Biological Activities of Aqueous Extracts from Carob Plant (Ceratonia siliqua L.) by Antioxidant, Analgesic and Proapoptotic Properties Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of the Extract
2.3. Methods
2.3.1. Volatile Compound Analysis
2.3.2. Phytochemical Content
2.3.3. Antioxidant Activity
2.3.4. Acute Toxicity
2.3.5. Analgesic Activity
2.3.6. Cell Cultures
2.3.7. Proapoptotic Activity
2.4. Statistical Analyses
3. Results and Discussion
3.1. Volatile Compounds
3.2. Phytochemical Analysis of Carob
3.3. DPPH Scavenging Activity
3.4. ABTS Scavenging Activity
3.5. Antioxidant Activity Evaluated by Three Methods (FRAP, DPPH and ABTS)
3.6. Acute Toxicity
3.7. Analgesic Activity
3.8. Carob Extracts Induce Apoptosis of Leukemic, Breast and Colon Cancer Cell Line Models
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, R.H. Dietary Bioactive Compounds and Their Health Implications. J. Food Sci. 2013, 78, A18–A25. [Google Scholar] [CrossRef] [PubMed]
- Youssef, H.; Groussard, C.; Moussa, E.; Jacob, C.; Pincemail, J.; Delamarche, A. L’insulino-resistance et l’inflammation de repos majorent-elles le stress oxydant post-exercice chez des adolescentes libanaises en surcharge pondérale? Sci. Sports 2007, 22, 297–299. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.Y.; Tran, H.Q.; Gewirtz, A.T.; Mckeown-Eyssen, G.; Fedirko, V.; Romieu, I.; Tjonneland, A.; Olsen, A.; Overvad, K.; Boutron-Ruault, M.-C.; et al. Serum Endotoxins and Flagellin and Risk of Colorectal Cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Cancer Epidemiol. Biomark. Prev. 2016, 25, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, S.; Cao, Y.; Tian, X.; Zeng, R.; Liao, D.-F.; Cao, D. Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer. Oxidative Med. Cell. Longev. 2015, 2016, 1–15. [Google Scholar] [CrossRef]
- Nabli, M.A. Synthesis Assay of Tunisian Vegetation and Phytoecologic Flora; Faculty of Science of Tunis. Application and Fundamental Botanical Laboratory, Printing official of the Tunisian Republic: Tunis, Tunisia, 1989; p. 56. [Google Scholar]
- Rejeb, M.N. Le Caroubier en Tunisie: Situations et Perspectives D’amélioration. Dans Quel Avenir Pour l’amélioration des Plantes? AUPELF-UREF, Ed.; John Libbey Eurotext: Paris, France, 1995; pp. 79–85. [Google Scholar]
- Durazzo, A.; Turfani, V.; Narducci, V.; Azzini, E.; Maiani, G.; Carcea, M. Nutritional characterisation and bioactive components of commercial carobs flours. Food Chem. 2014, 153, 109–113. [Google Scholar] [CrossRef]
- Custódio, L.; Fernandes, E.; Escapa, A.L.; López-Avilés, S.; Fajardo, A.; Aligué, R.; Albericio, F.; Romano, A. Antioxidant activity andin vitroinhibition of tumor cell growth by leaf extracts from the carob tree (Ceratonia siliqua). Pharm. Boil. 2009, 47, 721–728. [Google Scholar] [CrossRef]
