Cellulose as a Delivery System of Raspberry Juice Volatiles and Their Stability
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Volatiles
2.2. Comparison of Flavour Profile
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Cellulose/Raspberry Complexes
4.3. Volatile Compounds Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Noguerol-Pato, R.; Gonzalez-Barreiro, C.; Simal-Gandara, J.; Martinez, M.C.; Santiago, M.C.; Cancho-Grande, B. Active odorants in Mouratón grapes from shoulders and tips into the bunch. Food Chem. 2012, 133, 1362–1372. [Google Scholar] [CrossRef] [Green Version]
- Dunkel, M.; Schmidt, U.; Struck, S.; Berger, L.; Gruening, B.; Hossbach, J.; Jaeger, I.S.; Effmert, U.; Piechulla, B.; Eriksson, R.; et al. Super Scent—A database of flavours and scents. Nucleic Acid Res. 2009, 37, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Aprea, E.; Carlin, S.; Giongo, L.; Grisenti, M.; Gasperi, F. Characterization of 14 raspberry cultivars by solid-phase microextraction and relationship with gray mold susceptibility. J. Agric. Food Chem. 2010, 58, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Latrasse, A. Fruits III. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 329–387. [Google Scholar]
- Aprea, E.; Biasioli, F.; Carlin, S.; Endrizzi, I.; Gasperi, F. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: Solid-phase microextraction/gas chromatography–mass spectrometry (SPME/GC–MS) and proton-transfer reaction-mass spectrometry (PTR-MS). J. Agric. Food Chem. 2009, 57, 4011–4018. [Google Scholar] [CrossRef] [PubMed]
- Lubbers, S.; Landy, P.; Voilley, A. Retention and release of aroma compounds in food containing proteins. J. Food Technol. 1998, 52, 68–74. [Google Scholar]
- Burgess, D.J.; Ponsart, S. Glucuronidase activity following complex coacervation and spray drying microencapsulation. J. Microencapsul. 1998, 15, 569–579. [Google Scholar] [CrossRef]
- Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavor encapsulation and controlled releases A review. Int. J. Food Sci. Technol. 2006, 41, 1–21. [Google Scholar] [CrossRef]
- Thies, C. Microencapsulation. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley and Sons, Inc.: New York, NY, USA, 2001; Volume 16, pp. 438–463. [Google Scholar]
- Ubbink, J.; Schoonman, A. Flavor delivery systems. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley and Sons, Inc.: New York, NY, USA, 2001; Volume 11, pp. 527–563. [Google Scholar]
- Burgess, D.J. Practical analysis of complex coacervate systems. J. Coll. Interf. 1990, 140, 227–238. [Google Scholar] [CrossRef]
- Guinard, J.X.; Marty, C. Time-intensity measurement of flavor release from a model gel system: Effect of gelling agent type and concentration. J. Food Sci. 1995, 60, 727–730. [Google Scholar] [CrossRef]
- Cayot, N.; Taisant, C.; Voilley, A. Release and perception of isoamyl acetate from a starch-based food matrix. J. Agric. Food Chem. 1998, 46, 3201–3206. [Google Scholar] [CrossRef]
- Guichard, E. Interactions between flavor compounds and food ingredients and their influence on flavor perception. Food Rev. Int. 2002, 18, 49–70. [Google Scholar] [CrossRef]
- Secouard, S.; Malhiac, C.; Grisel, M.; Decroix, B. Release of limonene from polysaccharide matrices: Viscosity and synergy effects. Food Chem. 2003, 82, 227–234. [Google Scholar] [CrossRef]
- Zafeiropoulou, T.; Evageliou, V.; Gardeli, C.; Yanniotis, S.; Komaitis, M. Retention of selected aroma compounds by gelatine matrices. Food Hydrocoll. 2012, 28, 105–109. [Google Scholar] [CrossRef]
- Zeller, B.L.; Salleb, F.Z. Production of micro-porous sugars for adsorption of volatile flavors. J. Food Sci. 1996, 61, 749–759. [Google Scholar] [CrossRef]
