Composition, Quality and Analysis; Rajauria, G., Tiwari, B.K., Eds.; Elsevier: Kidlington, UK, 2018; Chapter 25; pp. 511–527. [Google Scholar]
- García-Mateos, M.R.; Quiroz-González, B.; Corrales-García, J.; Ybarra-Moncada, C.; Leyva-Ruelas, G. Ozone-high hydrostatic pressure synergy for the stabilization of refrigerated pitaya (Stenocereus pruinosus) juice. Innov. Food Sci. Emerg. Technol. 2019, 56, 102187. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Aguayo, E.; Artés, F.; Tomás-Barberán, F. Enriched ozone atmosphere enhances bioactive phenolics in seedless table grapes after prolonged shelf life. J. Sci. Food Agric. 2007, 87, 824–831. [Google Scholar] [CrossRef]
- Nicoletto, C.; Maucieri, C.; Sambo, P. Effects on water management and quality characteristics of ozone application in chicory forcing process: A pilot system. Agronomy 2017, 7, 29. [Google Scholar] [CrossRef]
- Aguayo, E.; Escalona, V.H.; Artes, F. Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes. Postharvest Biol. Tec. 2006, 39, 169–177. [Google Scholar] [CrossRef]
- Carbone, K.; Mencarelli, F. Influence of short-term postharvest ozone treatments in nitrogen or air atmosphere on the metabolic response of white wine grapes. Food Bioproc. Technol. 2015, 8, 1739–1749. [Google Scholar] [CrossRef]
- Barboni, T.; Cannac, M.; Chiaramonti, N. Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chem. 2010, 121, 946–951. [Google Scholar] [CrossRef]
- Lv, Y.; Tahir, I.; Olsson, M.E. Effect of ozone application on bioactive compounds of apple fruit during short-term cold storage. Sci. Hortic. 2019, 253, 49–60. [Google Scholar] [CrossRef]
- Swami, S.; Muzammil, R.; Saha, S.; Shabeer, A.; Oulkar, D.; Banerjee, K.; Singh, S.B. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits. Environ. Monit. Assess. 2016, 188, 301. [Google Scholar] [CrossRef]
- Liu, C.; Ma, T.; Hu, W.; Tian, M.; Sun, L. Effects of aqueous ozone treatments on microbial load reduction and shelf life extension of fresh-cut apple. Int. J. Food Sci. Technol. 2016, 51, 1099–1109. [Google Scholar] [CrossRef]
- Torres, B.; Tiwari, B.K.; Patras, A.; Wijngaard, H.H.; Brunton, N.; Cullen, P.J.; O’Donnell, C.P. Effect of ozone processing on the colour, rheological properties and phenolic content of apple juice. Food Chem. 2011, 124, 721–726. [Google Scholar] [CrossRef]
- Han, Q.; Gao, H.Y.; Chen, H.J.; Fang, X.J.; Wu, W.J. Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits. Food Chem. 2017, 221, 1947–1953. [Google Scholar] [CrossRef]
- Tabakoglu, N.; Karaca, H. Effects of ozone-enriched storage atmosphere on postharvest quality of black mulberry fruits (Morus nigra L.). LWT Food Sci. Technol. 2018, 92, 276–281. [Google Scholar] [CrossRef]
- Barth, M.M.; Zhou, C.; Mercier, J.; Payne, F.A. Ozone storage effects on anthocyanin content and fungal growth in blackberries. J. Food Sci. 1995, 60, 1286–1288. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’donnell, C.P.; Muthukumarappan, K.; Cullen, P.J. Anthocyanin and colour degradation in ozone treated blackberry juice. Innov. Food Sci. Emerg. Technol. 2009, 10, 70–75. [Google Scholar] [CrossRef]
- Li, H.; Xiong, Z.; Gui, D.; Li, X. Effect of aqueous ozone on quality and shelf life of Chinese winter jujube. J. Food Process. Preserv. 2019, 43, e14244. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’Donnell, C.P.; Patras, A.; Brunton, N.; Cullen, P.J. Anthocyanins and color degradation in ozonated grape juice. Food Chem. Toxicol. 2009, 47, 2824–2829. [Google Scholar] [CrossRef]
- Setiasih, I.S.; Rialita, T.; Sumanti, D.M.; Hanidah, I. Characteristics of guava (Psidium guajava L.) treated with ozonation during ambient storage. KnE Life Sci. 2017, 2, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Piechowiak, T.; Antos, P.; Józefczyk, R.; Kosowski, P.; Skrobacz, K.; Balawejder, M. Impact of ozonation process on the microbiological contamination and antioxidant capacity of highbush blueberry (Vaccinum corymbosum, L.) fruit during cold storage. Ozone Sci. Eng. 2018, 1–10. [Google Scholar] [CrossRef]
