Efficacy, Stability, and Safety Evaluation of New Polyphenolic Xanthones Towards Identification of Bioactive Compounds to Fight Skin Photoaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Antioxidant Activity
2.2.1. DPPH Reduction Activity
2.2.2. Metal-Chelating Effect
2.3. Inhibition of Elastase, Collagenase, Hyaluronidase and Tyrosinase Activity
2.4. Stability
2.5. Phototoxicity
3. Materials and Methods
3.1. Materials
3.2. Synthesis of 1,4-dihydroxy-3-methoxy-9H-xanthen-9-one (5)
3.3. DPPH Reduction Assay
3.4. Metal-Chelating Effect
3.5. Inhibitory Activities of Enzyme Related with Skin Aging
3.5.1. Tyrosinase Inhibition Assay
3.5.2. Elastase Inhibition Assay
3.5.3. Collagenase Inhibition Assay
3.5.4. Hyaluronidase Inhibition Assay
3.6. Stability
3.7. Safety Evaluation
3.7.1. Cell Culture
3.7.2. ROS Generation Assay
3.7.3. Phototoxicity Evaluation
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bickers, D.R.; Athar, M. Oxidative Stress in the Pathogenesis of Skin Disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural Antioxidants: Multiple Mechanisms to Protect Skin From Solar Radiation. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masaki, H. Role of antioxidants in the skin: Anti-aging effects. J. Dermatol. Sci. 2010, 58, 85–90. [Google Scholar] [CrossRef]
- Burke, K.E. Mechanisms of aging and development—A new understanding of environmental damage to the skin and prevention with topical antioxidants. Mech. Ageing Dev. 2018, 172, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Ferreira, M.; Oliveira, A.S.; Magalhães, C.; Sousa, M.E.; Pinto, M.; Sousa Lobo, J.M.; Almeida, I.F. Evolution of the use of antioxidants in anti-ageing cosmetics. Int. J. Cosmetic Sci. 2019, 41, 378–386. [Google Scholar] [CrossRef]
- Matsui, M.S.; Hsia, A.; Miller, J.D.; Hanneman, K.; Scull, H.; Cooper, K.D.; Baron, E. Non-Sunscreen Photoprotection: Antioxidants Add Value to a Sunscreen. J. Investig. Dermatol. Symp. Proc. 2009, 14, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Coelho, L.; Almeida, I.F.; Sousa Lobo, J.M.; Sousa E Silva, J.P. Photostabilization strategies of photosensitive drugs. Int. J. Pharm. 2018, 541, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Afonso, S.; Horita, K.; Sousa e Silva, J.P.; Almeida, I.F.; Amaral, M.H.; Lobão, P.A.; Costa, P.C.; Miranda, M.S.; Esteves da Silva, J.C.G.; Sousa Lobo, J.M. Photodegradation of avobenzone: Stabilization effect of antioxidants. J. Photochem. Photobiol. B: Biol. 2014, 140, 36–40. [Google Scholar] [CrossRef]
- Rittié, L.; Fisher, G.J. Natural and sun-induced aging of human skin. Cold Spring Harb. Perspect. Med. 2015, 5, a015370. [Google Scholar] [CrossRef]
- Imokawa, G.; Nakajima, H.; Ishida, K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging II: Over-expression of neprilysin plays an essential role. Int. J. Mol. Sci. 2015, 16, 7776–7795. [Google Scholar] [CrossRef] [Green Version]
- Madan, K.; Nanda, S. In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorg. Chem. 2018, 77, 159–167. [Google Scholar] [CrossRef]
- Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmetic Sci. 2008, 30, 87–95. [Google Scholar] [CrossRef]
- Kitazawa, M.; Iwasaki, K.; Sakamoto, K. Iron chelators may help prevent photoaging. J. Cosmet. Dermatol. 2006, 5, 210–217. [Google Scholar] [CrossRef]
- Pinto, M.M.M.; Sousa, M.E.; Nascimento, M.S.J. Xanthone Derivatives: New Insights in Biological Activities. Curr. Med. Chem. 2005, 12, 2517–2538. [Google Scholar] [CrossRef]
- Panda, S.S.; Chand, M.; Sakhuja, R.; Jain, S.C. Xanthones as Potential Antioxidants. Curr. Med. Chem. 2013, 20, 4481–4507. [Google Scholar] [CrossRef]
- Cidade, H.; Rocha, V.; Palmeira, A.; Marques, C.; Tiritan, M.E.; Ferreira, H.; Lobo, J.S.; Almeida, I.F.; Sousa, M.E.; Pinto, M. In silico and in vitro antioxidant and cytotoxicity evaluation of oxygenated xanthone derivatives. Arab. J. Chem. 2017. [Google Scholar] [CrossRef]
- Cherrak, S.A.; Mokhtari-Soulimane, N.; Berroukeche, F.; Bensenane, B.; Cherbonnel, A.; Merzouk, H.; Elhabiri, M. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Ji, H.-F.; Tang, G.-Y.; Zhang, H.-Y. Theoretical Elucidation of DPPH Radical-Scavenging Activity Difference of Antioxidant Xanthones. QSAR Comb. Sci. 2005, 24, 826–830. [Google Scholar] [CrossRef]
- Halake, K.; Birajdar, M.; Lee, J. Structural implications of polyphenolic antioxidants. J. Ind. Eng. Chem. 2016, 35, 1–7. [Google Scholar] [CrossRef]
- Silva, V.; Cerqueira, F.; Nazareth, N.; Medeiros, R.; Sarmento, A.; Sousa, E.; Pinto, M. 1,2-Dihydroxyxanthone: Effect on A375-C5 Melanoma Cell Growth Associated with Interference with THP-1 Human Macrophage Activity. Pharmaceuticals 2019, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Sousa, E.P.; Silva, A.M.S.; Pinto, M.M.M.; Pedro, M.M.; Cerqueira, F.A.M.; Nascimento, M.S.J. Isomeric Kielcorins and Dihydroxyxanthones: Synthesis, Structure Elucidation, and Inhibitory Activities of Growth of Human Cancer Cell Lines and on the Proliferation of Human Lymphocytes In Vitro. Helv. Chim. Acta 2002, 85, 2862–2876. [Google Scholar] [CrossRef]
- Resende, D.I.S.P.; Pereira-Terra, P.; Moreira, J.; Freitas-Silva, J.; Lemos, A.; Gales, L.; Pinto, E.; de Sousa, M.E.; da Costa, P.M.; Pinto, M.M.M. Synthesis of a Small Library of Nature-Inspired Xanthones and Study of Their Antimicrobial Activity. Molecules 2020, 25, 2405. [Google Scholar] [CrossRef]
- Kraus, G.A.; Liu, F. Synthesis of polyhydroxylated xanthones via acyl radical cyclizations. Tetrahedron Lett. 2012, 53, 111–114. [Google Scholar] [CrossRef]
- Resende, D.; Pereira-Terra, P.; Inácio, Â.; Costa, P.; Pinto, E.; Sousa, E.; Pinto, M. Lichen Xanthones as Models for New Antifungal Agents. Molecules 2018, 23, 2617. [Google Scholar] [CrossRef] [Green Version]
- Sousa, M.E.; Pinto, M.M.M. Synthesis of Xanthones: An Overview. Curr. Med. Chem. 2005, 12, 2447–2479. [Google Scholar] [CrossRef]
- Svobodova, A.; Psotova, J.; Walterova, D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2003, 147, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Chen, L.; Luo, G.; Liu, L.; Zhu, W.; Yan, P.; Zhang, P.; Zhang, C.; Wu, W. Study on Synthesis and Biological Evaluation of 3-Aryl Substituted Xanthone Derivatives as Novel and Potent Tyrosinase Inhibitors. Chem. Pharm. Bull. 2019, 67, 1232–1241. [Google Scholar] [CrossRef]