- Meziani, S.; Oomah, B.D.; Zaidi, F.; Simon-Levert, A.; Bertrand, C.; Zaidi-Yahiaoui, R. Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microb. Pathog. 2015, 78, 95–102. [Google Scholar] [CrossRef]
- Rtibi, K.; Selmi, S.; Grami, D.; Amri, M.; Eto, B.; El-Benna, J.; Sebai, H.; Marzouki, L. Chemical constituents and pharmacological actions of carob pods and leaves (Ceratonia siliqua L.) on the gastrointestinal tract: A review. Biomed. Pharmacother. 2017, 93, 522–528. [Google Scholar] [CrossRef]
- Klenow, S.; Jahns, F.; Pool-Zobel, B.L.; Glei, M. Does an Extract of Carob (Ceratonia siliqua L.) Have Chemopreventive Potential Related To Oxidative Stress and Drug Metabolism in Human Colon Cells? J. Agric. Food Chem. 2009, 57, 2999–3004. [Google Scholar] [CrossRef]
- Kumazawa, S.; Taniguchi, M.; Suzuki, Y.; Shimura, M.; Kwon, M.-S.; Nakayama, T. Antioxidant activity of polyphenols in carob pods. J. Agric. Food Chem. 2002, 50, 373–377. [Google Scholar] [CrossRef]
- Dimassi, O.; Rached, M.; Fawaz, R.; Akiki, R. Polarimetry and Spectrophotometry to detect adulteration in commercial carob molasses in Lebanon. Int. J. Sci. Environ. Technol. 2019, 8, 345–357. [Google Scholar]
- Karaca, O.B.; Saydam, I.B.; Güven, M. Physicochemical, mineral and sensory properties of set-type yoghurts produced by addition of grape, mulberry and carob molasses (Pekmez) at different ratios. Int. J. Dairy Technol. 2011, 65, 111–117. [Google Scholar] [CrossRef]
- Tounsi, L.; Ghazala, I.; Kechaou, N. Physicochemical and phytochemical properties of Tunisian carob molasses. J. Food Meas. Charact. 2019, 14, 20–30. [Google Scholar] [CrossRef]
- Babushok, V.; Linstrom, P.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 43101. [Google Scholar] [CrossRef] [Green Version]
- Davies, N. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Wu, Z.; Inn, K.G.W.; Lin, Z.; A McMahon, C.; Karam, L. NIST radiochemistry intercomparison program: A summary of four-year performance evaluation study. National Institute of Standards and Technology. Appl. Radiat. Isot. 2002, 56, 379–385. [Google Scholar] [CrossRef]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; Wiley: Hoboken, NJ, USA, 1976. [Google Scholar]
- Stenhagen, E.; Abrahamson, S.; McLafferty, F.W. Registry of Mass Spectral Data, 1st ed.; Wiley: New York, NJ, USA, 1974. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes: Infrared, Mass, 1H NMR, and 13C NMR Spectra, and Kováts Indices. Aldrich Chemical Co.: St. Louis, MO, USA, 1981. [Google Scholar]
- Giusti, M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of Antioxidant Activity, Anthocyanins, Carotenoids, and Phenolics of Three Native Fresh and Sun-Dried Date (Phoenix dactyliferaL.) Varieties Grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef]
