Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation
Abstract
:1. Introduction
2. Chronology of Taxol, its Derivatives as Antiproliferative Drug
3. Taxol Biosynthesis
4. Mode of Action
5. Sources of Taxol Production
5.1. Natural Source
5.1.1. Family Taxaceae; Taxonomy and Ethnopharmacological Use
5.1.2. Family Podocarpaceae; Taxonomy and Ethnopharmacological Uses
5.2. Taxol-Producing Endophytic Fungi from Taxus and Podocarpus Species
6. Maximizing Taxol Bio-Production Strategies
6.1. Molecular Manipulation of the Microbial Strain
6.2. Bioprocess Optimization Strategy for Taxol Production
7. Co-Cultivation and Mixed Fermentation
8. Genome Mining
8.1. Classical Genome Mining
8.2. Comparative Genome Mining
8.3. Resistance/target Genome Mining
9. Conclusion and Future Directions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, G.S.; Norman, D.; El-Sayed, A.S. Soluble and Volatile Metabolites of Plant Growth-Promoting Rhizobacteria (PGPRs): Role and Practical Applications in Inhibiting Pathogens and Activating Induced Systemic Resistance (ISR). Adv. Bot. Res. 2015, 75, 241–284. [Google Scholar]
- Walker, K.; Croteau, R. Taxol biosynthesis: Molecular cloning of a benzoyl-CoA:taxane 2alpha-O-benzoyltransferase cDNA from taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 2000, 97, 13591–13596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, A.S.A.; Ruff, L.E.; Ghany, S.E.A.; Ali, G.S.; Esener, S. Molecular and Spectroscopic Characterization of Aspergillus flavipes and Pseudomonas putida L-Methionine γ-Lyase in Vitro. Appl. Biochem. Biotechnol. 2017, 181, 1513–1532. [Google Scholar] [CrossRef] [PubMed]
- Bode, H.B.; Müller, R. Possibility of bacterial recruitment of plant genes associated with the biosynthesis of secondary metabolites. Plant Physiol. 2003, 132, 1153–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.-L.; Li, Z.-Q.; Liu, B.-Y.; Wang, H.; Li, G.-F.; Ye, H.-C. Metabolic engineering of terpenoids in plants. Chin. J. Biotechnol. 2007, 23, 561–569. [Google Scholar]
- Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant Antitumor Agents. VI. The Isolation and Strcture of Taxol, a Novel Antileukemic and Antitumo Agent from Taxus bretvifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327. [Google Scholar] [CrossRef]
- Croteau, R.; Ketchum, R.E.B.; Long, R.M.; Kaspera, R.; Wildung, M.R. Taxol biosynthesis and molecular genetics. Phytochem. Rev. 2006, 5, 75–97. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Mayhew, E.; Straubinger, R.M. Antitumor Effect of Taxol-containing Liposomes in a Taxol-resistant Murine Tumor Model. Cancer Res. 1993, 53, 5877–5881. [Google Scholar]
- Malik, S.; Cusidó, R.M.; Mirjalili, M.H.; Moyano, E.; Palazón, J.; Bonfill, M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochem. 2011, 46, 23–34. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, Y.; Fan, M.; Luo, F.; Qian, Z. Characterization, pharmacokinetics and disposition of novel nanoscale preparations of paclitaxel. Int. J. Pharm. 2011, 414, 251–259. [Google Scholar] [CrossRef]
- El-Sayed, A.S.; Khalaf, S.A.; Abdel-Hamid, G.; El-Batrik, M.I. Screening, Morphological and Molecular characterization of fungi producing cyStathionine γ-lyaSe. Acta Biol. Hung. 2015, 661, 119–132. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.S.A.; Yassin, M.A.; Khalaf, S.A.; El-Batrik, M.; Ali, G.S.; Esener, S. Biochemical and Pharmacokinetic Properties of PEGylated Cystathionine γ-Lyase from Aspergillus carneus KF723837. J. Mol. Microbiol. Biotechnol. 2015, 25, 301–310. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Abdel-Ghany, S.E.; Ali, G.S. Genome editing approaches: Manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl. Microbiol. Biotechnol. 2017, 101, 3953–3976. [Google Scholar] [CrossRef] [PubMed]
- Holton, R.A.; Kim, H.B.; Somoza, C.; Liang, F.; Biediger, R.J.; Boatman, P.D.; Shindo, M.; Smith, C.C.; Kim, S. First total synthesis of taxol. 2. Completion of the C and D rings. J. Am. Chem. Soc. 1994, 116, 1599–1600. [Google Scholar] [CrossRef]
- Exposito, O.; Bonfill, M.; Moyano, E.; Onrubia, M.; Mirjalili, M.; Cusido, R.; Palazon, J. Biotechnological Production of Taxol and Related Taxoids: Current State and Prospects. Anti-Cancer Agents Med. Chem. 2009, 9, 109–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nims, E.; Dubois, C.P.; Roberts, S.C.; Walker, E.L. Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab. Eng. 2006, 8, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Gibson, D.M.; Shuler, M.L. Effect of Subculture and Elicitation on Instability of Taxol Production in Taxus sp. Suspension Cultures. Biotechnol. Progress 2004, 20, 1666–1673. [Google Scholar] [CrossRef] [PubMed]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef]
- Stierle, A.; Strobel, G.; Stierle, D.; Grothaus, P.; Bignami, G. The Search for a Taxol-Producing Microorganism Among the Endophytic Fungi of the Pacific Yew, Taxus brevifolia. J. Nat. Prod. 1995, 58, 1315–1324. [Google Scholar] [CrossRef]
- Caruso, M.; Colombo, A.L.; Fedeli, L.; Pavesi, A.; Quaroni, S.; Saracchi, M.; Ventrella, G. Isolation of endophytic fungi and Actinomycetes taxane producers. Ann. Microbiol. 2000, 50, 3–13. [Google Scholar]
