Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET
Abstract
:1. Introduction
2. Results and Discussion
2.1. Tb–AB and QD–AB Conjugates Characterization
2.1.1. Tb–AB Characterization
2.1.2. QD–AB Characterization
2.2. FRET Immunoassays
2.2.1. Quantitative Detection of Single Tumor Markers
2.2.2. Quantitative Detection of Multiple Tumor Markers (Multiplexing)
2.2.3. Biological Crosstalk
2.2.4. Optical Crosstalk
2.2.5. Triplexed CEA/NSE/PSA immunoassay
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Tb–AB Conjugates
4.3. Preparation of QD–AB Conjugates
4.4. Optical Characterization
4.5. FRET Characterization
4.6. FRET Immunoassays
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bünzli, J.-C.G. Rising stars in science and technology: Luminescent lanthanide materials. Eur. J. Inorg. Chem. 2017, 2017, 5058–5063. [Google Scholar] [CrossRef] [Green Version]
- Bünzli, J.-C.G.; Chauvin, A.-S. Chapter 261—Lanthanides in solar energy conversion. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C.G., Pecharsky, V.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 44, pp. 169–281. [Google Scholar]
- Van der Ende, B.M.; Aarts, L.; Meijerink, A. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 2009, 11, 11081–11095. [Google Scholar] [CrossRef] [PubMed]
- Geißler, D.; Linden, S.; Liermann, K.; Wegner, K.D.; Charbonniere, L.J.; Hildebrandt, N. Lanthanides and quantum dots as förster resonance energy transfer agents for diagnostics and cellular imaging. Inorg. Chem. 2014, 53, 1824–1838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Y.; Yu, Q.; Wei, H.; Liu, S.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770–1839. [Google Scholar] [CrossRef]
- Pershagen, E.; Borbas, K.E. Multiplex detection of enzymatic activity with responsive lanthanide-based luminescent probes. Angew. Chem. Int. Ed. 2015, 54, 1787–1790. [Google Scholar] [CrossRef]
- Sy, M.; Nonat, A.; Hildebrandt, N.; Charbonniere, L.J. Lanthanide-based luminescence biolabelling. Chem. Commun. 2016, 52, 5080–5095. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G. On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 2015, 293–294, 19–47. [Google Scholar] [CrossRef]
- Eliseeva, S.V.; Bünzli, J.-C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2009, 39, 189–227. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar] [CrossRef]
- Latva, M.; Takalo, H.; Mukkala, V.-M.; Matachescu, C.; Rodríguez-Ubis, J.C.; Kankare, J. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J. Lumines. 1997, 75, 149–169. [Google Scholar] [CrossRef]
- Alpha, B.; Ballardini, R.; Balzani, V.; Lehn, J.-M.; Perathoner, S.; Sabbatini, N. Antenna effect in luminescent lanthanide cryptates: A photophysical study. Photochem. Photobiol. 1990, 52, 299–306. [Google Scholar] [CrossRef]
- Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord. Chem. Rev. 1993, 123, 201–228. [Google Scholar] [CrossRef]
- Sorensen, T.J.; Faulkner, S. Multimetallic lanthanide complexes: Using kinetic control to define complex multimetallic arrays. Accounts Chem. Res. 2018, 51, 2493–2501. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.J.; Delbianco, M.; Lamarque, L.; McMahon, B.K.; Neil, E.R.; Pal, R.; Parker, D.; Walton, J.W.; Zwier, J.M. EuroTracker (R) dyes: Design, synthesis, structure and photophysical properties of very bright europium complexes and their use in bioassays and cellular optical imaging. Dalton Trans. 2015, 44, 4791–4803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Corneillie, T.M.; Moore, E.G.; Law, G.L.; Butlin, N.G.; Raymond, K.N. Octadentate cages of Tb(III) 2-hydroxyisophthalamides: A new standard for luminescent lanthanide labels. J. Am. Chem. Soc. 2011, 133, 19900–19910. [Google Scholar] [CrossRef] [Green Version]
