Sesquiterpene Lactones from Calea pinnatifida: Absolute Configuration and Structural Requirements for Antitumor Activity
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation of Compounds 1–3
2.2. Biological Assays
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation of Compounds
3.4. Cell Lines Culture
3.5. Cell Viability Assay and Determination of IC50 Value
3.6. Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lorenzi, F.J.A. Plantas Medicinais do Brasil: Nativas e Exóticas; Instituto Plantarum: Nova Odessa, Brazil, 2002. [Google Scholar]
- Ferreira, Z.S.; Roque, N.F.; Gottlieb, O.R.; Oliveira, F.; Gottlieb, H. Structural clarification of germacranolides from Calea species. Phytochemistry 1980, 19, 1481–1484. [Google Scholar] [CrossRef]
- Lima, T.C.; Souza, R.J.; Silva, F.A.; Biavatti, M.W. The genus Calea, L.: A review on traditional uses, phytochemistry, and biological activities. Phytochem. Res. 2018, 32, 769–795. [Google Scholar] [CrossRef]
- Seaman, F.C. Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot. Rev. 1982, 42, 121–595. [Google Scholar] [CrossRef]
- Padilla-Gonzalez, G.F.; Santos, F.A.; Da Costa, F.B. Sesquiterpene lactones: More than protective plant compounds with high toxicity. Crit. Rev. Plant Sci. 2016, 35, 18–37. [Google Scholar] [CrossRef]
- Scotti, M.T.; Fernandes, M.B.; Ferreira, M.J.P.; Emerenciano, V.P. Quantitative structure-activity relationship of sesquiterpene lactones with cytotoxic activity. Bioorg. Med. Chem. 2007, 15, 2927–2934. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products-A Biosynthetic Approach, 3rd ed.; John Wiley & Sons, Ltd.: Nottingham, UK, 2009. [Google Scholar]
- Bohlmann, F.; Jakupovic, J. Neue germacranolide aus Calea urticifolia. Phytochemistry 1979, 18, 119–123. [Google Scholar] [CrossRef]
- Herz, W.; Kumar, N. Sesquiterpene lactones of Calea zacatechichi and C. urticifolia. Phytochemistry 1980, 19, 593–597. [Google Scholar] [CrossRef]
- Ober, A.G.; Urbatsch, L.E.; Fischer, N.H. Sesquiterpene lactones from Calea leptocephala. Phytochemistry 1986, 25, 467–470. [Google Scholar] [CrossRef]
- Yamada, M.; Matsuura, N.; Suzuki, H.; Kurosaka, C.; Hasegawa, N.; Ubukata, M.; Tanaka, T.; Iinuma, M. Germacranolides from Calea urticifolia. Phytochemistry 2014, 65, 3107–3111. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Fronczek, F.R.; Burandt, C.L.; Sjawiony, J.K. Antileishmanial germacranolides from Calea zacatechichi. Planta Med. 2011, 77, 749–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.Y.; Fronczek, F.R.; Malcolm, A.; Fischer, N.H.; Urbatsch, L.E. New germacranolides from Calea ternifolia and the molecular structure of 9α-hydroxy-11,13-dihydro-11α,13-epoxyatripliciolide-8β-O-(2-methylacrylate). J. Nat. Prod. 1982, 45, 311–316. [Google Scholar] [CrossRef]
- Batista, J.M.J.; Blanch, E.W.; Bolzani, V.S. Recent advances in the use of vibrational chiroptical spectroscopic methods for stereochemical characterization of natural products. Nat. Prod. Rep. 2015, 32, 1280–1302. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.N.L.; Santos, F.M.J.; Batista, J.M.J.; Cass, Q.B. Enantiomeric mixtures in natural product chemistry: Separation and absolute configuration assignment. Molecules 2018, 23, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchetti, G.M.; Silva, K.A.; Santos, A.N.; Souza, I.M.; Tinti, S.V.; Figueira, G.M.; Foglio, M.A.; Carvalho, J.E. The anticancer activity of dichloromethane crude extract obtained from Calea pinnatifida. J. Exp. Pharmacol. 2012, 4, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, Y.; Iinuma, M.; Matsuura, N.; Yi, K.; Naoi, M.; Nakayama, T.; Nozawa, Y.; Akao, Y. A potent apoptosis-inducing activity of a sesquiterpene lactone, arucanolide, in HL60 cells: A crucial role of apoptosis-inducing factor. J. Pharmacol. Sci. 2005, 97, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Caldas, L.A.; Ionta, M.; Horvath, R.O.; Silva, G.A.F.; Ferreira, M.J.P.; Sartorelli, P. Calein C, a sesquiterpene lactone isolated from Calea pinnatifida (Asteraceae), inhibits mitotic progression and induces apoptosis in MCF-7 cells. Front. Pharmacol. 2018, 9, 1191. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, N.; Yamada, M.; Suzuki, H.; Hasegawa, N.; Kurosaka, C.; Ubukata, M.; Tanaka, T.; Iinuma, M. Inhibition of preadipocyte differentiation by germacranolides from Calea urticifolia in 3T3-L1 cells. Biosci. Biotechnol. Biochem. 2005, 69, 2470–2474. [Google Scholar] [CrossRef] [Green Version]
- Rivero, A.; Quintana, J.; Eiroa, J.L.; López, M.; Triana, J.; Bermejo, J.; Estévez, F. Potent induction of apoptosis by germacranolide sesquiterpene lactones on human myeloid leukemia cells. Eur. J. Pharmacol. 2003, 482, 77–84. [Google Scholar] [CrossRef]
- Ohguchi, K.; Ito, M.; Yokoyama, K.; Iinuma, M.; Itoh, T.; Nozawa, Y.; Akao, Y. Effects of sesquiterpene lactones on melanogenesis in mouse B16 melanoma cells. Biol. Pharm. Bull. 2009, 32, 308–310. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as source of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Allard, P.M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V.C.; Roussi, F.; Litaudon, M.; Wolfender, J.L. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal. Chem. 2016, 6, 3317–3323. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 5, 364–378. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Global Cancer Observatory, 2019. Available online: https://gco.iarc.fr/ (accessed on 29 March 2020).