- Dziezak, J.D. Microencapsulation and encapsulation ingredients. Food Technol. 1988, 42, 136–151. [Google Scholar]
- Mutka, J.R.; Nelson, D.B. Preparation of encapsulated flavors with high flavor level. Food Technol. 1988, 42, 154–157. [Google Scholar]
- Boland, B.A.; Burh, K.; Giannouli, P.; Ruth, M.S. Influence of gelatine, starch, pectin and artificial saliva on the release of 11 flavor compounds from model gel systems. Food Chem. 2004, 86, 401–411. [Google Scholar] [CrossRef]
- Arvisenet, G.; Voilley, A.; Cayot, N. Retention of aroma compounds in starch matrices: Competitions between aroma compounds towards amylose and amylopectin. J. Agric. Food Chem. 2002, 50, 7345–7349. [Google Scholar] [CrossRef]
- Arvisenet, G.; Ball, L.P.; Voilley, A.; Cayot, N. Influence of physiochemical interaction between amylose and aroma compounds on the retention of aroma in food-like matrices. J. Agric. Food Chem. 2002, 50, 7088–7093. [Google Scholar] [CrossRef]
- Komes, D.; Lovrić, T.; Kovačević Ganić, K.; Gracin, L. Study of trehalose addition on aroma retention in dehydrated strawberry puree. Food Technol. Biotechnol. 2003, 41, 111–119. [Google Scholar]
- Flink, J.; Karel, M. Effects of process variables on retention of volatiles in freeze-drying. J. Food Sci. 1970, 35, 444–447. [Google Scholar] [CrossRef]
- Godshall, M.A. How carbohydrates influence food flavor. Food Technol. 1997, 51, 63–67. [Google Scholar]
- Goubet, I.; Le Quere, L.J.; Voilley, J.A. Retention of aroma compounds by carbohydrates: Influence of their physiochemical characteristics and their physical state. A review. J. Agric. Food Chem. 1998, 46, 1981–1990. [Google Scholar] [CrossRef]
- Taylor, A.J.; Linforth, R.S.T. Food Flavor Technology, 2nd ed.; Blackwell Publishing: Oxford, UK, 2010. [Google Scholar]
- Boland, B.A.; Delahunty, M.C.; Ruth, M.S. Influence of texture of gelatin gels and pectin’s gels on strawberry flavor release and perception. Food Chem. 2006, 96, 452–460. [Google Scholar] [CrossRef]
- Hansson, A.; Andersson, J.; Leufven, A. The effect of sugar and pectin on flavor release from soft drink-related a model system. Food Chem. 2001, 72, 363–368. [Google Scholar] [CrossRef]
- Bharimalla, A.K.; Deshmukh, S.P.; Patil, P.G.; Vigneshwaran, N. Energy efficient manufacturing of nanocellulose by chemo-and bio-mechanical processes: A review. World J. Nano Sci. Eng. 2015, 5, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Serpa, A.; Velásquez-Cock, J.; Gañán, P.; Castro, C.; Vélez, L.; Zuluaga, R. Vegetable nanocellulose in food science: A review. Food Hydrocoll. 2016, 57, 178–186. [Google Scholar]
- Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of hydrophobic and low soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- Jiménez Saelices, C.; Capron, I. Design of pickering micro-and nanoemulsions based on the structural characteristics of nanocelluloses. Biomacromolecules 2018, 19, 460–469. [Google Scholar] [CrossRef]
- Heyang, J.; Fei, X.; Jiang, C.; Yaping, Z.; Lin, H. Nanoencapsulation of lutein with hydroxypropylmethyl cellulose phthalate by supercritical antisolvent. Chin. J. Chem. Eng. 2009, 17, 672–677. [Google Scholar]
- Ferrer, A.; Pal, L.; Hubbe, M. Nanocellulose in packaging: Advances in barrier layer technologies. Ind. Crop. Prod. 2017, 95, 574–582. [Google Scholar] [CrossRef]
- Fathi, M.; Karim, M.; Ahmadi, N. Nanostructures of cellulose for encapsulation of food ingredients. In Biopolymer Nanostructures for Food Encapsulation Purposes; Jafri, S., Ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Fehr, C.; Guntern, O. Efficient synthesis of enantiomerically pure α-ionone from (r)- and (s)-α-damascone. Helv. Chim. Acta 1992, 75, 1023–1028. [Google Scholar] [CrossRef]
