Ferulago nodosa Subsp. geniculata (Guss.) Troia & Raimondo from Sicily (Italy): Isolation of Essential Oil and Evaluation of Its Bioactivity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Essential Oil
2.2. Antioxidant Activity of Essential Oil
2.3. Hypoglycemic and Hypolipidemic Potential of Essential Oil
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials
3.3. Isolation of the Essential Oil
3.4. GC-FID Analysis of the Essential Oil
3.5. GC-MS Analysis of the Essential Oil
3.6. Antioxidant Activity
3.7. Hypoglycemic and Hypolipidemic Potential
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bernardi, L. Tentamen revisionis generis Ferulago. Boissiera 1979, 30, 1–182. [Google Scholar]
- Tomkovich, L.P.; Pimenov, M.G. Botanico-geographical analysis of the genus Ferulago W.D.J. Koch. Feddes Reper. 1989, 100, 119–129. [Google Scholar]
- Peruzzi, L.; Domina, G.; Bartolucci, F.; Galasso, G.; Peccenini, S.; Raimondo, F.M.; Albano, A.; Alessandrini, A.; Banfi, E.; Barberis, G.; et al. An inventory of the names of vascular plants endemic to Italy, their loci classici and types. Phytotaxa 2015, 196, 1–217. [Google Scholar] [CrossRef] [Green Version]
- Mumivand, A.H.; Aghemiri, A.; Morshedloo, M.R.; Nikoumanesh, K. Ferulago angulata and Tetrataenium lasiopetalum: Essential oils composition and antibacterial activity of the oils and extracts. Biocatal. Agric. Biotechnol. 2019, 22, 101407. [Google Scholar] [CrossRef]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef]
- Rajan, L.; Palaniswamy, D.; Mohankumar, S.K. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacol. Res. 2020, 155, 104681–104808. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food. Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, S.; Ebadi, M.-T.; Mollaei, S.; Khurizadeh, S. Evaluation of volatile and phenolic compounds, and antioxidant activity of different parts of Ferulago angulata (Schlecht.) Boiss. Ind. Crops Prod. 2019, 140, 111589. [Google Scholar]
- Pirbalouti, A.G.; Craker, L.; Alavi-Samani, S.M. Phytochemistry and antioxidant activity of essential oils of condiment and spice plants from South Western, Iran. J. Eng. Appl. Sci. 2018, 13, 204–207. [Google Scholar] [CrossRef]
- Celik, A.; Arslan, I.; Herken, E.N.; Ermis, A. Constituents, oxidant-antioxidant profile, and antimicrobial capacity of the essential oil obtained from Ferulago sandrasica Peşmen and Quézel. Int. J. Food Prop. 2013, 16, 1655–1662. [Google Scholar] [CrossRef]
- Hichri, F.; Omri, A.; Hossan, A.S.M.; Ben Jannet, H. Alpha-glucosidase and amylase inhibitory effects of Eruca vesicaria subsp. longirostris essential oils: Synthesis of new 1,2,4-triazole-thiol derivatives and 1,3,4-thiadiazole with potential inhibitory activity. Pharm Biol. 2019, 57, 564–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oboh, G.; Olasehinde, T.; Ademosun, A. Inhibition of enzymes linked to type-2 diabetes and hypertension by essential oils from peels of orange and lemon. Int. J. Food Prop. 2017, 20, S586–S594. [Google Scholar] [CrossRef] [Green Version]