- El-Sayed, A.S.; Khalaf, S.A.; Aziz, H.A. Characterization of homocysteine γ-lyase from submerged and solid cultures of Aspergillus fumigatus ASH (JX006238). J. Microbiol. Biotechnol. 2013, 23. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.S.; Shindia, A.A. Characterization and immobilization of purified Aspergillus flavipesl-methioninase: Continuous production of methanethiol. J. Appl. Microbiol. 2011, 111, 54–69. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.S.A.; Hassan, M.N.; Nada, H.M.S. Purification, immobilization, and biochemical characterization of l-arginine deiminase from thermophilic Aspergillus fumigatus KJ434941: Anticancer activity in vitro. Biotechnol. Prog. 2015, 31. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.S.A.; Yassin, M.A.; Ibrahim, H. Coimmobilization of l -methioninase and glutamate dehydrogenase: Novel approach for l -homoalanine synthesis. Biotechnol. Appl. Biochem. 2015, 62. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.S.A.; Shad, G. Aspergillus flavipes is a novel e ffi cient biocontrol agent of Phytophthora parasitica. Biol. Control 2020, 140. [Google Scholar] [CrossRef]
- El-Sayed, A.S. Microbial l-methioninase: Production, molecular characterization, and therapeutic applications. Appl. Microbiol. Biotechnol. 2010, 86, 445–467. [Google Scholar] [CrossRef]
- Wang, S.L.; Chen, Y.H.; Luwang, C.; Yen, Y.H.; Kaichern, M. Purification and characterization of a serine protease extracellularly produced by Aspergillus fumigatus in a shrimp and crab shell powder medium. Enzyme Microb. Technol. 2005, 36, 660–665. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Mohamed, N.Z.; Safan, S.; Yassin, M.A.; Shaban, L.; Shindia, A.A.; Shad Ali, G.; Sitohy, M.Z. Restoring the Taxol biosynthetic machinery of Aspergillus terreus by Podocarpus gracilior Pilger microbiome, with retrieving the ribosome biogenesis proteins of WD40 superfamily. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Heinig, U.; Scholz, S.; Jennewein, S. Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers. 2013, 60, 161–170. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, N.E.A.; Moawad, H.; El-Shweihy, N.M.; El-Ewasy, S.M.; Elsehemy, I.A.; Abdelwahed, N.A.M. Process development for scale-up production of a therapeutic L-asparaginase by Streptomyces brollosae NEAE-115 from shake flasks to bioreactor. Sci. Rep. 2019, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Suffness, M.; Wall, E.M. Taxol: Science and Application; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- El-Sayed, A.S.A.; Fathalla, M.; Yassin, M.A.; Zein, N.; Morsy, S.; Sitohy, M.; Sitohy, B. Conjugation of Aspergillus flavipes taxol with porphyrin increases the anticancer activity of taxol and ameliorates its cytotoxic effects. Molecules 2020, 25, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, A.S.A.; Safan, S.; Mohamed, N.Z.; Shaban, L.; Ali, G.S.; Sitohy, M.Z. Induction of Taxol biosynthesis by Aspergillus terreus, endophyte of Podocarpus gracilior Pilger, upon intimate interaction with the plant endogenous microbes. Process Biochem. 2018, 71, 31–40. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Ali, D.M.I.; Yassin, M.A.; Zayed, R.A.; Ali, G.S. Sterol inhibitor “Fluconazole” enhance the Taxol yield and molecular expression of its encoding genes cluster from Aspergillus flavipes. Process Biochem. 2019, 76, 55–67. [Google Scholar] [CrossRef]
- Crown, J.; O’Leary, M.; Ooi, W. Docetaxel and Paclitaxel in the Treatment of Breast Cancer: A Review of Clinical Experience. Oncologist 2004, 9, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Javeed, A.; Ashraf, M.; Riaz, A.; Ghafoor, A.; Afzal, S.; Mukhtar, M.M. Paclitaxel and immune system. Eur. J. Pharm. Sci. 2009, 38, 283–290. [Google Scholar] [CrossRef]
- De Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.H.; Shen, L.; Matthews, P.; Sartor, A.O. Cabazitaxel or mitoxantrone with prednisone in patients with metastatic castration-resistant prostate cancer (mCRPC) previously treated with docetaxel: Final results of a multinational phase III trial (TROPIC). J. Clin. Oncol. 2010, 28, 4508. [Google Scholar] [CrossRef]
- Maheshwari, P.; Garg, S.; Kumar, A. Taxoids: Biosynthesis and in vitro production. Biotechnol. Mol. Biol. Rev. 2008, 3, 71–087. [Google Scholar]
- McLaughlin, J.L.; Miller, R.W.; Powell, R.G.; Smith, C.R. 19-hydroxybaccatin iii, 10-deacetylcephalomannine, and 10-deacetyltaxol: New Antitumor Taxanes from Taxus Wallichiana. J. Nat. Prod. 1981, 44, 312–319. [Google Scholar] [CrossRef]
- Kelsey, R.G.; Vance, N.C. Taxol and cephalomannine concentrations in the foliage and bark of shade-grown and sun-exposed taxus brevifolia trees. J. Nat. Prod. 1992, 55, 912–917. [Google Scholar] [CrossRef]
- Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179–192. [Google Scholar] [CrossRef]
- Rook, E.J.; Van Ree, J.M.; Van Den Brink, W.; Hillebrand, M.J.X.; Huitema, A.D.R.; Hendriks, V.M.; Beijnen, J.H. Pharmacokinetics and pharmacodynamics of high doses of pharmaceutically prepared heroin, by intravenous or by inhalation route in opioid-dependent patients. Basic Clin. Pharmacol. Toxicol. 2006, 98, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Han, S.W.; Choi, H.J.; Kim, K. Nanoparticle-Directed Crystallization of Calcium Carbonate. Adv. Mater. 2001, 13, 1617–1620. [Google Scholar] [CrossRef]