- Jaeger, S.R.; McRae, J.F.; Bava, C.M.; Beresford, M.K.; Hunter, D.; Jia, Y.; Chheang, S.L.; Jin, D.; Peng, M.; Gamble, J.C.; et al. A Mendelian Trait for Olfactory Sensitivity Affects Odor Experience and Food Selection. Curr. Biol. 2013, 23, 1601–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirife, J.; Karel, M. Volatile-retention during freeze-drying of aqueous suspensions of starch and cellulose. J. Agric. Food Chem. 1973, 21, 936–941. [Google Scholar] [CrossRef]
- Gerschenson, L.N.; Bartholomai, G.B.; Chirife, J. Retention of volatiles during freeze drying of tomato juice. J. Food Technol. 1979, 14, 351–360. [Google Scholar] [CrossRef]
- Galmarini, M.V.; Zamora, M.C.; Baby, R.; Chirife, J.; Mesina, V. Aromatic profiles of spray-dried encapsulated orange flavors: Influence of matrix composition in the aroma retention evaluated by sensory analysis and electronic nose technique. Int. J. Food Sci. Technol. 2008, 43, 1569–1576. [Google Scholar] [CrossRef]
- Kopjar, M.; Piližota, V.; Hribar, J.; Simčič, M.; Zlatič, E.; Nedić Tiban, N. Influence of trehalose addition and storage conditions on the quality of strawberry cream filling. J. Food Eng. 2008, 87, 341–350. [Google Scholar] [CrossRef]
- Galmarini, M.V.; van Baren, C.; Zamora, M.C.; Chirife, J.; Di Leo Lira, P.; Bandoni, A. Impact of trehalose, sucrose and/or maltodextrin addition on aroma retention in freeze dried strawberry puree. Int. J. Food Sci. Technol. 2011, 46, 1337–1345. [Google Scholar]
- Ubbink, J.; Krüger, J. Physical approaches for the delivery of active ingredients in foods. Trends Food Sci. Technol. 2006, 17, 244–254. [Google Scholar] [CrossRef]
- Xiao, Z.; Hou, W.; Kang, Y.; Niu, Y.; Kou, X. Encapsulation and sustained release properties of watermelon flavor and its characteristic aroma compounds from γ-cyclodextrin inclusion complexes. Food Hydrocoll. 2019, 97, 105202. [Google Scholar] [CrossRef]
- Naknean, P.; Meenune, M. Factors affecting retention and release of flavor compounds in food carbohydrates. Review article. Int. Food Res. J. 2010, 17, 23–34. [Google Scholar]
- Rosenberg, M.; Kopelman, I.J.; Talmon, Y. Factors affecting retention in spray drying microencapsulation in volatile materials. J. Agric. Food Chem. 1990, 38, 1288–1294. [Google Scholar] [CrossRef]
- Kim, C.H.; Maga, J.A. Chain length and functional group impact on retention during extrusion. In Thermally Generated Flavors: Mallard, Microwave and Extrusion Processes; Parliament, T.H., Morello, M.J., McGorrin, R.J., Eds.; American Chemical Society: Washington DC, USA, 1994; pp. 105–153. [Google Scholar]
- Bylaite, E.; Ilgunaite, Z.; Meyer, S.A.; Adler-Nissen, J. Influence of λ-carrageenan on the release of systematic series of volatile flavor compounds from viscous food model systems. J. Agric. Food Chem. 2004, 52, 3542–3549. [Google Scholar] [CrossRef] [PubMed]
- Terta, M.; Blekes, G.; Paraskevopoulou, A. Retention of selected compounds by polysaccharide solution: A Thermodynamic and kinetic approach. Food Hydrocoll. 2006, 20, 863–871. [Google Scholar] [CrossRef]
- Bhandari, B.; D’Arcy, B.; Young, G. Flavor retention during high temperature short time extrusion cooking process: A review. Int. J. Food Sci. Technol. 2001, 36, 453–461. [Google Scholar] [CrossRef]
- Astray, G.; Mejuto, J.C.; Morales, J.; Rial-Otero, R.; Simal-Gándara, J. Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Res. Int. 2010, 43, 1212–1218. [Google Scholar] [CrossRef]