- Hadrich, F.; Cher, S.; Gargouri, Y.T.; Adel, S. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts. J. Oleo Sci. 2014, 63, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Noor, Z.I.; Ahmed, D.; Rehman, H.M.; Qamar, M.T.; Froeyen, M.; Ahmad, S.; Mirza, M.U. In vitro antidiabetic, anti-obesity and antioxidant analysis of Ocimum basilicum aerial biomass and in silico molecular docking simulations with alpha-amylase and lipase enzymes. Biology 2019, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Ruberto, G.; Biondi, D.; Renda, A. The composition of the volatile oil of Ferulago nodosa obtained by steam distillation and supercritical carbon dioxide extraction. Phytochem. Anal. 1999, 10, 241–246. [Google Scholar] [CrossRef]
- Maggio, A.; Faraone, N.; Rosselli, S.; Raimondo, F.M.; Spadaro, V.; Bruno, M. Monoterpene derivatives from the flowers of Ferulago campestris, (Apiaceae). Nat. Prod. Res. 2013, 27, 1827–1831. [Google Scholar] [CrossRef]
- Riela, S.; Bruno, M.; Rosselli, S.; Saladino, M.L.; Caponetti, E.; Formisano, C.; Senatore, F. A study on the essential oil of Ferulago campestris: How much does extraction method influence the oil composition? J. Sep. Sci. 2011, 34, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Ruberto, G.; Cannizzo, S.; Amico, V.; Bizzini, M.; Plattelli, M. Chemical constituents of Ferulago nodosa. J. Nat. Prod. 1994, 57, 1731–1733. [Google Scholar] [CrossRef]
- Özkan, A.M.G.; Demirci, B.; Demirci, F.; Başer, K.H.C. Composition and antimicrobial activity of essential oil of Ferulago longistylis Boiss. fruits. J. Ess. Oil Res. 2008, 20, 569–573. [Google Scholar] [CrossRef]
- Maggi, F.; Tirillini, B.; Papa, F.; Sagratini, G.; Vittori, S.; Cresci, A.; Coman, M.M.; Cecchini, C. Chemical composition and antimicrobial activity of the essential oil of Ferulago campestris (Besser) Grecescu growing in central Italy. Flavour Frag. J. 2009, 24, 309–315. [Google Scholar] [CrossRef]
- Demetzos, C.; Perdetzoglou, D.; Gazouli, M.; Tan, K.; Economakis, C. Chemical analysis and antimicrobial studies on three species of Ferulago from Greece. Planta Med. 2000, 66, 560–563. [Google Scholar] [CrossRef]
- Evergetis, E.; Michaelakis, A.; Haroutounian, S.A. Essential oils of umbelliferae family taxa as potent agents for mosquito control. In Integrated Pest Management and Pest Control; Larramendy, M.L., Soloneski, L., Eds.; InTech—Open Access Publisher: Rijeka, Croatia, 2012; pp. 613–637. [Google Scholar] [CrossRef] [Green Version]
- Cecchini, C.; Coman, M.M.; Cresci, A.; Tirillini, B.; Cristalli, G.; Papa, F.; Sagratini, G.; Vittori, S.; Maggi, F. Essential oil from fruits and roots of Ferulago campestris (Besser) Grecescu (Apiaceae): Composition and antioxidant and anti-Candida activity. Flavour Frag. J. 2010, 25, 493–502. [Google Scholar] [CrossRef]
- Ghasemi Pirbalouti, A.; Izadi, A.; Malek Poor, F.; Hamedi, B. Chemical composition, antioxidant and antibacterial activities of essential oils from Ferulago angulata. Pharm. Biol. 2016, 54, 2515–2520. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, S.; Yassa, N.; Delnavazi, M.R.; Akhbari, M.; Hadjiakhoondi, A.; Hajimehdipoor, H.; Khalighi-Sigaroodi, F.; Hajiaghaee, R. Chemical composition and biological activities of the essential oils from different parts of Ferulago trifida Boiss. J. Essent. Oil Res. 2017, 29, 407–419. [Google Scholar] [CrossRef]