- Song, J.; Fan, L.; Forney, C.F.; Jordan, M.A.; Hildebrand, P.D.; Kalt, W.; Ryan, D.A.J. Effect of ozone treatment and controlled atmosphere storage on quality and phytochemicals in highbush blueberries. Acta Hortic. 2003, 600, 417–423. [Google Scholar] [CrossRef]
- Goffi, V.; Zampella, L.; Forniti, R.; Petriccione, M.; Botondi, R. Effects of ozone postharvest treatment on physicochemical and qualitative traits of Actinidia chinensis ‘Soreli’ during cold storage. J. Sci. Food Agric. 2019, 99, 5654–5661. [Google Scholar] [CrossRef]
- Minas, I.S.; Karaoglanidis, G.S.; Manganaris, G.A.; Vasilakakis, M. Effect of ozone application during cold storage of kiwifruit on the development of stem-end rot caused by Botrytis cinerea. Postharvest Biol. Technol. 2012, 58, 203–210. [Google Scholar] [CrossRef]
- De Almeida Monaco, K.; Costa, S.M.; Minatel, I.O.; Correa, C.R.; Calero, F.A.; Vianello, F.; Lima, G.P.P. Influence of ozonated water sanitation on postharvest quality of conventionally and organically cultivated mangoes after postharvest storage. Postharvest Biol. Technol. 2016, 120, 69–75. [Google Scholar] [CrossRef] [Green Version]
- García-Martín, J.F.; Olmo, M.; García, J.M. Effect of ozone treatment on postharvest disease and quality of different citrus varieties at laboratory and at industrial facility. Postharvest Biol. Technol. 2018, 137, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Sroy, S.; Fundo, J.F.; Miller, F.A.; Brandão, T.R.S.; Silva, C.L.M. Impact of ozone processing on microbiological, physicochemical, and bioactive characteristics of refrigerated stored Cantaloupe melon juice. J. Food Process. Preserv. 2019, 43, e14276. [Google Scholar] [CrossRef]
- Angelino, P.D.; Golden, A.; Mount, J.R. Effect of ozone treatment on quality of orange juice. In IFT Annual Meeting Book of Abstracts, Chicago, IL, USA, 12–16 July 2003; Institute of Food Technologists: Chicago, IL, USA, 2003; Abstract No. 76C-2. [Google Scholar]
- Tiwari, B.K.; Muthukumarappan, K.; O’Donnell, C.P.; Cullen, P.J. Kinetics of freshly squeezed orange juice quality changes during ozone processing. J. Agric. Food Chem. 2008, 56, 6416–6422. [Google Scholar] [CrossRef]
- Miller, F.A.; Fundo, J.F.; Silva, C.L.M.; Brandão, T.R.S. Physicochemical and bioactive compounds of ‘Cantaloupe’ melon: Effect of ozone processing on pulp and seeds. Ozone Sci. Eng. 2018, 40, 209–215. [Google Scholar] [CrossRef]
- Yeoh, W.K.; Ali, A.; Forney, C.F. Effects of ozone on major antioxidants and microbial populations of fresh-cut papaya. Postharvest Biol. Technol. 2014, 89, 56–58. [Google Scholar] [CrossRef]
- Ali, A.; Ong, M.K.; Forney, C.F. Effect of ozone pre-conditioning on quality and antioxidant capacity of papaya fruit during ambient storage. Food Chem. 2014, 142, 19–26. [Google Scholar] [CrossRef]
- Jia, X.; Li, J.; Du, M.; Zhao, Z.; Song, J.; Yang, W.; Zheng, Y.; Chen, L.; Li, X. Combination of low fluctuation of temperature with TiO2 photocatalytic/ozone for the quality maintenance of postharvest peach. Foods 2020, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Xu, G.; Han, Z.; Li, Q.; Chen, Y.; Li, D. O3 Affects antioxidant capacity of pear. J. Food Qual. 2013, 36, 190–197. [Google Scholar] [CrossRef]
- Salvador, A.; Abad, I.; Arnal, L.; Martínez-Jávega, J. Effect of ozone on postharvest quality of persimmon. J. Food Sci. 2006, 71, S443–S446. [Google Scholar] [CrossRef]
- Shah, N.N.A.K.; Supian, N.A.M.; Hussein, N.A. Disinfectant of pummelo (Citrus Grandis L. Osbeck) fruit juice using gaseous ozone. J. Food Sci. Technol. 2019, 56, 262–272. [Google Scholar] [CrossRef]