- Chattopadhyaya, S.; Singhal, R.S.; Kulkarni, P.R. Oxidized starch as gum arabic substitute for encapsulation of flavors. Carbohydr. Polym. 1998, 37, 143–144. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Chen, L.; Li, B.; Li, L.; Zhu, J. Tunable D-Limonene Permeability in Starch-Based Nanocomposite Films Reinforced by Cellulose Nanocrystals. J. Agric. Food Chem. 2018, 66, 979–987. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Fortea, M.I.; Trabal, J.; Rodríguez-López, M.I.; Carazo-Díaz, C.; Gabaldón, J.A.; Núñez-Delicado, E. Optimization of the microencapsulation of synthetic strawberry flavor with different blends of encapsulating agents using spray drying. Powder Technol. 2018, 338, 591–598. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Fortea, M.I.; Trabal, J.; Rodríguez-López, M.I.; Carazo-Díaz, C.; Gabaldón, J.A.; Núñez-Delicado, E. Stability of microencapsulated strawberry flavor by spray drying, freeze drying and fluid bed. Powder Technol. 2019, 347, 179–185. [Google Scholar] [CrossRef]
- van Ruth, S.M.; King, C. Effect of starch and amylopectin concentrations on volatile flavor release from aqueous model food systems. Flavour Fragr. J. 2003, 18, 407–416. [Google Scholar] [CrossRef]
- Kopjar, M.; Hribar, J.; Simčič, M.; Zlatič, E.; Piližota, V. Effect of trehalose addition on volatiles responsible for strawberry aroma. Nat. Prod. Commun. 2013, 8, 1767–1770. [Google Scholar] [PubMed] [Green Version]
- Goubet, I.; Dahout, C.; Sémon, E.; Guichard, E.; Le Quéré, J.-L.; Voilley, A. Competitive binding of aroma compounds by β-cyclodextrin. J. Agric. Food Chem. 2001, 49, 5916–5922. [Google Scholar] [CrossRef]
- Siqueira, G.; Bras, J.; Dufresne, A. Cellulosic bionanocomposites: A review of preparation, properties, and applications. Polymers 2010, 2, 728–765. [Google Scholar] [CrossRef] [Green Version]
- Kondo, T. Nematic ordered cellulose: Its structure and properties. In Cellulose: Molecular and Structural Biology; Springer: Cham, Switzerland, 2007; pp. 285–305. [Google Scholar]
- Zlatić, E.; Pichler, A.; Lončarić, A.; Vidrih, R.; Požrl, T.; Hribar, J.; Piližota, V.; Kopjar, M. Volatile compounds of freeze-dried sour cherry puree affected by the addition of sugars. Int. J. Food Prop. 2017, 20, S449–S456. [Google Scholar] [CrossRef] [Green Version]
- Zlatić, E.; Pichler, A.; Vidrih, R.; Hribar, J.; Piližota, V.; Kopjar, M. Volatile profile of sour cherry puree as affected by sucrose and trehalose. Int. J. Food Prop. 2017, 20, S3237–S3245. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds not available from the authors. |
Juice | Complex * | RT (min) 1 | RI 2 | MW 3 | log P (o/w) 4 | Vapor Pressure (mm/Hg) | Odor Description |
---|---|---|---|---|---|---|---|
2-hexenal | + | 7.4716 | 851 | 98.14 | 1.79 | 4.62 | green |
hexanol | - | 8.5358 | 866 | 102.18 | 2.03 | 0.947 | green |
benzaldehyde | + | 14.8880 | 955 | 106.124 | 1.480 | 1.27 | fruity |
β-myrcene | - | 17.1058 | 987 | 136.238 | 4.17 | 2.29 | woody |
octanal | + | 18.0072 | 998 | 128.22 | 2.951 | 2.068 | green |
hexanoic acid | - | 18.7302 | 1009 | 116.16 | 1.920 | 0.158 | fruity |
limonene | + | 19.3232 | 1018 | 136.238 | 4.57 | 0.198 | citrus |
2-ethyl hexanol | + | 19.8268 | 1029 | 130.231 | 2.82 | 0.207 | fruity |
benzyl alcohol | - | 20.1599 | 1035 | 108.139 | 1.100 | 0.094 | fruity |
γ-terpinene | - | 21.1997 | 1051 | 136.238 | 4.5 | 1.075 | citrus |
1-phenylethanone | + | 21.6789 | 1057 | 120.151 | 1.58 | 0.397 | fruity |
linalool oxide | + | 22.0851 | 1065 | 170.252 | 1.375 | 0.002 | floral |
octanol | - | 22.2638 | 1071 | 130.23 | 3.0 | 0.079 | green |
- | guaiacol | 23.1329 | 1080 | 124.139 | 1.32 | 0.179 | woody |
α-terpinolene | + | 23.8974 | 1094 | 136.238 | 4.470 | 1.126 | woody |
linalool | + | 23.8884 | 1096 | 154.252 | 2.970 | 0.016 | citrus |
nonanal | + | 24.1158 | 1095 | 142.242 | 3.461 | 0.532 | citrus |