- Karakaya, S.; Koca, M.; Simsek, D.; Bostanlik, D.F.; Ozbek, H.; Kiliç, C.S.; Güvenalp, G.; Demirci, B.; Altanlar, N. Antioxidant, antimicrobial and anticholinesterase activities of Ferulago pauciradiata Boiss. & Heldr. growing in Turkey. JBAPN 2018, 8, 364–375. [Google Scholar]
- Shahbazi, Y.; Shavisi, N. Chemical composition, antioxidant and antimicrobial activities of the essential oil and methanolic extract of Ferulago bernardii Tomk. & M. Pimen of Iran. Arch. Phytopathol. Pflanzenschutz 2015, 48, 699–710. [Google Scholar] [CrossRef]
- Farideh, A.; Zeinab, S.; Zareei, A.; Mohammadi, A. Phenolic contents, antibacterial and antioxidant activities of flower, leaf and stem extracts of Ferulago angulata (schlecht) Boiss. Int. J. Pharm. Pharm. Sci. 2014, 6, 123–125. [Google Scholar]
- Golezar, E.; Mdiuni, H.; Nazari, A. Different antioxidant activity measurements of the aerial parts of Ferulago angulata, traditional food additives in Iran. Indian J. Pharm. Sci. 2017, 79, 900–906. [Google Scholar] [CrossRef]
- Rezagholizadeh, L. The effect of hydroalcoholic extract of Ferulago angulata on liver function parameters and antioxidant status in alloxan-induced diabetic rats. J. Med. Plants Res. 2017, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mileski, K.; Džamić, A.; Ćirić, A.; Ristić, M.S.; Grujić, S.; Matevski, V.; Marin, P. Composition, antimicrobial and antioxidant properties of endemic species Ferulago macedonica Micevski & E. Mayer. Rec. Nat. Prod. 2015, 9, 208–223. [Google Scholar]
- Golfakhrabadi, F.; Shams Ardekani, M.R.; Saeidnia, S.; Yousefbeyk, F.; Jamalifar, H.; Ramezani, N.; Akbarzadeh, T.; Khanavi, M. Phytochemical analysis, antimicrobial, antioxidant activities and total phenols of Ferulago carduchorum in two vegetative stages (flower and fruit). Pak. J. Pharm. Sci. 2016, 29, 623–628. [Google Scholar] [PubMed]
- Do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Leite Kassuya, C.A.; Croda, J.H.R.; Cardoso, C.A.L.; do Carmo Vieira, M.; Ruiz, A.L.T.G.; Foglio, M.A.; de Carvalho, J.E.; et al. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef]
- Coté, H.; Boucher, M.A.; Pichette, A.; Legault, J. Anti-Inflammatory, antioxidant, antibiotic, and cytotoxic activities of Tanacetum vulgare L. essential oil and its constituents. Medicines 2017, 4, 34. [Google Scholar] [CrossRef]
- Karakaya, S.; Gözcü, S.; Güvenalp, Z.; Özbek, H.; Yuca, H.; Dursunoğlu, B.; Kazaz, C.; Kılıç, C.S. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. Pharm. Biol. 2018, 56, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Musavi-Ezmareh, S.F.; Mazani, M.; Heidarian, E.; Reza, A.M.; Rafieian-Kopaei, M.; Ebrahimi, M.; Shahinfard, N.; Ghezel-Sofli, E. Effect of hydroalcoholic extract of Chevil (Ferulago angulata) on glucose and lipid in diabetic male rats. Iranian J. Clin. Endocrinol. Metab. 2015, 17, 230–237. [Google Scholar]