- Giuggioli, N.; Briano, R.; Girgenti, V.; Peano, C. Quality effect of ozone treatment for the red raspberries storage. Chem. Eng. Trans. 2015, 44, 25–30. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, J.; Yin, C.; Li, G.; Jiang, Y.; Shan, Y. Effect of ozone treatment on flavonoid accumulation of satsuma mandarin (Citrus unshiu Marc.) during ambient storage. Biomolecules 2019, 9, 821. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.K.; Zhang, H.J.; Dong, C.H.; Ji, H.P.; Zhang, X.J.; Li, L.; Ban, Z.J.; Zhang, N.; Xue, W.T. Effect of ozone treatment on the phenylpropanoid biosynthesis of postharvest strawberries. RSC Adv. 2019, 9, 25429–25438. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.L.; Sethi, S.; Sharma, R.R.; Sharma, R.M.; Singh, S.; Singh, D. Aqueous ozone controls decay and maintains quality attributes of strawberry (Fragaria ananassa Duch.). J. Food Sci. Technol. 2020, 57, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.G.; Sanz, C.; Ríos, J.J.; Olías, R.; Olías, J.M. Effects of ozone treatment on postharvest strawberry quality. J. Agric. Food Chem. 1999, 47, 1652–1656. [Google Scholar] [CrossRef] [PubMed]
- Allende, A.; Marín, A.; Buendía, B.; Tomás-Barberán, F.; Gil, M.I. Impact of combined postharvest treatments (UV-C light, gaseous O3, superatmospheric O2 and high CO2) on health promoting compounds and shelf-life of strawberries. Postharvest Biol. Tec. 2007, 46, 201–211. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Wang, L.; Zhang, Z.; Li, J.; Zhao, C. Impact of ozone on quality of strawberry during cold storage. Front. Agric. China 2011, 5, 356–360. [Google Scholar] [CrossRef]
- Onopiuk, A.; Półtorak, A.; Wyrwisz, J.; Moczkowska, M.; Stelmasiak, A.; Lipińska, A.; Arkadiusz Szpicer, A.; Zalewska, M.; Zaremba, R.; Kuboń, M.; et al. Impact of ozonisation on pro-health properties and antioxidant capacity of ‘Honeoye’ strawberry fruit. CyTA-J. Food 2017, 15, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, B.K.; O’Donnell, C.P.; Patras, A.; Brunton, N.; Cullen, P.J. Effect of ozone processing on anthocyanins and ascorbic acid degradation of strawberry juice. Food Chem. 2009, 113, 1119–1126. [Google Scholar] [CrossRef]
- Sarig, P.; Zahavi, T.; Zutkhi, Y.; Yannai, S.; Lisker, N.; Ben-Arie, R. Ozone for control of post-harvest decay of table grapes caused by Rhizopus stolonifera. Physiol. Mol. Plant Pathol. 1996, 48, 403–415. [Google Scholar] [CrossRef]
- González-Barrio, R.; Beltrán, D.; Cantos, E.; Gil, M.I.; Espín, J.C.; Tomás-Barberán, F.A. Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. ‘Superior’ white table grapes. J. Agric. Food Chem. 2006, 54, 4222–4228. [Google Scholar] [CrossRef]
- Modesti, M.; Petriccione, M.; Forniti, R.; Zampella, L.; Scortichini, M.; Mencarelli, F. Methyl jasmonate and ozone affect the antioxidant system and the quality of wine grape during postharvest partial dehydration. Food Res. Int. 2018, 112, 369–377. [Google Scholar] [CrossRef]
- Alexandre, A.P.S.; Miano, A.C.; Brandão, T.R.S.; Miller, F.A.; Fundo, J.F.; Calori-Domingues, M.A.; Silva, C.L.M.; Augusto, P.E.D. Ozonation of Adzuki beans (Vigna angularis): Effect on the hydration kinetics, phenolic compounds and antioxidant capacity. J. Food Process Eng. 2018, 41, e12893. [Google Scholar] [CrossRef]
- Alwi, N.A.; Ali, A. Dose-dependent effect of ozone fumigation on physiological characteristics, ascorbic acid content and disease development on bell pepper (Capsicum annuum L.) during storage. Food Bioproc. Technol. 2015, 8, 558–566. [Google Scholar] [CrossRef]
- Ummat, V.; Singh, A.K.; Sidhu, G.K. Effect of aqueous ozone on quality and shelf life of shredded green bell pepper (Capsicum annuum). J. Food Process. Preserv. 2018, 42, 1–14. [Google Scholar] [CrossRef]
- Maherani, B.; Harich, M.; Salmieri, S.; Lacroix, M. Antibacterial properties of combined non-thermal treatments based on bioactive edible coating, ozonation, and gamma irradiation on ready-to-eat frozen green peppers: Evaluation of their freshness and sensory qualities. Eur. Food Res. Technol. 2019, 245, 1095–1111. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Machado, T.M.; Oliveira, L.M.; Silva Borges, L.; Pedrosa, V.A.; Vanzani, P.; Vianello, F. Ozonated water and chlorine effects on the antioxidant properties of organic and conventional broccoli during postharvest. Sci. Agric. 2014, 71. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, O.P.; Raju, P.S.; Ravi, N.; Singh, A.; Bawa, A.S. Effectiveness of ozone in combination with controlled atmosphere on quality characteristics including lignification of carrot sticks. J. Food Eng. 2011, 102, 43–48. [Google Scholar] [CrossRef]