- Park, J.W.; Choi, S.H.; Yoon, H.I.; Lee, J.; Kim, T.H.; Kim, J.W.; Lee, I.J. Treatment outcomes of radiotherapy for anaplastic thyroid cancer. Radiat. Oncol. J. 2018, 36, 103–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, S.; Fouché, G.; Mieri, M.; Yoshimoto, Y.; Usuki, T.; Nthambeline, R.; Parkinson, C.J.; Van der Westhuyzen, C.; Kaiser, M.; Hamburger, M.; et al. Stucture-activity relantionship study of sesquiterpene lactones and their semi-synthetic amino derivatives as potential antitrypanosomal products. Molecules 2014, 19, 3523–3538. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.J.; Costa, F.B.; Lopes, N.P.; Kaiser, M.; Brun, R. In silico prediction and experimental evaluation of furanoheliangolide sesquiterpene lactones as potent agents against Trypanosoma brucei rhodesiense. Antimicrob. Agents Chemother. 2014, 58, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldas, L.A.; Yoshinaga, M.L.; Ferreira, M.J.P.; Lago, J.H.G.; Souza, A.B.; Laurenti, M.D.; Passero, L.F.D.; Sartorelli, P. Antileishmanial activity and ultrastructural changes of sesquiterpene lactones isolated from Calea pinnatifida (Asteraceae). Bioorg. Chem. 2019, 83, 348–353. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; Zafereo, M.; Gunn, G.B.; Ferrarotto, R. Anaplastic thyroid carcinoma: Treatment in the age of molecular targeted therapy. J. Oncol. Pract. 2016, 12, 511–518. [Google Scholar] [CrossRef]
- Celano, M.; Maggisano, V.; Rose, R.F.; Bulotta, S.; Maiuolo, J.; Navarra, M.; Russo, D. Flavonoid fraction of Citrus reticulata juice reduces proliferation and migration of anaplastic thyroid carcinoma cells. Nutr. Cancer 2015, 67, 1183–1190. [Google Scholar] [CrossRef]
- Allegri, L.; Rosignolo, F.; Mio, C.; Filetti, S.; Baldan, F.; Damante, G. Effects of nutraceuticals on anaplastic thyroid cancer cells. J. Cancer Res. Clin. Oncol. 2018, 144, 285–304. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, A. 02; Gaussian, Inc.: Wallingford, UK, 2009. [Google Scholar]
Sample Availability: Samples of the compounds 1 and 2 are available from the authors. |
1 a | 2 b | 3 b | ||||||
---|---|---|---|---|---|---|---|---|
No | 1H | 13C | NOESY 1H | 13C | NOESY | 1H | 13C | |
1 | - | 204.3 | - | - | 205.9 | - | - | 204.7 |
2 | 5.77 d (J 11.7 Hz) | 124.9 | H-15, H-7, H-3 | 4.24 d (J 4.2 Hz) | 62.9 | H-15, H-3, H-9 | 6.55 d (J 12.0 Hz) | 125.6 |
3 | 4.72 t (J 11.7 Hz) | 147.5 | H-14, H-15, H-4, H-6, H-2, H-5 | 3.33 dd (J 9.3; 4.2 Hz) | 55.6 | H-2, H-14 | 6.01 t (J 12.0 Hz) | 147.1 |
4 | 2.57 m | 27.8 | H-14, H-15 H-7, H-3 | 1.60 sl | 26.0 | OH, H-7 | 3.11 m | 28.7 |
5 | 0.71 m/0.99 m | 40.0 | H-9, H-2, H-6 | 1.46 m/1.90 m | 38.8 | H-14, H-21 | 1.61 s/1.85 brs | 38.2 |
6 | 4.13 dd (J 11.7; 4.8 Hz) | 77.2 | H-7, H-9, H-5 | 4.82 dd (J 11.9; 4.3 Hz) | 79.7 | H-5, H-6, H-8 | 4.62 dd (J 12.0; 4.1 Hz) | 77.2 |