- Rafieian-kopaei, M.; Shahinfard, N.; Rouhi-Boroujeni, H.; Gharipour, M.; Darvishzadeh-Boroujeni, P. Effects of Ferulago angulata extract on serum lipids and lipid peroxidation. Evid. Based Compl. Altern. Med. 2014, 2014, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Parsamehr, R.; Bohlouli, S. The effect of Ferulago angulata (Schelchet) Boiss on blood glucose levels and suppression of diabetes in rats. Acta Vet. Brno 2019, 88, 349–354. [Google Scholar] [CrossRef]
- Özbek, H.; Yilmaz, B.S. Anti-inflammatory and hypoglycemic activities of alpha-pinene. Acta Pharm. Sci. 2017, 55, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Bae, G.S.; Park, K.C.; Choi, S.B.; Jo, I.J.; Choi, M.O.; Hong, S.H.; Song, K.; Song, H.J.; Park, S.J. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci. 2012, 91, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, V.S.; Kaur, G. Insulinotropic and antidiabetic effects of β-caryophyllene with l -arginine in type 2 diabetic rats. J. Food Biochem. 2020, 44, e13156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhan, M.L.; Tang, Y.; Xiao, M.; Li, Q.S.; Yang, L.; Li, X.; Chen, W.W.; Wang, Y.L. Effects of β-caryophyllene on arginine ADP-ribosyltransferase 1-mediated regulation of glycolysis in colorectal cancer under high-glucose conditions. Int. J. Oncol. 2018, 53, 1613–1624. [Google Scholar] [CrossRef] [Green Version]
- Basha, R.H.; Sankaranarayanan, C. β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats. Acta Histochem. 2014, 116, 1469–1479. [Google Scholar] [CrossRef]
- Ben Jemia, M.; Rouis, Z.; Maggio, A.; Venditti, A.; Bruno, M.; Senatore, F. Chemical composition and free radical scavenging activity of the essential oil of Achillea ligustica All. wild growing in Lipari (Aeolian Islands, Sicily). Nat. Prod. Commun. 2013, 8, 1629–1632. [Google Scholar]
- NIST 17. Mass Spectral Library (NIST/EPA/NIH); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
- FFNSC 2. Flavors and Fragrances of Natural and Synthetic Compounds: Mass Spectral Database; Wiley: Kyoto, Japan, 2012. [Google Scholar]
- Loizzo, M.R.; Leporini, M.; Sicari, V.; Falco, T.; Pellicanò, M.T.; Tundis, R. Investigating the in vitro hypoglycemic and antioxidant properties of Citrus × clementina Hort Juice. Eur. Food Res. Technol. 2018, 244, 523–534. [Google Scholar] [CrossRef]
- Sicari, V.; Loizzo, M.R.; Branca, V.; Pellicanò, T.M. Bioactive and Antioxidant Activity from Citrus bergamia Risso (Bergamot) Juice Collected in Different Areas of Reggio Calabria Province, Italy. Int. J. Food Prop. 2016, 19, 1962–1971. [Google Scholar] [CrossRef] [Green Version]
- Leporini, M.; Loizzo, M.R.; Sicari, V.; Pellicanò, T.M.; Reitano, A.; Dugay, A.; Deguin, B.; Tundis, R. Citrus × clementina Hort. juice enriched with its by-products (peels and leaves): Chemical composition, in vitro bioactivity, and impact of processing. Antioxidants 2020, 9, 298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leporini, M.; Tundis, R.; Sicari, V.; Pellicanò, T.M.; Dugay, A.; Deguin, B.; Loizzo, M.R. Impact of extraction processes on phytochemicals content and biological activity of Citrus × clementina Hort. Ex Tan leaves: New opportunity for under-utilized food by-products. Food Res. Int. 2020, 127, 108742. [Google Scholar] [CrossRef]