- Cavalli, R.; Gasco, M.R.; Chetoni, P.; Burgalassi, S.; Saettone, M.F. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm. 2002, 238, 241–245. [Google Scholar] [CrossRef]
- Khandavilli, S.; Panchagnula, R. Nanoemulsions as versatile formulations for paclitaxel delivery: Peroral and dermal delivery studies in rats. J. Investig. Dermatol. 2007, 127, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torne, S.J.; Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010, 17, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Yoncheva, K.; Calleja, P.; Agüeros, M.; Petrov, P.; Miladinova, I.; Tsvetanov, C.; Irache, J.M. Stabilized micelles as delivery vehicles for paclitaxel. Int. J. Pharm. 2012, 436, 258–264. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, F.Z.; Yang, H.; Zhou, J.; Yao, J.; Zhang, T.; Zhang, Q. Enhanced oral bioavailability of paclitaxel in pluronic/LHR mixed polymeric micelles: Preparation, in vitro and in vivo evaluation. Eur. J. Pharm. Sci. 2012, 47, 179–189. [Google Scholar] [CrossRef]
- Nornoo, A.O.; Zheng, H.A.; Lopes, L.B.; Johnson-Restrepo, B.; Kannan, K.; Reed, R. Oral microemulsions of paclitaxel: In situ and pharmacokinetic studies. Eur. J. Pharm. Biopharm. 2009, 71, 310–317. [Google Scholar] [CrossRef]
- Rohmer, M.; Knani, M.; Simonin, P.; Sutter, B.; Sahm, H. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 1993, 295, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Flesch, G.; Rohmer, M. Prokaryotic hopanoids: The biosynthesis of the bacteriohopane skeleton: Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and d-ribose. Eur. J. Biochem. 1988, 175, 405–411. [Google Scholar] [CrossRef]
- Bach, T.J. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 1986, 21, 82–88. [Google Scholar] [CrossRef] [PubMed]
- McGarvey, D.J.; Croteau, R. Terpenoid metabolism. Plant Cell 1995, 7, 1015–1026. [Google Scholar] [PubMed] [Green Version]
- El-Sayed, A.S.; Shindia, A.A.; Diab, A.A.; Rady, A.M. Purification and immobilization of l-arginase from thermotolerant Penicillium chrysogenum KJ185377.1; with unique kinetic properties as thermostable anticancer enzyme. Arch. Pharmacal Res. 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.S.; Shindia, A.A.; Zaher, Y. L-Amino acid oxidase from filamentous fungi: Screening and optimization. Ann. Microbiol. 2012, 62, 773–784. [Google Scholar] [CrossRef]
- El-Sayed, A.S.; Shindia, A.A.; Zaher, Y.A. Purification and characterization of L-amino acid oxidase from the solid-state grown cultures of Aspergillus oryzae ASH. Microbiology 2013, 82, 762–771. [Google Scholar] [CrossRef]
- El-Sayed, A.S.; Shouman, S.A.; Nassrat, H.M. Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes l-methioninase. Enzyme Microb. Technol. 2012, 51, 200–210. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A. Purification and characterization of a new L-methioninase from solid cultures of Aspergillus flavipes. J. Microbiol. 2011, 49, 130–140. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Abdel-Azeim, S.; Ibrahim, H.M.; Yassin, M.A.; Abdel-Ghany, S.E.; Esener, S.; Ali, G.S. Biochemical stability and molecular dynamic characterization of Aspergillus fumigatus cystathionine γ-lyase in response to various reaction effectors. Enzyme Microb. Technol. 2015, 81, 31–46. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.S.A.; Akbar, A.; Iqrar, I.; Ali, R.; Norman, D.; Brennan, M.; Ali, G.S. A glucanolytic Pseudomonas sp. associated with Smilax bona-nox L. displays strong activity against Phytophthora parasitica. Microbiol. Res. 2018, 207, 140–152. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Hassan, A.E.A.; Shindia, A.A.; Mohamed, S.G.; Sitohy, M.Z. Aspergillus flavipes methionine γ-lyase-dextran conjugates with enhanced structural, proteolytic stability and anticancer efficiency. J. Mol. Catal. B Enzym. 2016, 133, S15–S24. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Hassan, A.E.; Yassin, M.A.; Hassan, A.M.F. Characterization of glutathione-homocystine transhydrogenase as a novel isoform of glutathione s-transferase from Aspergillus flavipes. Pharm. Chem. J. 2015, 49, 373–383. [Google Scholar] [CrossRef]
- El-sayed, A.S.A.; George, N.M.; Yassin, M.A.; Alaidaroos, B.A.; Bolbol, A.A.; Mohamed, M.S.; Rady, A.M.; Aziz, S.W.; Zayed, R.A.; Sitohy, M.Z. Purification and Characterization of Ornithine Decarboxylase From Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors. Molecules 2019, 24, 2756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-sayed, A.S.A.; El Sayed, M.T.; Nada, H.S.; Hassan, A.E.; Yousef, E.K. Production and Characterization of Taxol as Anticancer Agent from Aspergillus terreus. J. Pure Appl. Microbiol. 2019, 13, 2055–2063. [Google Scholar] [CrossRef] [Green Version]
- Jennewein, S.; Rithner, C.D.; Williams, R.M.; Croteau, R.B. Taxol biosynthesis: Taxane 13 -hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl. Acad. Sci. USA 2001, 98, 13595–13600. [Google Scholar] [CrossRef] [Green Version]
- Chau, M.; Jennewein, S.; Walker, K.; Croteau, R. Taxol biosynthesis: Molecular cloning and characterization of a cytochrome P450 taxoid 7 beta-hydroxylase. Chem Biol. 2004, 11, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Jennewein, S.; Croteau, R. Taxol: Biosynthesis, molecular genetics, and biotechnological applications. Appl. Microbiol. Biotechnol. 2001, 57, 13–19. [Google Scholar]