- Reis, F.S.; Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Santos-Buelga, C.; Ferreira, I.C.F.R. Toward the Antioxidant and Chemical Characterization of Mycorrhizal Mushrooms from Northeast Portugal. J. Food Sci. 2011. [Google Scholar] [CrossRef] [PubMed]
- Julkunen-Tiitto, R.; Nenadis, N.; Neugart, S.; Robson, M.; Agati, G.; Vepsalainen, J.; Zipoli, G.; Nybakken, L.; Winkler, B.; Jansen, M.A.K. Assessing the response of plant flavonoids to UV radiation: An overview of appropriate techniques. Phytochem. Rev. 2014, 14, 273–297. [Google Scholar] [CrossRef]
- Pinela, J.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens. Food Chem. Toxicol. 2012, 50, 829–834. [Google Scholar] [CrossRef]
- Barros, A.I.R.N.A.; Nunes, F.M.; Gonçalves, B.; Bennett, R.N.; Silva, A.P. Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chem. 2011, 128, 165–172. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, G.; Chen, C.; Yu, H.; Wang, T.; Ma, Y.; Jia, G.; Gao, Y.; Li, B.; Sun, J.; et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 2007, 168, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Koster, R. Acetic acid for analgesic screening. Fed. Proc. 1959, 18, 412. [Google Scholar]
- McLeod, G.; Forcén, M. Analysis of volatile components derived from the carob bean Ceratonia siliqua. Phytochemistry 1992, 31, 3113–3119. [Google Scholar] [CrossRef]
- Krokou, A.; Stylianou, M.; Agapios, A. Assessing the volatile profile of carob tree (Ceratonia siliqua L.). Environ. Sci. Pollut. Res. 2019, 26, 35365–35374. [Google Scholar] [CrossRef] [PubMed]
- Ben Hsouna, A.; Trigui, M.; Ben Mansour, R.; Jarraya, R.M.; Damak, M.; Jaoua, S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Čiča, K.H.; Mrvčić, J.; Srečec, S.; Filipan, K.; Blažić, M.; Stanzer, D. Physicochemical and aromatic characterization of carob macerates produced by different maceration conditions. Food Sci. Nutr. 2020, 8, 942–954. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; El-Kersh, D.M. Volatiles profiling in Ceratonia siliqua (Carob bean) from Egypt and in response to roasting as analyzed via solid-phase microextraction coupled to chemometrics. J. Adv. Res. 2017, 8, 379–385. [Google Scholar] [CrossRef]
- Custódio, L.; Nogueira, J.; Romano, A. Sex and developmental stage of carob flowers affects composition of volatiles. J. Hortic. Sci. Biotechnol. 2004, 79, 689–692. [Google Scholar] [CrossRef]
- Goulas, V.; Georgiou, E. Utilization of Carob Fruit as Sources of Phenolic Compounds with Antioxidant Potential: Extraction Optimization and Application in Food Models. Foods 2019, 9, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Custódio, L.; Patarra, J.; Albericio, F.; Neng, N.R.; Nogueira, J.; Romano, A. In Vitro antioxidant and inhibitory activity of water decoctions of carob tree (Ceratonia siliqua L.) on cholinesterases, ?-amylase and ?-glucosidase. Nat. Prod. Res. 2015, 29, 1–5. [Google Scholar] [CrossRef]