ethyl hexanoic acid | + | 25.8217 | 1128 | 144.214 | 2.640 | 0.03 | no flavor |
2-nonenal | + | 27.0726 | 1155 | 140.226 | 3.319 | 0.256 | green |
- | menthol | 27.6494 | 1167 | 156.27 | 3.216 | 0.032 | green |
α-terpineol | + | 28.4620 | 1180 | 154.253 | 2.67 | 0.028 | woody |
myrtenol | + | 28.7553 | 1185 | 152.24 | 3.22 | 0.018 | green |
decanal | + | 29.4771 | 1200 | 156.269 | 3.97 | 0.207 | floral |
ethyl benzaldehyde | 29.672 | 1201 | 134.178 | 2.408 | 0.106 | fruity | |
β-cyclocitral | - | 29.9239 | 1207 | 152.237 | 3.10 | 0.176 | herbal |
nerol | + | 30.5818 | 1218 | 154.253 | 3.47 | 0.013 | citrus |
geraniol | + | 31.9384 | 1247 | 154.253 | 3.56 | 0.021 | floral |
4-propyl benzaldehyde | + | 32.4908 | 1261 | 148.20 | 2.918 | 0.039 | no flavor |
vitispirane | - | 32.7283 | 1265 | 192.302 | 3.62 | 0.022 | floral |
- | decanol | 32.7995 | 1265 | 158.28 | 4.570 | 0.008510 | fruity |
- | nonanoic acid | 33.5062 | 1277 | 158.23 | 3.42 | 0.009 | waxy |
α-ionol | + | 37.4621 | 1376 | 194.317 | 4.492 | 0.001 | berry |
β-damascenone | + | 37.6571 | 1380 | 190.286 | 4.04 | 0.02 | woody |
ethyl decanoate | + | 38.0311 | 1389 | 200.322 | 4.861 | 0.034 | fruity |
trans-caryophyllene | - | 38.5426 | 1402 | 204.356 | 6.777 | 0.013 | woody |
α-ionone | + | 38.9487 | 1417 | 192.302 | 3.995 | 0.014 | berry |
dihydro β-ionone | + | 39.2249 | 1432 | 194.317 | 3.990 | 0.01 | berry |
dihydro-β-ionol | + | 39.4117 | 1440 | 196.33 | 4.634 | 0.001 | floral |
geranyl acetone | + | 39.6066 | 1448 | 194.318 | 3.834 | 0.016 | floral |
β-ionone | + | 4.3458 | 1477 | 192.302 | 3.995 | 0.017 | berry |
myristicin | - | 41.0120 | 1511 | 192.214 | 2.586 | 0.008 | woody |
lilial | + | 41.0691 | 1514 | 204.313 | 4.216 | 0.005 | floral |
- | α-cedrol | 42.4579 | 1592 | 222.372 | 4.33 | 0.001 | woody |
myristyl aldehyde | - | 42.4825 | 1601 | 212.376 | 6.008 | 0.006 | woody |
- | benzophenone | 42.799 | 1618 | 182.222 | 3.1 | 0.001 | floral |
methyl dihydrojasmonate | + | 43.1727 | 1647 | 226.316 | 2.653 | 0.001 | floral |
- | hexyl salicylate | 43.4814 | 1667 | 222.284 | 5.07 | 0.00049 | green |
hexyl cinnamaldehyde | + | 44.3590 | 1737 | 216.324 | 4.866 | 0.001 | floral |
Compounds | Juice | 2.5% | 5% | 7.5% | 10% | ||||
---|---|---|---|---|---|---|---|---|---|
Time of Complexation | - | 15 | 60 | 15 | 60 | 15 | 60 | 15 | 60 |
Aldehydes | |||||||||
2-hexenal | 37.44 ± 0.05 a | 0.22 ± 0.00 d | 1.53 ± 0.05 b | 0.20 ± 0.03 d | 0.57 ± 0.08 c | - | 0.57 ± 0.03 c | 0.22 ± 0.04 d | 0.25 ± 0.04 d |
benzaldehyde | 42.03 ± 1.17 a | 1.48 ± 0.00 f | 4.58 ± 0.47 c | 4.84 ± 0.87 c | 8.45 ± 0.99 b | 2.06 ± 0.07 e | 4.97 ± 0.31 c | 2.20 ± 0.40 d,e | 2.98 ± 0.32 d |
octanal | 12.37 ± 0.39 a | 6.60 ± 0.41 b | 3.75 ± 0.24 d | 6.56 ± 1.21 b | 7.16 ± 1.56 b | 3.54 ± 0.09 d | 4.08 ± 0.13 c | 3.39 ± 0.30 d | 3.43 ± 1.23 d |
nonanal | 27.63 ± 0.03 a | 17.02 ± 1.71 b | 12.16 ± 0.13 c | 17.16 ± 2.60 b | 18.71 ± 1.70 b | 11.05 ± 1.00 c,d | 11.78 ± 0.33 c,d | 11.44 ± 0.12 d | 8.59 ± 2.46 e |
2-nonenal | 4.77 ± 0.12 a | 1.16 ± 0.01 d | 1.02 ± 0.08 d | 2.33 ± 0.13 c | 2.45 ± 0.28 c | 4.01 ± 0.02 b | 1.28 ± 0.16 d | 1.24 ± 0.06 d | 0.88 ± 0.13 e |
decanal | 39.56 ± 2.80 a | 9.75 ± 1.12 c | 38.56 ± 2.40 a | 10.07 ± 1.55 c | 10.78 ± 0.87 c,d | 25.98 ± 2.32 b | 8.19 ± 0.98 d | 22.00 ± 2.80 b | 9.59 ± 0.50 c |
ethyl benzaldehyde | - | 1.19 ± 0.08 d | 4.38 ± 0.42 b | 1.77 ± 0.31 c | 1.31 ± 0.51 c | 4.72 ± 0.11 b | 1.12 ± 0.12 d | 5.25 ± 0.01 a | 1.02 ± 0.32 d |
4-propyl benzaldehyde | 92.06 ± 0.58 a | 4.15 ± 0.36 d | 7.44 ± 0.90 c | 7.50 ± 0.86 c | 7.65 ± 1.28 c | 4.21 ± 0.59 d | 4.43 ± 0.08 d | 11.30 ± 0.73 b | 2.89 ± 0.27 e |
lilial | 8.64 ± 0.03 a | 2.74 ± 0.05 c | 2.84 ± 0.73 b,c | 2.77 ± 0.35 b,c | 3.31 ± 0.50 b | 2.35 ± 0.30 c | 2.61 ± 0.34 b,c | 3.30 ± 0.46 b | 2.34 ± 0.90 b,c |