- Weibel, N.; Charbonniere, L.J.; Guardigli, M.; Roda, A.; Ziessel, R. Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging. J. Am. Chem. Soc. 2004, 126, 4888–4896. [Google Scholar] [CrossRef]
- Mathieu, E.; Sipos, A.; Demeyere, E.; Phipps, D.; Sakaveli, D.; Borbas, K.E. Lanthanide-based tools for the investigation of cellular environments. Chem. Commun. 2018, 54, 10021–10035. [Google Scholar] [CrossRef] [Green Version]
- Pershagen, E.; Borbas, K.E. Designing reactivity-based responsive lanthanide probes for multicolor detection in biological systems. Coord. Chem. Rev. 2014, 273, 30–46. [Google Scholar] [CrossRef]
- Liao, Z.; Tropiano, M.; Faulkner, S.; Vosch, T.; Sorensen, T.J. Time-resolved confocal microscopy using lanthanide centred near-IR emission. RSC Adv. 2015, 5, 70282–70286. [Google Scholar] [CrossRef] [Green Version]
- Arppe-Tabbara, R.; Carro-Temboury, M.R.; Hempel, C.; Vosch, T.; Sorensen, T.J. Luminescence from Lanthanide(III) ions bound to the Glycocalyx of Chinese hamster ovary cells. Chem.-Eur. J. 2018, 24, 11885–11889. [Google Scholar] [CrossRef]
- Zwier, J.M.; Bazin, H.; Lamarque, L.; Mathis, G. Luminescent lanthanide cryptates: From the bench to the bedside. Inorg. Chem. 2014, 53, 1854–1866. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Nonat, A.; Beyler, M.; Regueiro-Figueroa, M.; Nono, K.N.; Jeannin, O.; Camerel, F.; Debaene, F.; Cianferani-Sanglier, S.; Tripier, R.; et al. Supramolecular luminescent lanthanide dimers for fluoride sequestering and sensing. Angew. Chem. Int. Ed. 2014, 53, 7259–7263. [Google Scholar] [CrossRef] [PubMed]
- Geiβler, D.; Hildebrandt, N. Lanthanide complexes in FRET applications. Curr. Inorg. Chem. 2011, 1, 17–35. [Google Scholar] [CrossRef]
- Qiu, X.; Hildebrandt, N. A clinical role for Förster resonance energy transfer in molecular diagnostics of disease. Expert Rev. Mol. Diagn. 2019, 19, 767–771. [Google Scholar] [CrossRef] [Green Version]
- Algar, W.R.; Hildebrandt, N.; Vogel, S.S.; Medintz, I.L. FRET as a biomolecular research tool-understanding its potential while avoiding pitfalls. Nat. Methods 2019, 16, 815–829. [Google Scholar] [CrossRef] [PubMed]
- Zwier, J.M.; Hildebrandt, N. Time-Gated FRET detection for multiplexed biosensing. In Reviews in Fluorescence 2016; Geddes, C.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 17–43. ISBN 978-3-319-48260-6. [Google Scholar]
- Hildebrandt, N.; Wegner, K.D.; Algar, W.R. Luminescent terbium complexes: Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coord. Chem. Rev. 2014, 273, 125–138. [Google Scholar] [CrossRef]
- Geißler, D.; Stufler, S.; Löhmannsröben, H.-G.; Hildebrandt, N. Six-color time-resolved forster resonance energy transfer for ultrasensitive multiplexed biosensing. J. Am. Chem. Soc. 2013, 135, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, N.; Spillmann, C.M.; Algar, W.R.; Pons, T.; Stewart, M.H.; Oh, E.; Susumu, K.; Diaz, S.A.; Delehanty, J.B.; Medintz, I.L. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications. Chem. Rev. 2017, 117, 536–711. [Google Scholar] [CrossRef] [PubMed]