- Kusari, S.; Hertweck, C.; Spiteller, M. Chemical Ecology of Endophytic Fungi: Origins of Secondary Metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Cragg, G.M.; Schepartz, S.A.; Suffness, M.; Grever, M.R. The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J. Nat. Prod. 1993, 56, 1657–1668. [Google Scholar] [CrossRef]
- Goldspiel, B.R. Clinical overview of the taxanes. Pharmacotherapy 1997, 17, 110S–125S. [Google Scholar]
- Amos, L.A.; Klug, A. Arrangement of subunits in flagellar microtubules. J. Cell Sci. 1974, 14, 523–549. [Google Scholar]
- Orr, G.A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S.B. Mechanisms of Taxol resistance related to microtubules. Oncogene 2003, 22, 7280–7295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Andreu, J.M.; Bordas, J.; Diaz, J.F.; de Ancos, J.G.; Gil, R.; Medrano, F.J.; Nogales, E.; Pantos, E.; Towns-Andrews, E. Low resolution structure of microtubules in solution. Synchrotron X-ray scattering and electron microscopy of taxol-induced microtubules assembled from purified tubulin in comparison with glycerol and MAP-induced microtubules. J. Mol. Biol. 1992, 226, 169–184. [Google Scholar] [CrossRef]
- Kingston, D.G.; Jagtap, P.G.; Yuan, H.; Samala, L. The chemistry of taxol and related taxoids. Fortschr. Chem. Org. Naturst. 2002, 84, 53–225. [Google Scholar]
- Thomas, P.A.; Polwart, A. Taxus baccata L. J. Ecol. 2003, 91, 489–524. [Google Scholar] [CrossRef]
- Staniek, A.; Woerdenbag, H.; Kayser, O. Taxomyces andreanae: A Presumed Paclitaxel Producer Demystified? Planta Medica 2009, 75, 1561–1566. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Shindia, A.A.; AbouZaid, A.A.; Yassin, A.M.; Shad Ali, G.; Sitohy, M.Z. Biochemical characterization of peptidylarginine deiminase-like orthologs from thermotolerant Emericella dentata and Aspergillus nidulans. Enzyme Microb. Technol. 2019, 124, 41–53. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Shindia, A.A.; Zeid, A.A.A.; Yassin, A.M.; Sitohy, M.Z.; Sitohy, B. Aspergillus nidulans thermostable arginine deiminase-Dextran conjugates with enhanced molecular stability, proteolytic resistance, pharmacokinetic properties and anticancer activity. Enzyme Microb. Technol. 2019, 131. [Google Scholar] [CrossRef]
- Abdillahi, H.S.; Stafford, G.I.; Finnie, J.F.; Van Staden, J. Ethnobotany, phytochemistry and pharmacology of Podocarpus sensu latissimo (s.l.). S. Afr. J. Bot. 2010, 76, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Stahlhut, R.; Park, G.; Petersen, R.; Ma, W.; Hylands, P. The occurrence of the anti-cancer diterpene taxol in Podocarpus gracilior Pilger (Podocarpaceae). Biochem. Syst. Ecol. 1999, 27, 613–622. [Google Scholar] [CrossRef]
- Cope, E.A. Taxaceae: The Genera and Cultivated Species. Bot. Rev. 1998, 64, 291–322. [Google Scholar] [CrossRef]
- Raubeson, L.A.; Jansen, R.K. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 1992, 255, 1697–1699. [Google Scholar] [CrossRef] [PubMed]
- Chaw, S.M.; Long, H.; Wang, B.S.; Zharkikh, A.; Lie, W.H. The phylogenetic position of Taxaceae based on 18S rRNA sequences. J. Mol. Evol. 1993, 37, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Stewart, W.N. Paleobotany and the Evolution of Plants; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Keener, C.S.; Gifford, E.M.; Foster, A.S. Morphology and Evolution of Vascular Plants. Syst. Bot. 1990, 15. [Google Scholar] [CrossRef]
- Delong, J.M.; Prange, R.K. Taxus spp.: Botany, Horticulture, and Source of Anti-Cancer Compounds. In Horticultural Reviews; Wiley Blackwell: Hoboken, NJ, USA, 2010; Volume 32, pp. 299–327. [Google Scholar]
- Turner, N.J.; Hebda, R.J. Contemporary use of bark for medicine by two salishan native elders of Southeast Vancouver Island, Canada. J. Ethnopharmacol. 1990, 29, 59–72. [Google Scholar] [CrossRef]
- Kanda, Y.; Nakamura, H.; Umemiya, S.; Puthukanoori, R.K.; Appala, V.R.; Gaddamanugu, J.K.; Paraselli, B.R.; Baran, P.S. Two-Phase Synthesis of Taxol. J. Am. Chem. Soc. 2020, 142, 10526–10533. [Google Scholar] [CrossRef]
- Farjon, A. A Handbook of the World’s Conifers: Revised and Updated Edition; Brill: Leiden, The Netherlands, 2017. [Google Scholar]
- Brummitt, N.A.; Bachman, S.P.; Griffiths-Lee, J.; Lutz, M.; Moat, J.F.; Farjon, A.; Donaldson, J.S.; Hilton-Taylor, C.; Meagher, T.R.; Albuquerque, S.; et al. Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Abdillahi, H.S.; Stafford, G.I.; Finnie, J.F.; Van Staden, J. Antimicrobial activity of South African Podocarpus species. J. Ethnopharmacol. 2008, 119, 191–194. [Google Scholar] [CrossRef]
- Kuo, Y.J.; Hwang, S.Y.; Wu, M.D.; Liao, C.C.; Liang, Y.H.; Kuo, Y.H.; Ho, H.O. Cytotoxic constituents from Podocarpus fasciculus. Chem. Pharm. Bull. 2008, 56, 585–588. [Google Scholar] [CrossRef] [Green Version]
- Vent, W.; Duke, J.A.; Ayensu, E.S. Medicinal Plants of China. 2 Vols. 705 S., 1300 Strichzeichnungen. Reference Publ., Inc. Algonac. Michigan, 1985. ISBN 0-917266-20-4. Preis: Geb. m. Schutzumschlag $94,95. Feddes Repert. 2008, 98, 398. [Google Scholar] [CrossRef]