- Hildebrand, P.D.; Forney, C.F.; Song, J.; Fan, L.; McRae, K.B. Effect of a continuous low ozone exposure (50 nL L-1) on decay and quality of stored carrots. Postharvest Biol. Tec. 2008, 49, 397–402. [Google Scholar] [CrossRef]
- De Souza, L.P.; Faroni, L.R.A.; Heleno, F.F.; Cecon, P.R.; Gonçalves, T.C.G.; da Silva, G.J.; Prates, L.H.F. Effects of ozone treatment on postharvest carrot quality. LWT-Food Sci. Technol. 2018, 90, 53–60. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Yu, Z.; Gao, X. Preservation of fresh-cut celery by treatment of ozonated water. Food Control 2005, 16, 279–283. [Google Scholar] [CrossRef]
- Glowacz, M.; Rees, D. Exposure to ozone reduces postharvest quality loss in red and green chilli peppers. Food Chem. 2016, 210, 305–310. [Google Scholar] [CrossRef]
- Chitravathi, K.; Chauhan, O.P.; Raju, P.S.; Madhukar, N. Efficacy of aqueous ozone and chlorine in combination with passive modified atmosphere packaging on the postharvest shelf-life extension of green chillies (Capsicum annuum L.). Food Bioproc. Technol. 2015, 8, 1386–1392. [Google Scholar] [CrossRef]
- An, J.; Zhang, M.; Lu, Q. Changes in some quality indexes in fresh-cut green asparagus pretreated with aqueous ozone and subsequent modified atmosphere packaging. J. Food Eng. 2007, 78, 340–344. [Google Scholar] [CrossRef]
- Ölmez, H.; Akbas, M.Y. Optimization of ozone treatment of fresh-cut green leaf lettuce. J. Food Eng. 2009, 90, 487–494. [Google Scholar] [CrossRef]
- Akbas, M.Y.; Ölmez, H. Effectiveness of organic acid, ozonated water and chlorine dippings on microbial reduction and storage quality of fresh-cut iceberg lettuce. J. Sci. Food Agric. 2007, 87, 2609–2616. [Google Scholar] [CrossRef]
- Beltrán, D.; Selma, M.V.; Marín, A.; Gil, M.I. Ozonated water extends the shelf life of fresh-cut lettuce. J. Agric. Food Chem. 2005, 5, 5654–5663. [Google Scholar] [CrossRef] [PubMed]
- Hassenberg, K.; Idler, C.; Molloy, E.; Geyer, M.; Plöchl, M.; Barnes, J. Use of ozone in a lettuce-washing process: An industrial trial. J. Sci. Food Agri. 2007, 87, 914–919. [Google Scholar] [CrossRef]
- Gutiérrez, D.R.; Lemos, L.; Rodríguez, S.C. Effect of UV-C and ozone on the bioactive compounds and antioxidant capacity of minimally processed rocket (Eruca Sativa Mill.). Int. J. New Technol. Res. 2018, 4, 23–29. [Google Scholar] [CrossRef]
- Simão, R.; Neto, D.G.T.; Loose, C.E. The ozonation as competitive advantage in post-harvest treatment of tomato. Mediterr. J. Soc. Sci. 2015, 6, 529. [Google Scholar] [CrossRef] [Green Version]
- Onopiuk, A.; Półtorak, A.; Wojtasik-Kalinowska, I.; Szpicer, A.; Marcinkowska-Lesiak, M.; Pogorzelski, G.; Wierzbicka, A. Impact of the storage atmosphere enriched with ozone on the quality of Lycopersicon esculentum tomatoes. J. Food Process. Preserv. 2019, 43, e14252. [Google Scholar] [CrossRef]
- Venta, M.B.; Broche, S.S.C.; Torres, I.F.; Perez, M.G.; Lorenzo, E.V.; Rodriguez, Y.R.; Cepero, S.M. Ozone application for postharvest disinfection of tomatoes. Ozone Sci. Eng. 2010, 32, 361–371. [Google Scholar] [CrossRef]
- Wang, L.; Fan, X.; Sokorai, K.; Sites, J. Quality deterioration of grape tomato fruit during storage after treatments with gaseous ozone at conditions that significantly reduced populations of Salmonella on stem scar and smooth surface. Food Control 2019, 103, 9–20. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’Donnell, C.P.; Brunton, N.P.; Cullen, P.J. Degradation kinetics of tomato juice quality parameters by ozonation. Int. J. Food Sci. Technol. 2009, 44, 1199–1205. [Google Scholar] [CrossRef]