Sample Availability: Samples of the essentail oil is not available. |
Compound | Ri a | Ri b | a.p. (%) c |
---|---|---|---|
Santolina triene | 904 | 906 | 0.8 ± 0.07 |
Tricyclene | 914 | 921 | t |
α-Thujene | 918 | 924 | t |
α-Pinene | 923 | 932 | 2.9 ± 0.30 |
Camphene | 936 | 946 | 0.3 ± 0.02 |
Sabinene | 962 | 969 | 0.5 ± 0.04 |
β-Pinene | 965 | 974 | 0.2 ± 0.02 |
Dehydro-1,8-cineole | 984 | 988 | 0.1 ± 0.01 |
Myrcene | 985 | 988 | 0.8 ± 0.07 |
δ-2-Carene | 995 | 1001 | 0.2 ± 0.02 |
m-Mentha-1(7),8-diene | 1000 | 1000 | t |
(3Z)-Hexenyl acetate | 1007 | 1004 | t |
1,2,4-Trimethyl benzene | 1016 | 1021 | 0.2 ± 0.02 |
p-Cymene | 1019 | 1020 | 0.9 ± 0.08 |
Limonene + β-Phellandrene | 1022 | 1024 + 1025 | 1.8 ± 0.11 |
(Z)-β-Ocimene | 1034 | 1032 | 0.1 ± 0.01 |
β-Isophorone | 1036 | 1044 | 0.1 ± 0.01 |
Benzene acetaldehyde | 1040 | 1036 | t |
(E)-β-Ocimene | 1043 | 1044 | 0.3 ± 0.02 |
γ-Terpinene | 1053 | 1054 | t |
Terpinolene | 1082 | 1086 | t |
p-Cymenene | 1084 | 1089 | t |
6-Camphenone | 1089 | 1095 | 0.1 ± 0.01 |
α-Pinene oxide | 1090 | 1099 | 0.3 ± 0.02 |
Isophorone | 1115 | 1118 | 0.2 ± 0.01 |
α-Campholenal | 1121 | 1122 | t |
cis-Limonene oxide | 1128 | 1132 | t |
trans-Pinocarveol | 1131 | 1135 | t |
trans-p-Menth-2-en-1-ol | 1134 | 1136 | 0.1 ± 0.01 |
Camphor | 1136 | 1141 | t |
trans-Verbenol | 1139 | 1140 | 0.1 ± 0.01 |
1,4-Dimethyl-δ-3-tetrahydroacetophenone | 1145 | 1152 | t |
Borneol | 1157 | 1165 | 0.5 ± 0.04 |
(E)-Isocitral | 1168 | 1177 | 0.1 ± 0.01 |
Terpinen-4-ol | 1171 | 1174 | t |
2,4-Dimethyl-benzaldehyde | 1176 | 1178 | 0.6 ± 0.05 |
Cryptone | 1179 | 1183 | 0.4 ± 0.03 |
p-Cymen-8-ol | 1181 | 1179 | 0.2 ± 0.02 |
cis-Piperitol | 1189 | 1195 | 0.1 ± 0.01 |
trans-Piperitol | 1203 | 1207 | 0.1 ± 0.01 |
4-methylene-Isophorone | 1209 | 1216 | t |
β-Cyclocitral | 1214 | 1217 | t |
Cumin aldehyde | 1233 | 1238 | 0.1 ± 0.01 |
cis-Chrysanthenyl acetate | 1256 | 1261 | 1.0 ± 0.12 |
Bornyl acetate | 1279 | 1287 | 4.6 ± 0.51 |
trans-Sabinyl acetate | 1287 | 1289 | 0.2 ± 0.01 |
trans-Pinocarvyl acetate | 1293 | 1298 | 0.2 ± 0.02 |
Carvacrol | 1302 | 1298 | 0.2 ± 0.01 |
2,3,4-Trimethyl benzaldehyde | 1306 | 1315 | 1.0 ± 0.11 |
Myrtenyl acetate | 1319 | 1324 | 0.1 ± 0.01 |
δ-Elemene | 1329 | 1335 | 0.3 ± 0.02 |
2,3,6-Trimethyl benzaldehyde | 1346 | 1352 | 19.0 ± 1.89 |
α-Copaene | 1364 | 1374 | 0.1 ± 0.01 |
β-Bourbonene | 1372 | 1387 | 0.8 ± 0.07 |
β-Cubebene | 1380 | 1387 | 0.1 ± 0.01 |
β-Elemene | 1382 | 1389 | 0.7 ± 0.06 |
α-Cedrene | 1396 | 1410 | 0.2 ± 0.01 |
(E)-Caryophyllene | 1405 | 1417 | 5.4 ± 0.58 |
β-Copaene | 1415 | 1430 | 0.2 ± 0.02 |
Aromadendrene | 1423 | 1439 | 0.2 ± 0.02 |
α-Humulene | 1437 | 1452 | 0.5 ± 0.06 |
cis-Cadina-1(6),4-diene | 1450 | 1461 | 0.1 ± 0.01 |
α-Acoradiene | 1451 | 1464 | 0.1 ± 0.01 |
γ-Muurolene | 1463 | 1478 | 0.1 ± 0.01 |