- Bok, J.W.; Hoffmeister, D.; Maggio-Hall, L.A.; Murillo, R.; Glasner, J.D.; Keller, N.P. Genomic mining for Aspergillus natural products. Chem. Biol. 2006, 13, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Kupchan, S.M.; Baxter, R.L.; Ziegler, M.F.; Smith, P.M.; Bryan, R.F. Podolide, a new antileukemic norditerpene dilactone from Podocarpus gracilior. Experientia 1975, 31, 137–138. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.S.A.; Moustafa, A.H.; Hussein, H.A.; El-Sheikh, A.A.; El-Shafey, S.N.; Fathy, N.A.M.; Enan, G.A. Potential insecticidal activity of Sarocladium strictum, an endophyte of Cynanchum acutum, against Spodoptera littoralis, a polyphagous insect pest. Biocatal. Agric. Biotechnol. 2020, 24. [Google Scholar] [CrossRef]
- Kusari, S.; Pandey, S.P.; Spiteller, M. Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 2013, 91, 81–87. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.S.A.; Yassin, M.A.; Ali, G.S. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, A.S.A. L-methioninase production by Aspergillus flavipes under solid-state fermentation. J. Basic Microbiol. 2009, 49, 331–341. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A. L-glutaminase production by Trichoderma koningii under solid-state fermentation. Indian J. Microbiol. 2009, 49, 243–250. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.S.A.; Ibrahim, H.; Sitohy, M.Z. Co-immobilization of PEGylated Aspergillus flavipes l-methioninase with glutamate dehydrogenase: A novel catalytically stable anticancer consortium. Enzyme Microb. Technol. 2014, 54, 59–69. [Google Scholar] [CrossRef]
- Gamborg, O.; Miller, R.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- Khan, A.A.; El-Sayed, A.; Akbar, A.; Mangravita-Novo, A.; Bibi, S.; Afzal, Z.; Norman, D.J.; Shad Ali, G. A highly efficient ligation-independent cloning system for CRISPR/Cas9 based genome editing in plants. Plant Methods 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep. 2006, 23, 753–771. [Google Scholar] [CrossRef]
- Gure, A.; Wahlstrom, K.; Stenlid, J. Pathogenicity of seed-associated fungi to Podocarpus falcatus in vitro. Forest Pathol. 2005, 35, 23–35. [Google Scholar] [CrossRef]
- Li, J.-Y.; Sidhu, R.S.; Bollon, A.; Strobel, G.A. Stimulation of taxol production in liquid cultures of Pestalotiopsis microspora. Mycol. Res. 1998, 102, 461–464. [Google Scholar] [CrossRef]
- Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu4, R.S.; Hess5, W.M. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Sun Mkmbiology 2017, 2339, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-Y.; Strobel, G.; Sidhu, R.; Hess, W.M.; Ford, E.J. Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 1996, 142, 2223–2226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhou, P.-P.; Yu, L.-J. An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEBS Microbiol. Lett. 2009, 293. [Google Scholar] [CrossRef] [Green Version]
- Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M.; Young, B. Endophytic fungus of Taxus wallachiana. Microbiology 1996, 142, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Metz, A.M.; Haddad, A.; Worapong, J.; Long, D.M.; Ford, E.J.; Hess, W.M.; Strobel, G.A. Induction of the sexual stage of Pestalotiopsis microspora, a taxol-producing fungus. Microbiology 2000, 146, 2079–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, K.; Sun, L.; Ma, X.; Li, X.; Wang, X.; Ping, W.; Zhou, D. Improved taxol production in Nodulisporium sylviforme derived from inactivated protoplast fusion. Afr. J. Biotechnol. 2011, 10, 4175–4182. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, P.-P.; Yu, L.-J. An Endophytic Taxol-Producing Fungus from Taxus media, Cladosporium cladosporioides MD2. Curr. Microbiol. 2009, 59, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, R.S.; Muthumary, J.; Hur, B.K. Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng. Life Sci. 2008, 8, 438–446. [Google Scholar] [CrossRef]
- Deng, B.W.; Liu, K.H.; Chen, W.Q.; Ding, X.W.; Xie, X.C. Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J. Microbiol. Biotechnol. 2009, 25, 139–143. [Google Scholar] [CrossRef]
- Zhao, K.; Ping, W.; Li, Q.; Hao, S.; Zhao, L.; Gao, T.; Zhou, D. Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidata in China. J. Appl. Microbiol. 2009, 107, 1202–1207. [Google Scholar] [CrossRef]
- Venkatachalam, R.; Subban, K.; Paul, M.J. Taxol from Botryodiplodia theobromae (BT 115)—AN endophytic fungus of Taxus baccata. J. Biotechnol. 2008, 136, S189–S190. [Google Scholar] [CrossRef]
- Qiu, F.; Chen, Y.-R.; Liu, X.; Chu, C.-Y.; Shen, L.-J.; Xu, J.; Gaur, S.; Forman, H.J.; Zhang, H.; Zheng, S.; et al. Arginine Starvation Impairs Mitochondrial Respiratory Function in ASS1-Deficient Breast Cancer Cells. Sci. Signal. 2014, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, C.; Sun, Y.-T.; Sun, C.-Z.; Zhang, Y.; Wang, X.-H.; Zhao, K. Taxol Produced from Endophytic Fungi Induces Apoptosis in Human Breast, Cervical and Ovarian Cancer Cells. Asian Pac. J. Cancer Prev. 2015, 16, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhu, H.; Liu, L.; Lin, J.; Tang, K. A review: Recent advances and future prospects of taxol-producing endophytic fungi. Appl. Microbiol. Biotechnol. 2010, 86, 1707–1717. [Google Scholar] [CrossRef]
- Chakravarthi, B.V.S.K.; Das, P.; Surendranath, K.; Karande, A.A.; Jayabaskaran, C. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J. Biosci. 2008, 33, 259–267. [Google Scholar] [CrossRef]