- Hashim, N.M.; Rahmani, M.; Ee, G.C.L.; Sukari, M.A.; Yahayu, M.; Amin, M.A.M.; Ali, A.M.; Go, R. Antioxidant, Antimicrobial and Tyrosinase Inhibitory Activities of Xanthones Isolated from Artocarpus obtusus F.M. Jarrett. Molecules 2012, 17, 6071–6082. [Google Scholar] [CrossRef]
- Roy, L.G.; Urooj, A. Antioxidant Potency, pH and Heat Stability of Selected Plant Extracts. J. Food Biochem. 2013, 37, 336–342. [Google Scholar] [CrossRef]
- Blessy, M.; Patel, R.D.; Prajapati, P.N.; Agrawal, Y.K. Development of forced degradation and stability indicating studies of drugs—A review. J. Pharm. Anal. 2014, 4, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.M.; Campos, M. Histopathological, morphometric and stereological studies of ascorbic acid and magnesium ascorbyl phosphate in a skin care formulation. Int. J. Cosmetic Sci. 2000, 22, 169–179. [Google Scholar] [CrossRef]
- Puvabanditsin, P.; Vongtongsri, R. Efficacy of topical vitamin C derivative (VC-PMG) and topical vitamin E in prevention and treatment of UVA suntan skin. J. Med. Assoc. Thail. 2006, 89, 65–68. [Google Scholar]
- Maciel, B.; Moreira, P.; Carmo, H.; Gonçalo, M.; Lobo, J.M.S.; Almeida, I.F. Implementation of an in vitro methodology for phototoxicity evaluation in a human keratinocyte cell line. Toxicol. Vitro 2019, 61. [Google Scholar] [CrossRef]
- OECD. Test No. 432: In Vitro 3T3 NRU Phototoxicity Test; OECD library: Paris, France, 2019; Available online: https://doi.org/10.1787/9789264071162-en (accessed on 22 April 2020).
- Mendoza-Wilson, A.M.; Castro-Arredondo, S.I.; Espinosa-Plascencia, A.; Robles-Burgueño, M.d.R.; Balandrán-Quintana, R.R.; Bermúdez-Almada, M.d.C. Chemical composition and antioxidant-prooxidant potential of a polyphenolic extract and a proanthocyanidin-rich fraction of apple skin. Heliyon 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Moradkhani, S.; Ayatollahi, A.M.; Ghanadian, M.; Moin, M.R.; Razavizadeh, M.; Shahlaei, M. Phytochemical Analysis and Metal-chelation Activity of Achillea tenuifolia Lam. Iran J. Pharm. Res. 2012, 11, 177–183. [Google Scholar] [PubMed]
- Shimizu, K.; Kondo, R.; Sakai, K.; Lee, S.-H.; Sato, H. The Inhibitory Components from Artocarpus incisus on Melanin Biosynthesis. Planta Med. 1998, 64, 408–412. [Google Scholar] [CrossRef]
- Manosroi, A.; Jantrawut, P.; Akihisa, T.; Manosroi, W.; Manosroi, J. In vitro anti-aging activities of Terminalia chebula gall extract. Pharm. Biol. 2010, 48, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Ndlovu, G.; Fouche, G.; Tselanyane, M.; Cordier, W.; Steenkamp, V. In vitro determination of the anti-aging potential of four southern African medicinal plants. BMC Complement. Altern. Med. 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.; Stein, W.H. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 1948, 176, 367–388. [Google Scholar]