Germacrene D | 1465 | 1484 | 1.3 ± 0.14 |
γ-Gurjunene | 1469 | 1475 | 0.1 ± 0.01 |
α-Curcumene | 1472 | 1479 | 0.5 ± 0.04 |
(E)-β-ionone | 1474 | 1487 | 0.2 ± 0.01 |
Bicyclogermacrene | 1479 | 1500 | 0.9 ± 0.10 |
α-Muurolene | 1486 | 1500 | 0.1 ± 0.01 |
Cuparene | 1487 | 1504 | 0.1 ± 0.01 |
β-Bisabolene | 1497 | 1505 | 0.3 ± 0.03 |
α-Cuprenene | 1499 | 1505 | 0.3 ± 0.04 |
(E)-Nerolidol | 1555 | 1561 | 0.2 ± 0.02 |
Spathulenol | 1562 | 1577 | 9.0 ± 0.97 |
Caryophyllene oxide | 1565 | 1582 | 5.4 ± 0.51 |
Viridiflorol | 1574 | 1592 | 0.5 ± 0.04 |
Cubeban-11-ol | 1577 | 1595 | 0.3 ± 0.02 |
Rosifoliol | 1584 | 1600 | 0.6 ± 0.05 |
Humulene epoxide II | 1590 | 1608 | 0.5 ± 0.04 |
trans-Isolongifolanone | 1605 | 1625 | 0.2 ± 0.01 |
epi-α-Muurolol | 1626 | 1640 | 0.5 ± 0.06 |
α-Cadinol | 1639 | 1652 | 0.3 ± 0.02 |
Neophytadiene | 1834 | 1838 | 0.2 ± 0.01 |
Phytone | 1839 | 1843 | 0.2 ± 0.02 |
Benzyl salicylate | 1852 | 1864 | 0.1 ± 0.01 |
Hexadecanoic acid | 1961 | 1959 | 0.2 ± 0.01 |
Phytol | 2099 | 2103 | 1.6 ± 0.18 |
Tricosane | 2301 | 2300 | 0.1 ± 0.01 |
Pentacosane | 2500 | 2500 | 0.1 ± 0.01 |
Heptacosane | 2700 | 2700 | 0.2 ± 0.02 |
Nonacosane | 2900 | 2900 | 2.5 ± 0.26 |
Class of Compounds | ±0.07 | ||
Oxygenated Monoterpene | 8.4 | ||
Monoterpene Hydrocarbons | 8.8 | ||
Sesquiterpene Hydrocarbons | 12.4 | ||
Oxygenated Sesquiterpene | 17.5 | ||
Aromatic | 21.0 | ||
Others | 5.8 | ||
Total | 73.9 |
DPPH Test IC50 (µg/mL) | ABTS Test IC50 (µg/mL) | β-Carotene Bleaching Test (IC50, µg/mL or % Inhibition) | FRAP μM Fe (II)/g | ||
---|---|---|---|---|---|
t 30 min a | t 60 min a | ||||
Essential oil | 26.3 ± 4.3 | 14.0 ± 1.1 | 39.4% | 32.7% | 16.9 ± 1.3 |
Positive control | |||||
Ascorbic acid | 5.1 ± 0.82 | 1.7 ± 0.3 | |||
Propyl gallate | 0.09 ± 0.08 | 0.09 ± 0.06 | |||
BHT | 63.4 ± 4.6 |
α-Amylase | α-Glucosidase | Lipase | |
---|---|---|---|
Essential oil | 196.4 ± 4.3 | 365.9 ± 5.1 | 42.0 ± 2.1 |
Positive control | |||
Acarbose | 50.6 ± 0.9 | 35.8 ± 1.3 | |
Orlistat | 37.4 ± 1.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badalamenti, N.; Ilardi, V.; Rosselli, S.; Bruno, M.; Maggi, F.; Leporini, M.; Falco, T.; Loizzo, M.R.; Tundis, R. Ferulago nodosa Subsp. geniculata (Guss.) Troia & Raimondo from Sicily (Italy): Isolation of Essential Oil and Evaluation of Its Bioactivity. Molecules 2020, 25, 3249. https://doi.org/10.3390/molecules25143249
Badalamenti N, Ilardi V, Rosselli S, Bruno M, Maggi F, Leporini M, Falco T, Loizzo MR, Tundis R. Ferulago nodosa Subsp. geniculata (Guss.) Troia & Raimondo from Sicily (Italy): Isolation of Essential Oil and Evaluation of Its Bioactivity. Molecules. 2020; 25(14):3249. https://doi.org/10.3390/molecules25143249
Chicago/Turabian StyleBadalamenti, Natale, Vincenzo Ilardi, Sergio Rosselli, Maurizio Bruno, Filippo Maggi, Mariarosaria Leporini, Tiziana Falco, Monica R. Loizzo, and Rosa Tundis. 2020. "Ferulago nodosa Subsp. geniculata (Guss.) Troia & Raimondo from Sicily (Italy): Isolation of Essential Oil and Evaluation of Its Bioactivity" Molecules 25, no. 14: 3249. https://doi.org/10.3390/molecules25143249