- Makris, D.P.; Kefalas, P. Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol. Biotechnol. 2004, 42, 105–108. [Google Scholar]
- Popovici, C.; Saykova, I.; Tylkowski, B. Evaluation de l’activité antioxydant des composés phénoliques par la réactivité avec le radical libre DPPH. Rev. Génie Ind. 2010, 4, 131–887. [Google Scholar]
- El Hajaji, H.; Lachkar, N.; Alaoui, K.; Cherrah, Y.; Farah, A.; Ennabili, A.; El Bali, B.; Lachkar, M. Antioxidant properties and total phenolic content of three varieties of carob tree leaves from Morocco. Rec. Nat. Prod. 2010, 4, 193. [Google Scholar]
- Mekhoukhe, A.; Kicher, H.; Ladjouzi, A.; Medouni-Haroune, L.; Brahmi, F.; Medouni-Adrar, S.; Madani, K. Antioxidant activity of carob seeds and chemical composition of their bean gum by– products. J. Complement. Integr. Med. 2018, 16, 1. [Google Scholar] [CrossRef]
- Custódio, L.; Escapa, A.L.; Fernandes, E.; Fajardo, A.; Aligué, R.; Albericio, F.; Neng, N.R.; Nogueira, J.; Romano, A. Phytochemical Profile, Antioxidant and Cytotoxic Activities of the Carob Tree (Ceratonia siliqua L.) Germ Flour Extracts. Plant Foods Hum. Nutr. 2011, 66, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Fidan, H.; Stankov, S.; Petkova, N.; Petkova, Z.; Iliev, A.; Stoyanova, M.; Ivanova, T.; Zhelyazkov, N.; Ibrahim, S.; Stoyanova, A.; et al. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J. Food Sci. Technol. 2020, 57, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimabadi, A.H.; Movahedpour, M.M.; Batooli, H.; Ebrahimabadi, E.H.; Mazoochi, A.; Qamsari, M.M. Volatile compounds analysis and antioxidant, antimicrobial and cytotoxic activities of Mindium laevigatum. Iran. J. Basic Med. Sci. 2016, 19, 1337–1344. [Google Scholar]
- Closa, D.; Folch-Puy, E. Oxygen Free Radicals and the Systemic Inflammatory Response. IUBMB Life 2004, 56, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Ahn, C.; Kim, J.-W.; Park, M.-J.; Kim, S.R.; Lee, S.-S.; Jeung, E.-B. Anti-inflammatory effects of natural volatile organic compounds from Pinus koraiensis and Larix kaempferi in mouse model. J. Biomed. Res. 2019, 33, 343. [Google Scholar]
- Zakaria, Z.A.; Ghani, Z.D.F.A.; Nor, R.N.S.R.M.; Gopalan, H.K.; Sulaiman, M.R.; Jais, A.M.M.; Somchit, M.N.; Kader, A.A.; Ripin, J. Antinociceptive, anti-inflammatory, and antipyretic properties of an aqueous extract of Dicranopteris linearis leaves in experimental animal models. J. Nat. Med. 2008, 62, 179–187. [Google Scholar] [CrossRef]
- Kim, T.; Song, B.; Cho, K.S.; Lee, I.-S. Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guardia, T.; Rotelli, A.E.; Juarez, A.O.; E Pelzer, L. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il Farm. 2001, 56, 683–687. [Google Scholar] [CrossRef]