- Guo, B.; Wang, Y.; Sun, X.; Tang, K. Bioactive natural products from endophytes: A review. Appl. Biochem. Microbiol. 2008, 44, 136–142. [Google Scholar] [CrossRef]
- Sun, D.; Ran, X.; Wang, J. Isolation and identification of a taxol-producing endophytic fungus from Podocarpus. Acta Microbiol. Sin. 2008, 48, 589–595. [Google Scholar]
- Yang, Y.; Zhao, H.; Barrero, R.A.; Zhang, B.; Sun, G.; Wilson, I.W.; Xie, F.; Walker, K.D.; Parks, J.W.; Bruce, R.; et al. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom. 2014, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, J.; Ji, Y.; Pan, J.; Yu, Y.; Chen, H.; Zhu, X. A new taxol-producing fungus (Pestalotiopsis malicola) and evidence for taxol as a transient product in the culture. Afr. J. Biotechnol. 2011, 10, 6647–6654. [Google Scholar] [CrossRef]
- Kusari, S.; Singh, S.; Jayabaskaran, C. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol. 2014, 32, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.S.M.; Raizada, M.N. Interactions between Co-Habitating fungi Elicit Synthesis of Taxol from an Endophytic Fungus in Host Taxus Plants. Front. Microbiol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Bustamante, Z.R.; Rivera-Orduña, F.N.; Martínez-Cárdenas, A.; Flores-Cotera, L.B. Microbial paclitaxel: Advances and perspectives. J. Antibiot. 2010, 63, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Capasso, F. Medicinal plants: An approach to the study of naturally occurring drugs. J. Ethnopharmacol. 1985, 13, 111–114. [Google Scholar] [CrossRef]
- Shiba, Y.; Paradise, E.M.; Kirby, J.; Ro, D.K.; Keasling, J.D. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab. Eng. 2007, 9, 160–168. [Google Scholar] [CrossRef]
- Kang, A.; George, K.W.; Wang, G.; Baidoo, E.; Keasling, J.D.; Lee, T.S. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab. Eng. 2016, 34, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.C. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 2007, 3, 387–395. [Google Scholar] [CrossRef]
- Soliman, S.S.M.; Mosa, K.A.; EI-keblawy, A.A.; Husseiny, M.I. Exogenous and endogenous increase in fungal GGPP increased fungal taxol production. Appl. Microbiol. Biotechnol. 2017, 101, 7523–7533. [Google Scholar] [CrossRef]
- Li, Y.C.; Tao, W.Y.; Cheng, L. Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Appl. Microbiol. Biotechnol. 2009, 83, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Brakhage, A.A.; Schuemann, J.; Bergmann, S.; Scherlach, K.; Schroeckh, V.; Hertweck, C. Activation of fungal silent gene clusters: A new avenue to drug discovery. Prog. Drug Res. 2008, 66, 1–12. [Google Scholar]
- Liu, C.; Yu, F.; Liu, Q.; Bian, X.; Hu, S.; Yang, H.; Yin, Y.; Li, Y.; Shen, Y.; Xia, L.; et al. Yield improvement of epothilones in Burkholderia strain DSM7029 via transporter engineering. FEMS Microbiol. Lett. 2018, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamin, W.; Xuanwei, Z.; Lu, L.; Jie, L.; Zinan, W.; Geng, Y.; Lingchuan, H.; Juan, L.; Xiaofen, S.; Kexuan, T. An efficient transformation system of taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr. J. Biotechnol. 2010, 9, 1726–1733. [Google Scholar] [CrossRef]
- Liu, L.; Wei, Y.; Zhou, X.; Lin, J.; Sun, X.; Tang, K. Agrobacterium tumefaciens-mediated genetic transformation of the Taxol-producing endophytic fungus Ozonium sp. EFY21. Genet. Mol. Res. 2013, 12, 2913–2922. [Google Scholar] [CrossRef]
- Abdel-Shafi, S.; Al-Mohammadi, A.R.; Hamdi, S.; Moustafa, A.H.; Enan, G. Biological characterization and inhibition of streptococcus pyogenes ZUH1 causing chronic cystitis by crocus sativus methanol extract, bee honey alone or in combination with antibiotics: An in vitro study. Molecules 2019, 24, 2903. [Google Scholar] [CrossRef] [Green Version]
- de Crécy-Lagard, V.; Hanson, A.D. Finding novel metabolic genes through plant-prokaryote phylogenomics. Trends Microbiol. 2007, 15, 563–570. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Gond, S.K.; Kharwar, R.N.; White, J.F. Will fungi be the new source of the blockbuster drug taxol? Fungal Biol. Rev. 2014, 28, 77–84. [Google Scholar] [CrossRef]
- Vasundhara, M.; Kumar, A.; Reddy, M.S. Molecular approaches to screen bioactive compounds from endophytic fungi. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Z.-Q.; Yang, Y.-Y.; Zhao, N.; Wang, Y. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiology 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Khalaf, S.A.; El-Sayed, A.S.A. l-Methioninase Production by Filamentous Fungi: I-Screening and Optimization Under Submerged Conditions. Curr. Microbiol. 2009, 58, 219–226. [Google Scholar] [CrossRef]
- Osbourn, A. Secondary metabolic gene clusters: Evolutionary toolkits for chemical innovation. Trends Genet. 2010, 26, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.J.; Wang, C.C.C. Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cain, J.W.; Miller, K.I.; Kalaitzis, J.A.; Chau, R.; Neilan, B.A. Genome mining of a fungal endophyte of Taxus yunnanensis (Chinese yew) leads to the discovery of a novel azaphilone polyketide, lijiquinone. Microb. Biotechnol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wisecaver, J.H.; Rokas, A. Fungal metabolic gene clusters-caravans traveling across genomes and environments. Front. Microbiol. 2015, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.J.; Frisvad, J.C.; Sun, B.D.; Varga, J.; Kocsubé, S.; Dijksterhuis, J.; Kim, D.H.; Hong, S.B.; Houbraken, J.; Samson, R.A. Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Stud. Mycol. 2016, 84, 1–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, T.T.; Xu, Q.L.; Xiong, Y.; Zhang, L.; Han, H.; Xu, K.; Guo, W.J.; Xu, Q.; Tan, R.X.; et al. Genome Mining and Comparative Biosynthesis of Meroterpenoids from Two Phylogenetically Distinct Fungi. Angew. Chem.-Int. Ed. 2018, 57, 8184–8188. [Google Scholar] [CrossRef]