hexyl cinnamaldehyde | 4.07 ± 0.12 a | 1.91 ± 0.03 f | 2.81 ± 0.06 b,c | 2.22 ± 0.05 d | 2.65 ± 0.13 c,e | 2.14 ± 0.29 d,f | 2.44 ± 0.10 d,e | 3.10 ± 0.26 b | 2.82 ± 0.48 b,c |
Ketones | |||||||||
1-phenylethanone | 9.30 ± 0.18 a | 3.53 ± 0.24 c | 1.02 ± 0.04 f | 2.19 ± 0.16 d | 4.43 ± 0.12 b | 1.71 ± 0.48 e | 1.35 ± 0.15 e | 2.27 ± 0.18 d | 0.94 ± 0.32 f |
geranyl acetone | 28.77 ± 0.10 a | 6.29 ± 0.49 d,e | 6.89 ± 1.22 d,f | 10.18 ± 1.41 b | 8.94 ± 1.46 b,c,f | 8.26 ± 0.72 b,c,f | 7.60 ± 0.15 c,f | 7.87 ± 0.93 c,f | 7.70 ± 1.26 c,e,f |
benzophenone | - | 1.61 ± 0.13 e | 2.52 ± 0.50 b,c | 2.05 ± 0.07 d | 1.82 ± 0.41 d,e | 1.79 ± 0.45 d,e | 3.54 ± 0.39 a | 2.91 ± 0.40 a,b | 2.39 ± 0.47 c |
Esters | |||||||||
methyl dihydrojasmonate | 6.94 ± 0.08 a | 1.63 ± 0.21 d | 3.06 ± 0.08 d | 3.33 ± 0.38 c | 3.23 ± 0.06 c | 1.41 ± 0.12 a | 4.59 ± 0.26 b | 3.44 ± 0.38 c | 2.73 ± 0.66 c |
hexyl salicylate | - | 3.17 ± 0.03 b | 2.05 ± 0.27 c | 3.08 ± 0.26 b | 2.63 ± 0.27 c | 4.91 ± 0.84 a | 2.76 ± 0.52 a | 3.66 ± 0.65 a | 4.39 ± 0.67 a |
Acids | |||||||||
hexanoic acid | 22.44 ± 0.42 | - | - | - | - | - | - | - | - |
ethyl hexanoic acid | 3.84 ± 0.28 a | 1.22 ± 0.12 b | - | 0.41 ± 0.04 d | - | 0.72 ± 0.08 c | - | 0.76 ± 0.30 c | - |
nonanoic acid | - | 1.41 ± 0.13 f | 3.26 ± 0.45 c | 8.12 ± 0.94 a | 4.00 ± 0.06 b | 1.51 ± 0.44 e,f | 2.19 ± 0.14 d | 2.29 ± 0.09 d | 2.04 ± 0.25 d,e |
Alcohols | |||||||||
hexanol | 83.19 ± 0.43 | - | - | - | - | - | - | - | - |
2-ethyl hexanol | 37.99 ± 2.88 a | 21.21 ± 0.48 b | 16.07 ± 0.20 c | 25.21 ± 4.33 b | 35.09 ± 2.76 a | 22.06 ± 0.55 b | 24.56 ± 0.13 b | 20.98 ± 2.23 b | 11.98 ± 0.77 d |
benzyl alcohol | 10.12 ± 0.02 | - | - | - | - | - | - | - | - |
octanol | 81.78 ± 2.57 | - | - | - | - | - | - | - | - |
decanol | - | 2.12 ± 0.35 b | 2.38 ± 0.29 b | 2.36 ± 0.30 b | 2.38 ± 0.05 b | 2.93 ± 0.52 a | 2.08 ± 0.34 b | 3.28 ± 0.48 a | 2.02 ± 0.53 b |
Phenols | |||||||||
guaiacol | - | 4.38 ± 0.14 b | 3.43 ± 0.35 d | 4.53 ± 0.55 b | 6.88 ± 0.72 a | 4.19 ± 0.73 b,e | 5.34 ± 0.51 b | 6.09 ± 0.05 a | 3.30 ± 0.70 d,e |
Terpenes | |||||||||
limonene | 33.83 ± 1.33 a | 8.72 ± 0.54 b | 2.99 ± 0.09 d | 2.61 ± 0.10 e | 4.78 ± 0.53 c | 3.08 ± 0.39 d | 3.01 ± 0.35 d | 3.38 ± 0.61 d | 1.80 ± 0.77 e |
γ-terpinene | 5.76 ± 0.11 | ||||||||
linalool oxide | 17.79 ± 0.38 a | 1.16 ± 0.09 f | 0.99 ± 0.03 f | 1.79 ± 0.12 e | 1.73 ± 0.24 e | 5.36 ± 0.26 c | 1.69 ± 0.14 e | 5.98 ± 0.16 b | 2.81 ± 0.64 d |
α-terpinolene | 48.79 ± 0.47 a | 1.67 ± 0.32 b | 0.92 ± 0.14 d,e | 1.20 ± 0.05 c | 1.13 ± 0.16 c | 0.91 ± 0.003 d | 0.94 ± 0.06 d | 0.84 ± 0.16 e | 0.51 ± 0.13 f |
linalool | 418.56 ± 17.99 a | 44.22 ± 1.52 c | 31.70 ± 1.18 d,f | 31.64 ± 4.89 d,f | 57.52 ± 3.28 b | 29.53 ± 0.60 d,f | 24.46 ± 3.46 e | 26.97 ± 3.78 e,f | 19.17 ± 1.34 g |
menthol | - | 4.94 ± 0.11 a,c | 6.23 ± 0.31 a | 4.58 ± 0.71 a,b | 4.40 ± 0.66 b | 4.01 ± 0.27 b | 6.66 ± 1.67 a | 5.10 ± 0.03 a | 4.20 ± 0.85 b |
α-terpineol | 374.22 ± 28.12 a | 22.27 ± 3.26 b,d | 17.33 ± 1.85 c | 24.16 ± 4.70 b,d | 28.05 ± 3.91 b | 19.59 ± 1.30 c | 23.24 ± 1.96 b | 19.63 ± 1.23 c,d | 12.98 ± 1.31 e |
myrtenol | 35.23 ± 2.12 a | 5.62 ± 0.22 b | 3.00 ± 0.60 e | 4.96 ± 0.16 c | 3.13 ± 0.46 e | 4.19 ± 0.31 d | 2.20 ± 1.46 e,f | 2.85 ± 0.02 e | 2.02 ± 0.07 f |
nerol | 34.69 ± 0.75 a | 2.41 ± 0.002 c | 1.15 ± 0.03 f,g | 1.78 ± 0.29 e | 3.21 ± 0.20 b | 1.59 ± 0.43 e,g | 1.64 ± 0.18 e | 2.03 ± 0.19 d | 1.18 ± 0.17 f,g |
geraniol | 118.55 ± 3.39 a | 8.47 ± 0.53 c | 6.23 ± 1.24 d,e | 7.23 ± 0.72 c,d | 9.90 ± 0.63 b | 5.31 ± 0.27 e | 4.57 ± 0.28 f | 6.27 ± 0.81 d | 3.59 ± 0.63 f |
vitispirane | 16.67 ± 0.14 | - | - | ||||||