- Custódio, L.; Fernandes, E.; Escapa, A.L.; Fajardo, A.; Aligué, R.; Albericio, F.; Neng, N.R.; Nogueira, J.; Romano, A. Antioxidant and Cytotoxic Activities of Carob Tree Fruit Pulps Are Strongly Influenced by Gender and Cultivar. J. Agric. Food Chem. 2011, 59, 7005–7012. [Google Scholar] [CrossRef]
- Klenow, S.; Glei, M.; Haber, B.; Owen, R.; Pool-Zobel, B. Carob fibre compounds modulate parameters of cell growth differently in human HT29 colon adenocarcinoma cells than in LT97 colon adenoma cells. Food Chem. Toxicol. 2008, 46, 1389–1397. [Google Scholar] [CrossRef]
- Ghanemi, F.Z.; Belarbi, M.; Fluckiger, A.; Nani, A.; Dumont, A.; De Rosny, C.; Aboura, I.; Khan, A.S.; Murtaza, B.; Benammar, C.; et al. Carob leaf polyphenols trigger intrinsic apoptotic pathway and induce cell cycle arrest in colon cancer cells. J. Funct. Foods 2017, 33, 112–121. [Google Scholar] [CrossRef]
- Roseiro, L.B.; Duarte, L.C.; Oliveira, D.; Roque, R.; Bernardo-Gil, M.G.; Martins, A.; Sepúlveda, C.; Almeida, J.; Meireles, M.; Gírio, F.M.; et al. Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: Effect on the phenolic profile and antiproliferative activity. Ind. Crop. Prod. 2013, 47, 132–138. [Google Scholar] [CrossRef]
Constituents a | l.r.i. b | Seeds | Pulps | Rob |
---|---|---|---|---|
Sulfur derivatives | ||||
dimethyl disulfide | 747 | 3.8 | ||
dimethyl trisulfide | 974 | 0.3 | ||
Monoterpene hydrocarbons | ||||
α-pinene | 941 | 1.7 | ||
sabinene | 977 | 0.6 | ||
β-pinene | 982 | 2 | ||
myrcene | 993 | 2.9 | ||
δ-3-carene | 1013 | 1.2 | ||
p-cymene | 1028 | 1 | ||
limonene | 1032 | 34 | 0.6 | 1 |
γ-terpinene | 1063 | 1.3 | ||
Oxygenated monoterpenes | ||||
fenchone | 1089 | 1.2 | ||
linalool | 1101 | 2.3 | ||
carvone | 1244 | 1 | ||
Non-terpene derivatives | ||||
Non-terpene esters | ||||
ethyl butyrate | 804 | 1.4 | 0.5 | |
methyl valerate | 826 | 1.6 | ||
ethyl 2-methylbutyrate | 842 | 0.8 | 5.6 | |
isopentyl acetate | 877 | 0.6 | ||
propyl butyrate | 915 | 1.8 | 0.6 | |
isobutyl butyrate | 956 | 0.7 | ||
2-methylbutyl isobutyrate | 1015 | 1.7 | 0.6 | |
methyl heptanoate | 1027 | 0.5 | ||
pentyl isobutyrate | 1058 | 0.2 | ||
methyl (E)-4-octenoate | 1120 | 0.5 | ||
methyl octanoate | 1128 | 0.6 | 2.2 | |
hexyl isobutyrate | 1152 | 0.2 | ||
methyl nonanoate | 1228 | 0.2 | ||
Non-terpene aldehydes/ketones/acids | ||||
isobutyric acid | 772 | 79.5 | ||
butyric acid | 799 | 1.4 | ||
furfural | 834 | 5.1 | ||
2-methylbutanoic acid | 846 | 2.6 | 4.7 | 6.3 |
2-heptanone | 891 | 2.5 | 0.8 | |
6-methyl-5-hepten-2-one | 987 | 1.2 | ||
hexanoic acid | 988 | 0.3 | ||
octanal | 1002 | 0.7 | ||
2-nonanone | 1093 | 0.2 | ||
nonanal | 1102 | 3.1 | 0.5 | |