7 | 2.24 brs | 41.3 | H-6, H-8, H-9, H-13 | 2.36 brs | 40.9 | H-5, H-6, H-8 | 3.08 m | 40.2 |
8 | 5.70 dd (J 9.8; 2.0 Hz) | 74.6 | H-7, H-13, H-15 | 5.68 dd (J 9.9; 1.2 Hz) | 71.5 | H-5, H-21, H-7, H-6 | 5.64 m | 69.3 |
9 | 5.43 d (J 9.8 Hz) | 73.9 | H-6, H-7, H-15 | 5.77 d (J 9.9 Hz) | 73.9 | H-2, H-6, H-15 | 5.60 d (J 4.5 Hz) | 74.7 |
10 | - | 79.1 | - | - | 74.6 | - | - | 79.2 |
11 | - | 131.5 | - | - | 134.3 | - | - | 37.5 |
12 | - | 168.0 | - | - | 168.3 | - | - | 174.1 |
13 | 5.02 brs/5.92 brs | 126.3 | H-7, H-18 | 5.83 s/6.33 s | 126.8 | H-7 | 3.35 s/3.70 m | 66.4 |
14 | 0.33 d (J 6.3 Hz) | 19.0 | H-4, H-3 | 1.22 d (J 6.1 Hz) | 18.6 | H-3 | 1.16 d (J 6.0 Hz) | 19.8 |
15 | 0.84 s | 23.2 | H-2, H-9 | 1.46 s | 24.5 | H-2 | 1.32 s | 23.5 |
16 | - | 165.2 | - | - | 165.3 | - | - | 165.4 |
17 | - | 135.7 | - | - | 134.8 | - | - | 131.5 |
18 | 4.93 s/5.96 s | 125.2 | H-7, H-13, H-19 | 5.57 brs/6.04 brs | 127.3 | H-19 | 5.57 s/6.05 s | 127.5 |
19 | 1.58 s | 17.8 | H-18 | 1.85 s | 18.1 | H-18 | 1.86 s | 18.0 |
20 | - | 170.0 | - | - | 170.4 | - | - | 170.1 |
21 | 1.38 s | 19.5 | - | 2.05 s | 20.3 | H-9, H-19 | 2.02 s | 20.4 |
22 | - | - | - | - | - | - | 3.36 s | 59.2 |
KTC-2 | TPC-1 | NIH-3T3 | |
---|---|---|---|
Calein C (1) | 1.67 | 1.49 | 3.06 |
Calealactone B (2) | 4.69 | 3.54 | 4.40 |
Calein C derivative (3) | 25.32 | 23.25 | 18.54 |
Cisplatin | 2.21 | 3.05 | 10.38 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldas, L.A.; Rodrigues, M.T.; Batista, A.N.L.; Batista, J.M., Jr.; Lago, J.H.G.; Ferreira, M.J.P.; Rubio, I.G.S.; Sartorelli, P. Sesquiterpene Lactones from Calea pinnatifida: Absolute Configuration and Structural Requirements for Antitumor Activity. Molecules 2020, 25, 3005. https://doi.org/10.3390/molecules25133005
Caldas LA, Rodrigues MT, Batista ANL, Batista JM Jr., Lago JHG, Ferreira MJP, Rubio IGS, Sartorelli P. Sesquiterpene Lactones from Calea pinnatifida: Absolute Configuration and Structural Requirements for Antitumor Activity. Molecules. 2020; 25(13):3005. https://doi.org/10.3390/molecules25133005
Chicago/Turabian StyleCaldas, Lhaís Araújo, Mariana T. Rodrigues, Andrea N. L. Batista, João M. Batista, Jr., João H. G. Lago, Marcelo J. P. Ferreira, Ileana G. S. Rubio, and Patricia Sartorelli. 2020. "Sesquiterpene Lactones from Calea pinnatifida: Absolute Configuration and Structural Requirements for Antitumor Activity" Molecules 25, no. 13: 3005. https://doi.org/10.3390/molecules25133005
APA StyleCaldas, L. A., Rodrigues, M. T., Batista, A. N. L., Batista, J. M., Jr., Lago, J. H. G., Ferreira, M. J. P., Rubio, I. G. S., & Sartorelli, P. (2020). Sesquiterpene Lactones from Calea pinnatifida: Absolute Configuration and Structural Requirements for Antitumor Activity. Molecules, 25(13), 3005. https://doi.org/10.3390/molecules25133005