α-ionol | 362.34 ± 31.83 a | 18.01 ± 0.80 c | 14.60 ± 1.07 d | 23.53 ± 3.88 b | 19.75 ± 1.51 b,c | 16.53 ± 0.82 c | 17.29 ± 2.70 c | 14.66 ± 0.16 d | 12.68 ± 1.19 e |
β-damascenone | 38.74 ± 1.81 a | 2.72 ± 0.02 c | 1.96 ± 0.22 d,e | 3.08 ± 0.49 b | 2.65 ± 0.47 c | 2.02 ± 0.03 d | 2.36 ± 0.44 c,d | 2.24 ± 0.27 c,d | 1.59 ± 0.36 e |
trans-caryophyllene | 36.80 ± 1.27 | - | |||||||
α-ionone | 339.30 ± 8.32 a | 29.90 ± 0.67 b | 14.96 ± 1.71 d | 21.70 ± 2.61 c | 21.62 ± 1.43 c | 18.63 ± 2.79 c | 12.92 ± 0.95 d | 18.74 ± 2.16 c | 10.75 ± 0.02 e |
dihydro-β-ionone | 152.40 ± 2.12 a | 26.13 ± 1.40 b | 11.32 ± 1.49 d,e | 17.32 ± 1.99 c | 12.61 ± 2.80 d | 13.30 ± 2.12 d | 9.51 ± 1.15 e | 13.97 ± 1.69 d | 6.85 ± 1.37 f |
dihydro-β-ionol | 23.91 ± 0.12 a | 3.75 ± 0.09 b | 3.89 ± 0.81 b | 3.28 ± 0.37 b | 3.72 ± 0.56 b | 3.93 ± 0.52 b | 2.73 ± 0.04 c | 3.84 ± 0.61 b | 2.63 ± 0.36 c |
β-ionone | 365.89 ± 20.27 a | 45.90 ± 0.20 b | 25.75 ± 4.60 d,e | 35.20 ± 4.35 c | 33.98 ± 6.29 c | 29.64 ± 3.75 c,d | 24.45 ± 2.85 d,e | 32.31 ± 4.07 c | 21.91 ± 0.44 e |
myristicine | 8.51 ± 0.15 | - | - | ||||||
α-cedrol | - | 2.89 ± 0.20 b | 5.03 ± 1.02 a | 4.06 ± 0.19 a | 2.76 ± 0.40 b | 2.52 ± 0.002 b | 2.98 ± 0.53 b,c | 4.36 ± 0.84 a | 3.87 ± 0.60 a,c |
Compounds | 2.5% | 5% | 7.5% | 10% | ||||
---|---|---|---|---|---|---|---|---|
Time of Complexation | 15 | 60 | 15 | 60 | 15 | 60 | 15 | 60 |
Aldehydes | ||||||||
2-hexenal | - | - | - | - | - | - | ||
benzaldehyde | 4.45 ± 0.03 e | 4.77 ± 0.47 d | 6.33 ± 0.01 a | 5.22 ± 0.07 c | 5.08 ± 0.11 c,d | 4.89 ± 0.20 d | 5.48 ± 0.09 b | 4.69 ± 0.17 d |
octanal | 2.44 ± 0.02 b | 1.49 ± 0.11 e | 1.91 ± 0.01 c | 2.46 ± 0.06 b | 2.81 ± 0.12 a | 2.80 ± 0.16 a | 3.01 ± 0.14 a | 1.74 ± 0.01 d |
nonanal | 7.00 ± 0.05 f | 6.37 ± 0.35 g | 13.94 ± 0.08 a | 8.60 ± 0.25 d | 8.05 ± 0.17 e | 9.73 ± 0.33 c | 12.57 ± 0.24 b | 9.11 ± 0.42 c,d |
2-nonenal | 0.94 ± 0.01 c | 0.53 ± 0.05 e | 1.94 ± 0.01 a | 0.91 ± 0.02 c | 1.26 ± 0.04 b | 0.81 ± 0.00 d | 0.99 ± 0.01 c | 0.95 ± 0.08 c |
decanal | 7.00 ± 0.01 d | 20.85 ± 0.66 a | 13.78 ± 1.42 b | 4.41 ± 0.17 e | 20.93 ± 0.99 a | 4.10 ± 0.24 e | 20.65 ± 0.75 a | 7.61 ± 0.21 c |
ethyl benzaldehyde | 0.99 ± 0.01 d | 2.28 ± 0.20 a | 1.73 ± 0.01 b | 0.92 ± 0.08 d | 2.52 ± 0.02 a | 1.07 ± 0.12 d | 2.57 ± 0.12 a | 1.30 ± 0.01 c |
4-propyl benzaldehyde | 6.72 ± 0.04e | 10.23 ± 0.01 d | 11.82 ± 0.37 c | 12.45 ± 0.15 b | 10.68 ± 0.21 d | 13.66 ± 1.23 b | 11.68 ± 0.26 c | 15.39 ± 0.43 a |
lilial | - | 2.14 ± 0.09 d | - | 2.64 ± 0.16 c | - | 3.11 ± 0.06 b | - | 3.35 ± 0.04 a |
hexyl cinnamaldehyde | 1.18 ± 0.01 e | 1.60 ± 0.22 c,d | 1.38 ± 0.09 d | 1.37 ± 0.04 d | 1.73 ± 0.06 c | 2.13 ± 0.19 b | 2.30 ± 0.08 b | 2.57 ± 0.03 a |
Ketones | ||||||||
1-phenylethanone | 1.10 ± 0.03 | - | - | - | - | - | - | - |
geranyl acetone | 4.43 ± 0.20 d | 5.14 ± 0.67 c | 5.57 ± 0.03 c | 3.22 ± 0.16 e | 4.81 ± 0.09 d | 5.49 ± 0.04 c | 7.49 ± 0.30 a | 6.22 ± 0.14 b |
benzophenone | 1.10 ± 0.04 c | 1.45 ± 0.06 b | 1.45 ± 0.08 b | 1.32 ± 0.08 b | 1.79 ± 0.01 b | 2.63 ± 0.34 a | 2.55 ± 0.05 a | 2.30 ± 0.10 a |
Esters | ||||||||
methyl dihydrojasmonate | 1.44 ± 0.13 g | 2.48 ± 0.00 d | 2.08 ± 0.05 e | 2.37 ± 0.02 d | 1.84 ± 0.14 f | 3.04 ± 0.03 b | 4.83 ± 0.09 a | 2.71 ± 0.03 c |
hexyl salicylate | 2.52 ± 0.05 c | 2.51 ± 0.16 c | 2.45 ± 0.01 c | 2.32 ± 0.14 c | 1.99 ± 0.01 d | 2.70 ± 0.24 b | 3.80 ± 0.16 s | 2.83 ± 0.11 b |
Acids | ||||||||
ethyl hexanoic acid | 1.10 ± 0.02 b | - | 0.59 ± 0.00 c | - | 1.57 ± 0.11 a | - | 1.15 ± 0.07 b | - |
nonanoic acid | 1.19 ± 0.10 e | 1.52 ± 0.09 c | 1.66 ± 0.04 c | 6.03 ± 0.07 a | 1.02 ± 0.03 e | 1.79 ± 0.21 c | 2.45 ± 0.15 b | 1.34 ± 0.07 d |
Alcohols | ||||||||