8-methylnonanal | 1172 | 0.6 | ||
decanal | 1205 | 1 | ||
Non-terpene hydrocarbons | ||||
styrene | 897 | 7.1 | ||
4-methyldecane | 1059 | 0.7 | ||
2-methyldecane | 1064 | 0.6 | ||
n-undecane | 1100 | 0.8 | ||
n-dodecane | 1200 | 1.9 | ||
Non-terpene alcohols/ethers/phenols | ||||
1-hexanol | 869 | 2.3 | ||
4-heptanol | 876 | 1.2 | ||
2-heptanol | 897 | 5.6 | ||
2-acetylfuran | 916 | 0.2 | ||
4-octanol | 979 | 0.2 | ||
Sulfur derivatives | 0 | 0 | 4.1 | |
Non-terpene hydrocarbons | 11.1 | 0 | 0 | |
Non-terpene aldehydes/ketones/acids | 11.7 | 6.5 | 92.3 | |
Non-terpene alcohols/ethers/phenols | 7.9 | 0 | 1.6 | |
Non-terpene esters subtotal | 16.9 | 91.8 | 0.2 | |
Total identified | 96.8 | 98.9 | 99.2 |
Compounds | Pulps | Seeds | Rob |
---|---|---|---|
Anthocyanins x | 158.1 ± 0.7 b | 51.2 ± 0.1 a | 188.5 ± 5 c |
Phenolic y | 1.8 ± 0.1 a | 0.9 ± 0.1 a | 13 ± 0.8 b |
Flavonoid z | 0.6 ± 0.0 a | 0.6 ± 0.1 a | 2.4 ± 0.1 b |
Condensed tannins z | 0.3 ± 0.0 a | 0.2 ± 0.0 a | 1.2 ± 0.1 b |
DP | DS | Rob | |
---|---|---|---|
DPPH | 1.04 ± 0.0 c | 0.86 ± 0.0 a | 0.97 ± 0.1 b |
ABTS | 3.49 ± 0.0 c | 1.61 ± 0.1 b | 0.94 ± 0.1 a |
FRAP | 0.66 ± 0.0 b | 0.73 ± 0.1 c | 0.55 ± 0.0 a |
Groups | Times (min) | 5 | 10 | 15 | 20 | 25 | 30 | Total (Cumulative) |
---|---|---|---|---|---|---|---|---|
Control | Number of cramps | 50 ± 3 | 151 ± 2 | 177 ± 5 | 125 ± 2 | 111 ± 2.3 | 62 ± 1.2 | 676 ± 3 |
Lysine | Number of cramps | 5 ± 2 | 98 ± 6 | 60 ± 5 | 75 ± 3 | 79 ± 4.4 | 52 ± 2.9 | 369 ± 10 *** |
Acetyl | ||||||||
salicylate (200 mg/kg) | % inhibition | 90 ± 1 *** | 35.1 ± 3 | 66.1 ± 4 * | 40.0 ± 2 | 28.8 ± 2.6 | 16.1 ± 1.3 | 45.40% |
Number of cramps | 26 ± 3 | 97 ± 2 | 61 ± 3 | 49 ± 4 | 31 ± 3 | 23 ± 1 | 287 ± 4 *** | |
DP (50 mg/kg) | % inhibition | 48 ± 1.7 | 35.8 ± 0.9 | 65.5 ± 1.7 * | 60.8 ± 2.5 | 72 ± 1.3 ** | 62.9 ± 0.4 * | 57.50% |
DP (100 mg/kg) | Number of cramps | 23 ± 2 | 89 ± 4 | 47 ± 2 | 41 ± 2 | 29 ± 3 | 24 ± 2 | 253 ± 5 *** |
% inhibition | 54.0 ± 1.2 | 41.1 ± 2,4 | 73.5 ± 1 ** | 67.2 ± 0.7 * | 73.9 ± 1.4 ** | 61.3 ± 0.7 ** | 62.60% | |
DP (150 mg/kg) | Number of cramps | 34 ± 4 | 81 ± 5 | 63 ± 5 | 46 ± 4 | 23 ± 2 | 12 ± 3 | 249 ± 10 *** |
% inhibition | 52.00 ± 1.1 | 46.36 ± 3 | 64.4 ± 2.6 * | 63.2 ± 2.2 * | 79.28 ± 0.9 ** | 80.64 ± 1.3 ** | 63.20% | |
DP (200 mg/kg) | Number of cramps | 35 ± 3 | 96 ± 5 | 43 ± 3 | 39 ± 3 | 22 ± 1 | 10 ± 2 | 226 ± 5 *** |
% inhibition | 30 ± 1.7 | 49 ± 1.4 | 75.7 ± 1.7 ** | 68.8 ± 1.9 * | 80.2 ± 0.6 ** | 83.9 ± 0.6 ** | 66.60% | |
Number of cramps | 10 ± 1 | 73 ± 1 | 48 ± 1 | 54 ± 2 | 27 ± 2 | 30 ± 1 | 242 ± 4 *** | |
DS | ||||||||
(50 mg/kg) | % inhibition | 87.3 ± 2 *** | 51.7 ± 2 | 72.9 ± 2.5 ** | 56.8 ± 4.5 | 75.7 ± 2.6 ** | 51.6 ± 0.9 | 64.20% |
DS (100 mg/kg) | Number of cramps | 13 ± 1 | 56 ± 3 | 30 ± 2 | 19 ± 1 | 17 ± 1 | 16 ± 2 | 151 ± 6 *** |