- Mandl, I.; Maclennan, J.D.; Howes, E.L. Isolation and characterization of proteinase and collagenase from Cl. histolyticum. J. Clin. Investig. 1953, 32, 1323–1329. [Google Scholar] [CrossRef]
- Zhou, J.-R.; Kanda, Y.; Tanaka, A.; Manabe, H.; Nohara, T.; Yokomizo, K. Anti-hyaluronidase Activity in Vitro and Amelioration of Mouse Experimental Dermatitis by Tomato Saponin, Esculeoside A. J. Agric. Food. Chem. 2016, 64, 403–408. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1-5 are available from the authors. |
Compound * | IC50 μM (at 60 min) | DPPH Reduction Activity (%) at 25 μM (at 60 min) |
---|---|---|
1 | 28.4 ± 0.2 a | 43.3 ± 1.5 a |
2 | 31.2 ± 4.8 a | 36.8 ± 4.9 a,b |
3 | 47.3 ± 0.4 b | 24.9 ± 1.3 c |
4 | Not determined | 34.6 ± 3.2 b,d |
5 | Not determined | 9.2 ± 2.4 e |
Ascorbic Acid | 40.0 ± 0.8 c | 28.9 ± 0.3 c,d |
Tyrosinase | Elastase | Collagenase | Hyaluronidase | ||||
---|---|---|---|---|---|---|---|
Comp. | % Inhibition (150 µM) | IC50 (µM) | % Inhibition (150 µM) | IC50 (µM) | % Inhibition (150 µM) | IC50 (µM) | % Inhibition (150 μM) |
1 | 96.17 ± 0.88 | 7.8 ± 0.07 a | 35.2 ± 1.84 a | n.d | 35.77 ± 1.82 a | n.d | n.a. |
2 | 84.05 ± 1.87 | 8.93 ± 0.16 b | 10.85 ± 0.39 b | n.d | 26.83 ± 1.45 b | n.d | n.a. |
3 | 91.42 ± 0.23 | 3.28 ± 0.01 c | 18.21 ± 0.71 c | n.d | 24.91 ± 0.93 b | n.d | n.a. |
Kojic acid | - | 12.81 ± 0.01 d | - | - | - | - | - |
MAAPVCK | - | - | - | 0.26 ± 0.003 | - | - | - |
EDTA | - | - | - | - | - | 102.95 ± 5.30 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resende, D.I.S.P.; Almeida, M.C.; Maciel, B.; Carmo, H.; Sousa Lobo, J.; Dal Pozzo, C.; Cravo, S.M.; Rosa, G.P.; Kane-Pagès, A.; do Carmo Barreto, M.; et al. Efficacy, Stability, and Safety Evaluation of New Polyphenolic Xanthones Towards Identification of Bioactive Compounds to Fight Skin Photoaging. Molecules 2020, 25, 2782. https://doi.org/10.3390/molecules25122782
Resende DISP, Almeida MC, Maciel B, Carmo H, Sousa Lobo J, Dal Pozzo C, Cravo SM, Rosa GP, Kane-Pagès A, do Carmo Barreto M, et al. Efficacy, Stability, and Safety Evaluation of New Polyphenolic Xanthones Towards Identification of Bioactive Compounds to Fight Skin Photoaging. Molecules. 2020; 25(12):2782. https://doi.org/10.3390/molecules25122782
Chicago/Turabian StyleResende, Diana I. S. P., Mariana C. Almeida, Bruna Maciel, Helena Carmo, José Sousa Lobo, Carlotta Dal Pozzo, Sara M. Cravo, Gonçalo P. Rosa, Aida Kane-Pagès, Maria do Carmo Barreto, and et al. 2020. "Efficacy, Stability, and Safety Evaluation of New Polyphenolic Xanthones Towards Identification of Bioactive Compounds to Fight Skin Photoaging" Molecules 25, no. 12: 2782. https://doi.org/10.3390/molecules25122782
APA StyleResende, D. I. S. P., Almeida, M. C., Maciel, B., Carmo, H., Sousa Lobo, J., Dal Pozzo, C., Cravo, S. M., Rosa, G. P., Kane-Pagès, A., do Carmo Barreto, M., Almeida, I. F., de Sousa, M. E., & Pinto, M. M. M. (2020). Efficacy, Stability, and Safety Evaluation of New Polyphenolic Xanthones Towards Identification of Bioactive Compounds to Fight Skin Photoaging. Molecules, 25(12), 2782. https://doi.org/10.3390/molecules25122782