- Pignocchi, C.; Fletcher, J.M.; Wilkinson, J.E.; Barnes, J.D.; Foyer, C.H. The function of ascorbate oxidase in tobacco. Plant Physiol. 2003, 132, 1631–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcı́a-Viguera, C.; Bridle, P. Influence of structure on colour stability of anthocyanins flavylium salts with ascorbic acid. Food Chem. 1999, 64, 21–26. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Tec. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Rabie, M.A.; Soliman, A.Z.; Diaconeasa, Z.S.; Constantin, B. Effect of pasteurization and shelf life on the physicochemical properties of Physalis (Physalis peruviana L.) juice. J. Food Process. Preserv. 2015, 39, 1051–1060. [Google Scholar] [CrossRef]
- Mirdehghan, S.H.; Valero, D. Bioactive compounds in tomato fruit and its antioxidant activity as affected by incorporation of Aloe, eugenol, and thymol in fruit package during storage. Int. J. Food Prop. 2017, 20, 1798–1806. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Trokowski, K.; Karlovits, G.; Szłyk, E. Determination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties. J. Agric. Food Chem. 2010, 58, 7502–7509. [Google Scholar] [CrossRef]
- Wold, A.B.; Rosenfeld, H.J.; Holte, K.; Baugerød, H.; Blomhoff, R.; Haffner, K. Colour of post-harvest ripened and vine ripened tomatoes (Lycopersicon esculentum Mill.) as related to total antioxidant capacity and chemical composition. Int. J. Food Sci. Technol. 2004, 39, 295–302. [Google Scholar] [CrossRef]
- Miller, F.A.; Silva, C.L.M.; Brandão, T.R.S. A Review on ozone-based treatments for fruit and vegetables preservation. Food Eng. Rev. 2013, 5, 77–106. [Google Scholar] [CrossRef]
- Sanoner, P.; Guyot, S.; Marnet, N.; Molle, D.; Drilleau, J.F. Polyphenol profiles of French cider apple varieties (Malus domestica sp.). J. Agric. Food Chem. 1999, 47, 4847–4853. [Google Scholar] [CrossRef]
- Bialka, K.L.; Demirci, A. Decontamination of Escherichia coli O157: H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. J. Food Sci. 2007, 72, M391–M396. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Shi, M.; Jia, B.; Yan, Z.; Gao, L.; Guan, W.; Wang, Q.; Zuo, J. Effect of ozone on the activity of antioxidant and chlorophyll-degrading enzymes during postharvest storage of coriander (Coriandrum sativum L.). J. Process. Preserv. 2019, 43, e14020. [Google Scholar] [CrossRef]
- Xue, J.; Chen, L.; Wang, H. Degradation mechanism of Alizarin Red in hybrid gas-liquid phase dielectric barrier discharge plasmas: Experimental and theoretical examination. Chem. Eng. J. 2008, 138, 120–127. [Google Scholar] [CrossRef]
- Yeom, H.W.; Streaker, C.B.; Zhang, Q.H.; Min, D.B. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J. Agric. Food Chem. 2000, 48, 4597–4605. [Google Scholar] [CrossRef]
- Rico, D.; Martin-Diana, A.B.; Frias, J.M.; Henehan, G.T.M.; Barry-Ryan, C. Effect of ozone and calcium lactate treatments on browning and texture properties of fresh-cut lettuce. J. Sci. Food Agric. 2006, 86, 2179–2188. [Google Scholar] [CrossRef]
- Ong, M.K.; Ali, A.; Alderson, P.G.; Forney, F.C. Effect of different concentration of ozone on physiological changes associzted to gas exchange, fruit ripening, fruit surface quality and defence-related enzyme levels in papaya fruit during ambient storage. Sci. Hortic. 2014, 179, 163–169. [Google Scholar] [CrossRef]
- Cullen, P.J.; Norton, T. Ozone sanitisation in the food industry. In Ozone in Food Processing; O’Donnell, C., Tiwari, B.K., Cullen, P.J., Rice, R.G., Eds.; Wiley-Blackwell: Oxford, UK, 2012; pp. 163–1761. [Google Scholar]
Product | Effect | Application Form | Ozone Dose | Process Duration | Source |
---|---|---|---|---|---|
Bobal Grapevines | +Terpenoids +Total anthocyanins | Water | NA | Single application 6 weeks before harvest | [66] |
Broccoli plants | −Glucoraphanin +Glucobrassicin +Glucosinolates +Phenolics | Water (foliar application-spraying or root application) | 0.2 mg/L | Foliar spraying on 2 consecutive days 2 times per week until harvesting (90 days) or 32 root treatments | [67] |