- Ziemert, N.; Alanjary, M.; Weber, T. The evolution of genome mining in microbes-a review. Nat. Prod. Rep. 2016, 33, 988–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, G.S.; El-Sayed, A.S.A.; Patel, J.S.; Green, K.B.; Ali, M.; Brennan, M.; Norman, D. Ex vivo application of secreted metabolites produced by soil-inhabiting Bacillus spp. efficiently controls foliar diseases caused by Alternaria spp. Appl. Environ. Microbiol. 2016, 82, 478–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2014, 12, 59–60. [Google Scholar] [CrossRef]
- de Jong, A.; van Heel, A.J.; Kok, J.; Kuipers, O.P. BAGEL2: Mining for bacteriocins in genomic data. Nucleic Acids Res. 2010, 38. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.; Rausch, C.; Lopez, P.; Hoof, I.; Gaykova, V.; Huson, D.H.; Wohlleben, W. CLUSEAN: A computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J. Biotechnol. 2009, 140, 13–17. [Google Scholar] [CrossRef]
- Tong, Y.; Charusanti, P.; Zhang, L.; Weber, T.; Lee, S.Y. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes. ACS Synth. Biol. 2015, 4, 1020–1029. [Google Scholar] [CrossRef] [Green Version]
- Medema, M.H.; Blin, K.; Cimermancic, P.; De Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39. [Google Scholar] [CrossRef]
- Medema, M.H.; Kottmann, R.; Yilmaz, P.; Cummings, M.; Biggins, J.B.; Blin, K.; De Bruijn, I.; Chooi, Y.H.; Claesen, J.; Coates, R.C.; et al. Minimum Information about a Biosynthetic Gene cluster. Nat. Chem. Biol. 2015, 11, 625–631. [Google Scholar] [CrossRef]
- Hornung, A.; Bertazzo, M.; Dziarnowski, A.; Schneider, K.; Welzel, K.; Wohlert, S.E.; Holzenkämpfer, M.; Nicholson, G.J.; Bechthold, A.; Süssmuth, R.D.; et al. A genomic screening approach to the structure-guided identification of drug candidates from natural sources. ChemBioChem 2007, 8, 757–766. [Google Scholar] [CrossRef]
- Dcosta, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Cox, G.; Wright, G.D. Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 2013, 303, 287–292. [Google Scholar] [CrossRef]
- Peterson, R.M.; Huang, T.; Rudolf, J.D.; Smanski, M.J.; Shen, B. Mechanisms of self-resistance in the Platensimycin- and platencin-producing streptomyces platensis MA7327 and MA7339 strains. Chem. Biol. 2014, 21, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Family | Fungus | Host | Taxol Yield µg/L Culture | Method of Assay | Reference |
---|---|---|---|---|---|
Taxaceae | Taxomyces andreanae | Taxus brevifolia | 0.05 | CIEIA, HPLC | [111] |
Alternaria alternata | Taxus hicksii | 512 | HPLC | [34] | |
Pestalothiopsis microspora | Taxus walichiana | 2.9 | CIEIA | [112] | |
Nodulisporium sylviforme | Taxus cuspidata | 450 | HPLC | [113] | |
Cladosporium cladosporioides | Taxus media | 800 | TLC, HPLC | [110] | |
Aspergillus candidus | Taxus media | 112 | TLC, HPLC | [114] | |
Phomopsis sp. | Taxus cuspidata | 418 | HPLC, TLC | [115] | |
Fusarium solani | Taxus chinensis | 164 | HPLC | [116] | |
Mucor rouxianus | Taxus chinensis | 30 | HPLC | [29] | |
Aspergillus niger | Taxus cuspidata | 273 | HPLC | [117] | |
Botryodiplodia theobromae | Taxus baccata | 280 | HPLC, MS | [118] | |
Taxomyces sp. | Taxus yunnanensis | 100 | HPLC, TLC | [119] | |
Alternaria alternata | T. hicksii | 90 | HPLC, TLC | [34] | |
Pestalotiopsis microspora | Taxodium distichum | 87 | HPLC, TLC | [109] | |
Pithomyces sp. | Taxus sumatrana | 84 | HPLC, TLC | [111] | |
Pestalotiopsis microspora | T. wallichiana | 89 | HPLC, TLC | [111] | |
Alternaria sp. | T. cuspidata | 19 | HPLC, TLC | [120] | |
P. microspora | T. baccata | 120 | HPLC, TLC | ||
Fusarium lateritium | T. baccata | 113 | HPLC, TLC | ||
Pestalotia bicilia | T. baccata | 125 | HPLC, TLC | ||
Monochaetia sp. | T. baccata | 190 | HPLC, TLC | ||
Kitasatospora sp. | T. baccata | 120 | HPLC, TLC | [20] | |
Penicillium spp. | Taxus species | 111 | HPLC, TLC | [20] | |
Pestalothiopsis microspora | T. wallichiana | 136 | HPLC, TLC | [112] | |
Tubercularia sp. | T. mairei | 180 | HPLC, TLC | [120] | |
Taxomyces sp. | T. yunnanensis | 180 | HPLC, TLC | [10] | |
Alternaria alternate | T. chinensis | 129 | HPLC, TLC | [34] | |
Ozonium sp. | T. chinensis | 89 | HPLC, TLC | [34] | |
Fusarium mairei | T. chinensis | 78 | HPLC, TLC | [34] | |
Fusarium solani | T. celebica | 75 | HPLC, TLC | [34] | |
Botryodiplodia theobromae | T. baccata | 45 | HPLC, TLC | [34] | |
Botrytis sp | T. cuspidata | 65 | HPLC, TLC | [117] | |
Fusarium arthrosporioides | T. cuspidata | 78 | HPLC, TLC | [109] | |
Gliocladium sp. | T. baccata | 90 | HPLC, TLC | [34] | |
Fusarium solani | T. chinensis | 98 | HPLC, TLC | [116] | |
Mucor rouxianus sp. | T. chinensis | 94 | HPLC, TLC | [116] | |
Aspergillus niger var taxi | T. cuspidata | 91 | HPLC, TLC | [121] | |
Phomopsis sp. | T. cuspidata | 82 | HPLC, TLC | [121] | |