% inhibition | 83.54 ± 2.5 ** | 63 ± 6.3 | 83 ± 3 ** | 84.8 ± 2.1 ** | 84.7 ± 2.3 ** | 74.2 ± 2.8 ** | 77.70% | |
DS (150 mg/kg) | Number of cramps | 35 ± 2 | 64 ± 1 | 51 ± 1 | 23 ± 1 | 18 ± 1 | 15 ± 1 | 206 ± 4 *** |
% inhibition | 55.7 ± 3.5 | 57.6 ± 2.6 | 71.2 ± 2.7 ** | 81.6 ± 3.1 ** | 83.8 ± 3.7 ** | 75.8 ± 1.6 ** | 69.50% | |
DS (200 mg/kg) | Number of cramps | 41 ± 1.4 | 72 ± 1 | 48 ± 2 | 35 ± 1 | 23 ± 1 | 6 ± 1 | 225 ± 4 *** |
% inhibition | 48.1 ± 3.4 | 52.3 ± 2.9 | 72.9 ± 3.2 ** | 72 ± 2 ** | 79.3 ± 2 ** | 90.3 ± 1.1 *** | 66.70% | |
Number of cramps | 24 ± 1.1 | 46 ± 1 | 38 ± 1 | 41 ± 1 | 27 ± 0.6 | 20 | 196 ± 8 *** | |
Rob (50 mg/kg) | % inhibition | 69.6 ± 7 * | 69.5 ± 4.1 | 78.5 ± 3 ** | 67.2 ± 3.8 * | 75.7 ± 3 ** | 67.7 ± 2.6 * | 72.20% |
Number of cramps | 25 ± 2.8 | 53 ± 2 | 29 ± 2 | 25 ± 2 | 16 ± 1.2 | 7 ± 1 | 155 ± 6 *** | |
Rob (100 mg/kg) | % inhibition | 68.4 ± 1.6 * | 62.9 ± 4.35 * | 83 ± 2.8 ** | 84.8 ± 3.4 ** | 84.7 ± 1.9 ** | 74.2 ± 0.8 ** | 78% |
Rob (150 mg/kg) | Number of cramps | 28 ± 1 | 62 ± 2 | 47 ± 2 | 43 ± 2 | 31 ± 1 | 10 ± 1 | 221 ± 3 *** |
% inhibition | 64.6 ± 0.8 * | 58.9 ± 4 | 73.5 ± 2.6 ** | 65.6 ± 1.2 * | 72.1 ± 1.3 ** | 83.9 ± 1.97 ** | 68.70% | |
Rob (200 mg/kg) | Number of cramps | 32 ± 1 | 73 ± 2 | 46 ± 1 | 43 ± 0.5 | 33 ± 0.5 | 10 ± 0.8 | 237 ± 4 *** |
% inhibition | 63.5 ± 2.7 * | 51.5 ± 2.6 | 75.6 ± 2.9 | 67.4 ± 1.9 * | 71.9 ± 3.6 ** | 82.6 ± 1.5 ** | 66.40% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Ayache, S.; Behija Saafi, E.; Emhemmed, F.; Flamini, G.; Achour, L.; Muller, C.D. Biological Activities of Aqueous Extracts from Carob Plant (Ceratonia siliqua L.) by Antioxidant, Analgesic and Proapoptotic Properties Evaluation. Molecules 2020, 25, 3120. https://doi.org/10.3390/molecules25143120
Ben Ayache S, Behija Saafi E, Emhemmed F, Flamini G, Achour L, Muller CD. Biological Activities of Aqueous Extracts from Carob Plant (Ceratonia siliqua L.) by Antioxidant, Analgesic and Proapoptotic Properties Evaluation. Molecules. 2020; 25(14):3120. https://doi.org/10.3390/molecules25143120
Chicago/Turabian StyleBen Ayache, Siwar, Emna Behija Saafi, Fathi Emhemmed, Guido Flamini, Lotfi Achour, and Christian D. Muller. 2020. "Biological Activities of Aqueous Extracts from Carob Plant (Ceratonia siliqua L.) by Antioxidant, Analgesic and Proapoptotic Properties Evaluation" Molecules 25, no. 14: 3120. https://doi.org/10.3390/molecules25143120
APA StyleBen Ayache, S., Behija Saafi, E., Emhemmed, F., Flamini, G., Achour, L., & Muller, C. D. (2020). Biological Activities of Aqueous Extracts from Carob Plant (Ceratonia siliqua L.) by Antioxidant, Analgesic and Proapoptotic Properties Evaluation. Molecules, 25(14), 3120. https://doi.org/10.3390/molecules25143120