Capsicum seedlings | ±Total phenolics ±Vitamin C | Water (under greenhouse conditions) | 0.4 ppm, 750 mV | NA | [68] |
Passion fruit liana seeds | +Ascorbic acid +Carotenoids +Flavonoids | Gaseous | 22, 41, and 58 ppb/h AOT40 and 13.52, 17.24, and 20.62 mmol/m2 POD0 | over 97 days | [69] |
Red pepper fruit from Capsicum baccatum | −Capsaicin +Total carotenoids +Total phenolics +Hydroxyl radical-scavenging activity | Gaseous | 171.6 µg/m3 | 62 days | [70] |
Strawberries (Fragaria x ananassa Duch.) | −Ascorbic acid ±Antioxidative capacity ±Anthocyanins ±Phenolics | Gaseous | 156 μg/m³ | 8 h/day for 5 days a week for 2 months | [71] |
Watermelon seedlings | +Total phenolic +Antioxidant activity ±Vitamin C | Water (under greenhouse conditions) | 0.4 ppm, 750 mV | NA | [42] |
Product | Effect | Application Form | Ozone Dose | Process Duration | Source |
---|---|---|---|---|---|
Apple | −Ascorbic acid −Cyanidin-3-glucoside | Water | 200 mg/h | 15 and 30 min | [96] |
Apple | ±Ursolic acid −Total flavonols ±Total phenols | Gaseous and water | NA | NA | [95] |
Apple (fresh-cut) | ±Total phenols +Antioxidant capacity | Water | 1.4 mg/L | 5 and 10 min | [97] |
Apple juice | −color −Phenolics | Gaseous | 1–4.8% w/w | 0–10 min | [98] |
Apple juice | −color −Total phenols −Chlorogenic acid −Caffeic acid −Cinnamic acid | Gaseous | 0.048 mg O3 at a constant flow rate of 0.12 L/min | 0–10 min | [76] |
Banana | −Vitamin C +Total phenol +Total flavonoid | Gaseous | 0.44–0.59 mmol | 20 min | [85] |
Black mulberry fruit (Morus nigra) | ±color +Total soluble solids | Gaseous | 2 ppm | NA | [99] |
Black mulberry fruit (M. nigra) | +Ascorbic acid ±Total anthocyanin | Gaseous | 0.64 ± 0.1 or 5.14 ± 0.1 mg ozone/m3 | 6 days | [100] |
Blackberry | ±Anthocyanins | Gaseous | 0.1 and 0.3 ppm | 12 days | [101] |
Blackberry juice | −color −Anthocyanin | Gaseous | 7.8% w/w | 10 min | [102] |
Chinese winter jujube fruit | −color +Total soluble solids +Ascorbic acid | Water | 2.5 mg/L | 5 min | [103] |
Grape juice | −color −Anthocyanins | Gaseous | 0–7.8% w/w | 10 min | [104] |
Guava | −Vitamin C −Total phenol −Total flavonoid | Gaseous | 0.44–0.59 mmol | 20 min | [98] |
Guava | ±Vitamin C | Water | 1.1 ppm | 5 min | [105] |
Highbush blueberry fruit (Vaccinum corymbosum L.) | +Vitamin C +Flavonoids +Anthocyanins +Antioxidant activity | Gaseous | 15 ppm | Intermittent 30 min, every 12 h, for 28 days | [106] |
Highbush blueberry fruit (V. corymbosum L.) | ±Antioxidant capacity ±Anthocyanins ±Phenolics | Gaseous | 200 or 700 ppb | 1, 2, or 4 days | [107] |
Kiwifruit | +Fructose, galactose, fructose −Organic acids ±Ascorbic acid | Gaseous | 2 mg/m3 | 7 months | [94] |
Kiwifruit | +Soluble solids −Total phenolics ±Flavonoids +Antioxidant activity | Gaseous | 300 ppb | 60 days | [108] |
Kiwifruit | +Total carotenoids −Total flavonoids +Total phenols +Antioxidant activity (FRAP, DPPH) | Gaseous | 0.3 μL/L | for 72 or 144 h | [109] |
Mandarin | ±Soluble solids ±Vitamin C | Gaseous | 60 mg/kg and 1.6 mg/kg | Continuous (60 mg/kg) and intermittent (1.6 mg/kg) 12 h/24 h for 28 days | [110] |
Mango | +β-carotene ±Total soluble solids +Ascorbic acid ±Total phenols +Antioxidant activity (FRAP, DPPH) | Water | 1 mg/L/s | 20 min | [111] |
Melon juice | +Phenolics +Vitamin C +Antioxidant activity | Gaseous | 7.7 ± 2.4 g/L | 10 min | [112] |
Orange | ±Soluble solids ±Vitamin C | Gaseous | 60 mg/kg and 1.6 mg/kg | Continuous (60 mg/kg) and intermittent (1.6 mg/kg) 12 h/24 h for 28 days | [110] |
Orange juice | −Color −Ascorbic acid | Gaseous | 0.9 g/h | 90 min | [113] |
Orange juice | −Color −Ascorbic acid | Gaseous | 0.6–10.0% | 10 min | [114] |
Orange juice | −Color ±Total soluble solids −Ascorbic acid −Total phenolics | Gaseous | 600 mg/h | 30 min | [78] |
Lemon juice | −Color ±Total soluble solids −Ascorbic acid −Total phenolics | Gaseous | 600 mg/h | 30 min | [78] |
Lime juice | −Color ±Total soluble solids −Ascorbic acid −Total phenolics | Gaseous | 600 mg/h | 30 min | [78] |