2-ethyl hexanol | 21.48 ± 0.46 e | 19.40 ± 0.64 f | 30.78 ± 0.04 b | 20.69 ± 0.51 e,f | 32.06 ± 0.18 a | 23.92 ± 0.42 d | 26.00 ± 0.48 c | 17.27 ± 0.14 g |
decanol | 1.18 ± 0.01 f | 1.45 ± 0.05 d | 1.48 ± 0.03 d | 1.18 ± 0.25 d,f | 1.73 ± 0.02 c | 1.27 ± 0.20 d,f | 2.36 ± 0.06 s | 1.94 ± 0.08 b |
Phenols | ||||||||
guaiacol | 2.29 ± 0.02 e | 2.40 ± 0.08 d | 2.19 ± 0.00 f | 2.89 ± 0.19 c | 3.53 ± 0.01 b | 3.83 ± 0.12 a | 3.72 ± 0.06 a | 2.56 ± 0.11 c,d |
Terpenes | ||||||||
limonene | 1.36 ± 0.00 d | 1.57 ± 0.07 c | 1.50 ± 0.04 c | 2.63 ± 0.07 b | 2.65 ± 0.13 b | 1.17 ± 0.22 d,e | 3.80 ± 0.05 a | 0.96 ± 0.01 e |
linalool oxide | 1.26 ± 0.01 d | 0.99 ± 0.05 e | 2.09 ± 0.04 a | 1.43 ± 0.05 c | 1.84 ± 0.02 b | 1.55 ± 0.07 c | 1.29 ± 0.06 d | 1.53 ± 0.07 c |
α-terpinolene | 0.64 ± 0.01 a,b | 0.73 ± 0.07 a | 0.77 ± 0.00 a | 0.75 ± 0.04 a | 0.57 ± 0.03 b | 0.67 ± 0.02 a,b | 0.71 ± 0.00 a | 0.62 ± 0.03 b |
linalool | 20.75 ± 0.38 d | 24.59 ± 0.41 a | 23.61 ± 0.16 b | 26.78 ± 2.89 a | 24.94 ± 1.06 a | 22.20 ± 0.69c | 25.64 ± 0.10 a | 20.71 ± 2.30 bd |
menthol | 2.84 ± 0.14 e | 5.31 ± 0.45 b | 2.87 ± 0.09 e | 3.95 ± 0.01 c | 2.25 ± 0.00 f | 7.64 ± 0.39 a | 3.20 ± 0.12 d | 5.44 ± 0.35 b |
α-terpineol | 15.67 ± 0.65 c | 16.98 ± 1.30 b,c | 17.32 ± 0.42 c | 19.99 ± 0.39 a | 18.32 ± 0.11 b | 20.36 ± 0.82 a | 20.02 ± 0.53 a | 18.38 ± 0.02 b |
myrtenol | 1.44 ± 0.02 c | 2.05 ± 0.24 a,b | 1.42 ± 0.04 c | 2.29 ± 0.24 a | 1.38 ± 0.08 c | 2.05 ± 0.15 a,b | 1.97 ± 0.07 b | 2.04 ± 0.00 a,b |
nerol | 0.85 ± 0.00 d | 0.91 ± 0.11 c,d | 1.55 ± 0.03 a | 0.91 ± 0.12 c,d | 0.97 ± 0.00 c | 0.94 ± 0.05 c | 1.18 ± 0.08 b | 1.22 ± 0.08 b |
geraniol | 2.64 ± 0.08 e | 3.05 ± 0.06 d | 3.35 ± 0.10 c | 3.14 ± 0.24 c,d | 3.73 ± 0.03 b | 2.07 ± 0.19 f | 4.21 ± 0.13 a | 2.65 ± 0.03 e |
α-ionol | 8.96 ± 0.11 c | 5.87 ± 4.68 d | 11.81 ± 0.43 b | 12.29 ± 1.53 b | 11.64 ± 0.07 b | 14.94 ± 0.78 a | 14.92 ± 0.48 a | 15.62 ± 1.10 a |
β-damascenone | 1.13 ± 0.04 d | 1.55 ± 0.01 a | 1.19 ± 0.05 d | 1.09 ± 0.12 d | 1.12 ± 0.04 d | 1.17 ± 0.04 d | 1.43 ± 0.04 b | 1.27 ± 0.05 c |
α-ionone | 8.38 ± 0.11 c | 9.51 ± 0.63 b | 7.70 ± 0.04 d | 9.58 ± 0.40 b | 6.34 ± 0.10 f | 6.89 ± 0.10 e | 13.38 ± 0.88 a | 9.94 ± 0.47 b |
dihydro-β-ionone | 4.85 ± 0.00 c | 6.95 ± 0.48 a | 3.50 ± 0.09 e | 2.95 ± 0.18 b | 3.94 ± 0.11 d | 3.04 ± 0.04 f | 6.15 ± 0.05 b | 4.75 ± 0.20 c |
dihydro-β-ionol | 1.72 ± 0.01 e | 2.63 ± 0.16 b | 2.04 ± 0.04 d | 2.16 ± 0.00 c | 2.98 ± 0.08 a | 2.27 ± 0.06 c | 3.09 ± 0.24 a | 2.88 ± 0.15 a,b |
β-ionone | 8.42 ± 0.11 d | 12.51 ± 0.65 b | 6.63 ± 0.07 e | 12.06 ± 0.96 b | 6.80 ± 0.01 e | 9.75 ± 0.64 c | 14.59 ± 0.79 a | 12.28 ± 0.94 b |
α-cedrol | 2.21 ± 0.10 c | 3.15 ± 0.28 b | 1.94 ± 0.08 d | 1.48 ± 0.05 f | 2.18 ± 0.08 c | 1.77 ± 0.20 e | 4.01 ± 0.16 a | 3.01 ± 0.21 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vukoja, J.; Pichler, A.; Ivić, I.; Šimunović, J.; Kopjar, M. Cellulose as a Delivery System of Raspberry Juice Volatiles and Their Stability. Molecules 2020, 25, 2624. https://doi.org/10.3390/molecules25112624
Vukoja J, Pichler A, Ivić I, Šimunović J, Kopjar M. Cellulose as a Delivery System of Raspberry Juice Volatiles and Their Stability. Molecules. 2020; 25(11):2624. https://doi.org/10.3390/molecules25112624
Chicago/Turabian StyleVukoja, Josipa, Anita Pichler, Ivana Ivić, Josip Šimunović, and Mirela Kopjar. 2020. "Cellulose as a Delivery System of Raspberry Juice Volatiles and Their Stability" Molecules 25, no. 11: 2624. https://doi.org/10.3390/molecules25112624
APA StyleVukoja, J., Pichler, A., Ivić, I., Šimunović, J., & Kopjar, M. (2020). Cellulose as a Delivery System of Raspberry Juice Volatiles and Their Stability. Molecules, 25(11), 2624. https://doi.org/10.3390/molecules25112624