C. cladosporioides | T. media | 72 | HPLC, TLC | [110] | |
Aspergillus candidus | T. media | 73 | HPLC, TLC | [110] | |
Phomopsis sp. | T. cuspidata | 70 | HPLC, TLC | [110] | |
Pithomyces s | T. sumatrana | 20 | HPLC, TLC | [122] | |
Didymostilbe sp. | T. chinensis | 26 | HPLC, TLC | [120] | |
Ozonium sp., | T. chinensis | 29 | HPLC, TLC | [121] | |
Alternaria alternata, | T. chinensis | 30 | HPLC, TLC | [123] | |
Botrytis sp., | T. chinensis | 36 | HPLC, TLC | ||
Ectostroma sp., | T. chinensis | 90 | HPLC, TLC | ||
Podocarpaceae | Aspergillus terreus 1 | Podocarpus gracilior | 20 | HPLC, TLC | [103] |
A. terreus 2 | Podocarpus gracilior | 14 | HPLC, TLC | ||
A. terreus 3 | Podocarpus gracilior | 18 | HPLC, TLC | ||
A. flavus 1 | Podocarpus gracilior | 4.5 | HPLC, TLC | ||
A. flavus 2 | Podocarpus gracilior | 1.8 | HPLC, TLC | ||
Penicillium egyptiacum | Podocarpus gracilior | 3.6 | HPLC, TLC | ||
Aspergillus terreus 1 | Podocarpus gracilior | 20 | HPLC, TLC | ||
A. terreus 2 | Podocarpus gracilior | 14 | HPLC, TLC | ||
Aspergillus fumigatus | Podocarpus sp. | 590 | HPLC | [124] | |
Other plants | Phyllosticta dioscorea | Hibiscus rosa-sinensis | 298 | HPLC, TLC | [115] |
Phoma betae | Ginkgo biloba | 795 | HPLC | [115] | |
Phomopsis sp | Ginkgo biloba | 372 | HPLC, MS | ||
Phomopsis sp. | Larix leptolepis | 334 | HPLC, NMR | ||
Penicillium aurantiogriseum | Corylus avellana | 70 | LCMS, NMR | [125] | |
Bartalinia robillardoides | Aegle mamelos | 188 | HPLC, MS | [125] | |
Phomopsis sp. | Wollemia nobili s | 170 | HPLC, TLC | [77] | |
Lasiodiplodia theobromae | Morinda citrifolia | 120 | HPLC, TLC | [34] | |
Phyllostica melochiae | Melochia corchorifolia | 478 | HPLC, TLC | [115] | |
Phyllosticta spinarum | Cupressus sp. | 235 | HPLC, TLC | ||
Phyllosticta citricarpa | Citrus media | 265 | HPLC, TLC | ||
Fusarium proliferatum | Tillandsia usneoides | 165 | HPLC | [34] | |
Pestalotiopsis sp.107 | Tillandsia usneoides | 89 | HPLC | ||
Phomopsis sp. 116 | Tillandsia usneoides | 22 | HPLC | ||
Pestalotiopsis sp., 118 | Tillandsia usneoides | 8.9 | HPLC | ||
Pestalotiopsis humus 133 | Tillandsia usneoides | 6.1 | HPLC | ||
Pestalotiopsis humus 154 | Tillandsia usneoides | 5.7 | HPLC | ||
Pestalotiopsis sp.155 | Tillandsia usneoides | 4.3 | HPLC | ||
Pestalotiopsis sp.163 | Tillandsia usneoides | 4.0 | HPLC | ||
Rhizosphere | Aspergillus flavipes | Rhizosphere | 850 | HPLC, TLC | [34] |
Aspergillus flavus | Rhizosphere | 2.8 | HPLC, TLC | ||
Aspergillus oryzae | Rhizosphere | 3.2 | HPLC, TLC | ||
Alternaria sp. | Rhizosphere | 4.2 | HPLC, TLC | ||
Penicillium chrysogenum | Rhizosphere | 85 | HPLC, TLC | ||
Pestalotiopsis malicola | Rhizosphere | 186 | HPLC, LCMS | [126] |
Improvement Approach | Wild-Type Strain | Method | Taxol Increasing (Folds) | Reference |
---|---|---|---|---|
Mutagenesis and molecular manipulation | Nodulisporium sylviforme | UV, EMS, 60Co, NTG | 2.5 | [121] |
Fusarium maire | UV + DES | 8.6 | [34] | |
Nodulisporium sylviforme | Genome shuffling | 0.5 | [113] | |
Ozonium sp. | PEG-transformation | 5 | [34] | |
Ozonium sp. | ATMT | 6 | [121] | |
Ozonium sp. | ATMT | N.A | [120] | |
Cladosporium cladosporioides | ATMT | N.A | [117] | |
Cultural nutritional optimization | Fusarium mairei | pH, temperature, carbon, nitrogen source, fermentation period (Single factor) | 10.2 | [121] |
F. maire | Nitrogen source (Plackett Burman design) | 1.3 | [121] | |
Nodulisporium sylviforme | pH, temperature, fermentation period (Single factor) | 1.15 | [113] | |
Pestalotiopsis microspora | Monobasic sodium phosphate (Single factor) | 2.2 | [107] | |
Aspergillus terreus | ||||
Elicitation/Inhibition Strategy | Nodulisporium sylviforme | Serine, SA, silver nitrate, ammonium acetate | 1.1 | [113] |
Periconia sp. | Serinol, p-hydroxy benzoic acid, β-resorcyclic acid, gallic acid, Benzoic acid | 8 | [107] | |
Periconia sp. | Benzoate | 8 | [121] | |
Fusarium maire | Sodium acetate | 11 | [121] | |
Epicoccum nigrum | Serine | 29 | [121] | |
Pestalotiopsis microspora | Fluconazole | 50 | [107] | |
Aspergillus flavipes | Fluconazole | 50 | [34] | |
Co-cultivation/mixed fermentation | Paraconiothyrium sp. | Alternaria sp. | 2.7 | [134] |
Phomopsis sp. | 3.8 | |||
Alternaria sp. and Phomopsis sp. | 7.8 | |||
Fusarium sp. | Taxus suspension cells | 38 | [135] | |
Aspergillus terreus | surface sterilized leaves of P. gracilior | 2.5 | [102] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, A.S.A.; El-Sayed, M.T.; Rady, A.M.; Zein, N.; Enan, G.; Shindia, A.; El-Hefnawy, S.; Sitohy, M.; Sitohy, B. Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation. Molecules 2020, 25, 3000. https://doi.org/10.3390/molecules25133000
El-Sayed ASA, El-Sayed MT, Rady AM, Zein N, Enan G, Shindia A, El-Hefnawy S, Sitohy M, Sitohy B. Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation. Molecules. 2020; 25(13):3000. https://doi.org/10.3390/molecules25133000
Chicago/Turabian StyleEl-Sayed, Ashraf S.A., Manal T. El-Sayed, Amgad M. Rady, Nabila Zein, Gamal Enan, Ahmed Shindia, Sara El-Hefnawy, Mahmoud Sitohy, and Basel Sitohy. 2020. "Exploiting the Biosynthetic Potency of Taxol from Fungal Endophytes of Conifers Plants; Genome Mining and Metabolic Manipulation" Molecules 25, no. 13: 3000. https://doi.org/10.3390/molecules25133000