Melon | ±Color ±Carotenoids −Phenolics −Antioxidant activity | Gaseous | 10.0 ± 4.8 and 38.0 ± 8.1 g/L | 30 and 60 min | [115] |
Papaya fruit | +Total phenolic +Antioxidant activity (FRAP, DPPH) −Ascorbic acid | Gaseous | 9.2 ± 0.2 μL/L | 20 and 30 min | [116] |
Papaya fruit | +Total soluble solids +Ascorbic acid +β-carotene +Lycopene +Antioxidant activity | Gaseous | 2.5 ppm | 96 h | [117] |
Peach fruit | −Color −Total phenols | Gaseous | 200 mg/m3 | Intermittent 30 min every week for 60 days | [118] |
Pear | +Total phenolics +Total flavonoids | Gaseous | 6.42 mg/m3 | Intermittent 1 h/d for 8 days | [119] |
Persimmon | ±Color index ±Total soluble solids | Gaseous | 0.15 ppm (vol/vol) | 30 days | [120] |
Pineapple | −Vitamin C +Total phenol +Total flavonoid | Gaseous | 0.44–0.59 mmol | 20 min | [98] |
Pitaya juice | −Color −Total betalain −Betaxanthins −Betacyanins −Total phenolics −Antioxidant activity (DPPH, ABTS) | Gaseous | 24 mg/L/min | 7 min | [88] |
Pummelo juice | −Total phenolics −Ascorbic acid | Gaseous | 600 mg/h | 50 min | [121] |
Raspberry (Rubus ideaeus L.) | ±Color +Soluble solids +Phenols +Flavonoids +Anthocyanins +Vitamin C +Total antioxidant activity | Gaseous | 0.3 and 0.9 mg/L | 60 and 120 min | [40] |
Raspberry (Rubus ideaeus L.) | +Antioxidant capacity +Phenolics +Anthocyanins ±Vitamin C | Gaseous | 8–10 ppm | Intermittent 30 min, every 12 h, for 3 days | [39] |
Raspberry | ±Soluble solids −Color ±Anthocyanins ±Phenols ±Antioxidant capacity | Gaseous | 50 and 200 ppb | 12 h | [122] |
Mandarin | +Flavonoid content +Antioxidant activity (DPPH, ABTS) | Gaseous | 2.5 μg/L | 24 h | [123] |
Strawberry | +Total phenols +Total flavonoids +Total anthocyanins | Gaseous | 5 ppm | Intermittent 10 h every week for 21 days | [124] |
Strawberry | +Color +Phenolics +Anthocyanin | Water | 0.1 ppm | 2 min | [125] |
Strawberry | −Anthocyanin +Vitamin C −Sucrose, glucose, fructose −Volatile/aroma compounds | Gaseous | 0.35 ppm | 3 days | [126] |
Strawberry | −Phenolics −Procyanidins −Vitamin C | Gaseous | 5, 10, 15, and 20 g/L | NA | [127] |
Strawberry | +Ascorbic acid | Gaseous | 4 ppm | Intermittent 30 min every day for 20 days | [128] |
Strawberry | +Phenolics +Antioxidant capacity | Gaseous | 0.3–1.2 mg/L | 60, 120, 150, and 180 min | [129] |
Strawberry juice | −Anthocyanin −Ascorbic acid −color | Gaseous | 7.8% w/w | 10 min | [130] |
Table grape berries | +Phytoalexins (resveratrol, pterostilbene) | Gaseous | 16 mg/L | 5–10 min | [131] |
Table grapes | +Total flavanols +Total amount of hydroxycinnamic acid derivatives +Total phenolics | Gaseous | 0.1 µL/L | 60 days | [90] |
Table grapes (white) | +Stilbenoids −Color | Gaseous | 1.67 and 3.88 g/h | 1, 3, and 5 h | [132] |
Wine grapes (white) | +Catechin −Hydroxycinnamic acids −Antiradical capacity ±Total soluble solid −Total polyphenols −Flavanols | Gaseous | 1.5 g/h | 12 h | [93] |
Wine red grapes | +Polyphenols ±Carotenoids ±Anthocyanin | Gaseous | 1.5 g/h | 18 h | [23] |
Wine red grapes | −Polyphenols −Carotenoids −Anthocyanin | Gaseous | 0.5 g/h and 1.5 g/h | Continuous 18 h and intermittent 4 h/day | [23] |
Wine grapes | ±Total soluble solids +Polyphenols | Gaseous | 20 g/h with 6% w/w | 12 h | [133] |
Adzuki beans (Vigna angularis) | ±Total phenolics ±Antioxidant capacity (DPPH, ABTS) | Gaseous | 62 mg/L | 120 min | [134] |
Bell pepper (Capsicum annuum L.) | −Color −Chlorophyll −Ascorbic acid ±Soluble solid | Gaseous | 7 and 9 ppm | 3 days | [135] |
Bell pepper (C. annuum L.) | ±Color −Chlorophyll +Ascorbic acid ±Soluble solid | Gaseous | 1 and 3 ppm | 3 days | [135] |
Bell pepper (shredded green) | +Ascorbic acid +Color | Water | 1–3 mg/L | 1–5 min | [136] |
Bell pepper (frozen green) | ±Color ±Chlorophyll −Dehydroascorbic acid −Free ascorbic acid −Total ascorbic acid | Gaseous | 10 ppm | 5 min | [137] |
Broccoli (Brassica oleracea L.) | ±Polyphenolic ±Flavonoids ±Vitamin C ±Total chlorophyll | Water | NA | 5 and 10 min | [138] |
Carrots | −Ascorbic acid, −Carotenoids | Water | 1:2 w/v; 200 mg O3/h | 10 min | [139] |
Carrots | ±Glucose, fructose, and galactose | Gaseous | 50 ± 10 nL/L | NA | [140] |
Carrots | ±Color +Soluble solids | Gaseous and water | 0–10 mg/L | 30,60, and 90 min | [141] |
Carrots (shredded) | −Total phenols −Antioxidant capacity −Soluble solids | Water | 2 ppm | 60 min | [79] |
Celery (fresh-cut) | ±Vitamin C ±Total sugar | Water | 0.03, 0.08, and 0.18 ppm | 5 min | [142] |
Chicory | +Total antioxidant activity ±Sesquiterpene lactones +Chicoric acid ±Sugars | Gaseous | 8.25 mg/L (from first day) and 9 mg/L (from third day till end) | NA | [91] |
Chili peppers | ±Color ±Lycopene +Fructose +Ascorbic acid ±Total phenolics ±Antioxidant activity | Gaseous | 0.45 and 0.9 μmol/mol | NA | [143] |
Chili peppers | −Color −Glucose +Ascorbic acid ±Total phenolics −Antioxidant activity | Gaseous | 2 μmol/mol | NA | [143] |
Chili peppers | +Ascorbic acid +Antioxidant activity ±Capsaicin ±Total phenolics ±Total flavonoids −Total carotenoids +Total chlorophyll | Gaseous | 30 mg/L | 10 min | [144] |
Green asparagus | +Antioxidant activity | Water | 1 mg/L | 30 min | [145] |
Hot red pepper fruits | +Quercetin 3-O-rhamnoside +Quercetin 3-O-rhamnoside-7-O-glucoside +total phenolics +Antiradical activity (DPPH) | Gaseous | 2 mg/L | 1 h and 3 h | [86] |
Hot red pepper fruits | +Phenolics +Antioxidant activity | Gaseous | 2 mg/L | 3 h | [41] |
Lettuce | ±Chlorophyll ±Ascorbic acid ±Total phenolics ±Antioxidant activity | Water | 12 mg/L | 15 min | [61] |
Lettuce (green leaf) (Lactuca sativa) | ±Vitamin C ±β-carotene | Water | 2 ppm | 2 min | [146] |
Lettuce (iceberg) | ±color ±β-carotene ±Vitamin C | Water | 4 mg/L | 15 min | [147] |
Lettuce (iceberg) | ±Phenolics −Ascorbic acid | Water | 10 and 20 mg/L | 3 min | [148] |
Lettuce (iceberg) | ±Total organic carbon ±Vitamin C +Sugar content | Water | 3.6 ppm | NA | [149] |
Parsley leaves | ±Chlorophyll −Ascorbic acid −Total phenolics −Antioxidant activity | Gaseous | 950 ± 12 µL/L | 20 min | [61] |
Rocket (Eruca sativa Mill.) leaves | ±Phenolics ±Total antioxidant capacity ±Total chlorophyll ±Carotenoids ±Ascorbic acid | Gaseous | 1, 5, and 10 ppm | 10 min | [150] |
Spinach | ±Chlorophyll ±Ascorbic acid ±Total phenolics ±Antioxidant activity | Water | 12 mg/L | 15 min | [61] |
Tomato | ±Soluble sugars (glucose, fructose) ±Antioxidant status ±Vitamin C ±Total phenolics +β-carotene +Lutein +Lycopene | Gaseous | 1.0 μmol/mol | 1 and 6 days | [59] |
Tomato | +Vitamin C | Gaseous | 1 ppm/vol | 24 h | [151] |
Tomato | +Total antioxidant activity ±Color | Gaseous | 0.9 and 2.5 mg/L | 30 and 120 min | [152] |
Tomato | +Fructose, glucose +Ascorbic acid +Fumaric acid | Gaseous | 4 ± 0.5 μL/L | Intermittent for 30 min every 3 h for 15 days | [92] |
Tomato | ±Soluble solids −Lycopene ±Vitamin C | Gaseous | 25 mg/m3 and 45 mg/m3 | Intermittent 2 h/d for 16 days | [153] |
Tomato (grape) | −Phenolic compounds −Lycopene −Vitamin C | Gaseous | 3.43 mg/L and 6.85 mg/L | 2 and 4 h | [154] |
Tomato (Solanum lycopersicum L.) | ±Color ±Sugar content +Phenolic compounds ±Antioxidant capacity | Gaseous | 10 μL/L | 10 min | [84] |
Tomato juice | −color −Ascorbic acid | Gaseous | 7.8% w/w | 10 min | [155] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachadyn-Król, M.; Agriopoulou, S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review. Molecules 2020, 25, 2416. https://doi.org/10.3390/molecules25102416
Sachadyn-Król M, Agriopoulou S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review. Molecules. 2020; 25(10):2416. https://doi.org/10.3390/molecules25102416
Chicago/Turabian StyleSachadyn-Król, Monika, and Sofia Agriopoulou. 2020. "Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review" Molecules 25, no. 10: 2416. https://doi.org/10.3390/molecules25102416
APA StyleSachadyn-Król, M., & Agriopoulou, S. (2020). Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review. Molecules, 25(10), 2416. https://doi.org/10.3390/molecules25102416