- Cardoso Dos Santos, M.; Hildebrandt, N. Recent developments in lanthanide-to-quantum dot FRET using time-gated fluorescence detection and photon upconversion. Trends Anal. Chem. 2016, 84, 60–71. [Google Scholar] [CrossRef]
- Cardoso Dos Santos, M.; Algar, W.R.; Medintz, I.L.; Hildebrandt, N. Quantum dots for Förster Resonance Energy Transfer (FRET). Trends Anal. Chem. 2020, 125, 115819. [Google Scholar] [CrossRef]
- Chern, M.; Kays, J.C.; Bhuckory, S.; Dennis, A.M. Sensing with photoluminescent semiconductor quantum dots. Methods Appl. Fluoresc. 2019, 7, 012005. [Google Scholar] [CrossRef] [PubMed]
- Geißler, D.; Charbonniere, L.J.; Ziessel, R.F.; Butlin, N.G.; Löhmannsröben, H.-G.; Hildebrandt, N. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew. Chem. Int. Ed. 2010, 49, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Hildebrandt, N. Rapid and multiplexed MicroRNA diagnostic assay using quantum dot-based förster resonance energy transfer. ACS Nano 2015, 9, 8449–8457. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wegner, K.D.; Wu, Y.-T.; Henegouwen, P.M.P. van B. en; Jennings, T.L.; Hildebrandt, N. Nanobodies and antibodies for duplexed EGFR/HER2 immunoassays using terbium-to-quantum dot FRET. Chem. Mater. 2016, 28, 8256–8267. [Google Scholar] [CrossRef]
- Bhuckory, S.; Lefebvre, O.; Qiu, X.; Wegner, K.D.; Hildebrandt, N. Evaluating Quantum Dot Performance in Homogeneous FRET Immunoassays for Prostate Specific Antigen. Sensors 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Molina, R.; Filella, X.; Augé, J.M.; Fuentes, R.; Bover, I.; Rifa, J.; Moreno, V.; Canals, E.; Viñolas, N.; Marquez, A.; et al. Tumor markers (CEA, CA 125, CYFRA 21-1, SCC and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis and prognosis. Comparison with the main clinical and pathological prognostic factors. Tumour Biol. 2003, 24, 209–218. [Google Scholar] [CrossRef]
- Molina, R.; Auge, J.M.; Escudero, J.M.; Marrades, R.; Viñolas, N.; Carcereny, E.; Ramirez, J.; Filella, X. Mucins CA 125, CA 19.9, CA 15.3 and TAG-72.3 as tumor markers in patients with lung cancer: Comparison with CYFRA 21-1, CEA, SCC and NSE. Tumour Biol. 2008, 29, 371–380. [Google Scholar] [CrossRef]
- Adhyam, M.; Gupta, A.K. A review on the clinical utility of PSA in cancer prostate. Indian J. Surg. Oncol. 2012, 3, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Greene, K.L.; Albertsen, P.C.; Babaian, R.J.; Carter, H.B.; Gann, P.H.; Han, M.; Kuban, D.A.; Sartor, A.O.; Stanford, J.L.; Zietman, A.; et al. Prostate specific antigen best practice statement: 2009 update. J. Urol. 2013, 189, S2–S11. [Google Scholar] [CrossRef]
- Pfister, C.; Basuyau, J.-P. Normandy Urological Association Current usefulness of free/total PSA ratio in the diagnosis of prostate cancer at an early stage. World J. Urol. 2005, 23, 236–242. [Google Scholar] [CrossRef]
- Sturgeon, C.M.; Duffy, M.J.; Stenman, U.-H.; Lilja, H.; Brünner, N.; Chan, D.W.; Babaian, R.; Bast, R.C.; Dowell, B.; Esteva, F.J.; et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin. Chem. 2008, 54, e11–e79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegner, K.D.; Jin, Z.; Linden, S.; Jennings, T.L.; Hildebrandt, N. Quantum-dot-based forster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano 2013, 7, 7411–7419. [Google Scholar] [CrossRef]
- Bhuckory, S.; Mattera, L.; Wegner, K.D.; Qiu, X.; Wu, Y.-T.; Charbonniere, L.J.; Reiss, P.; Hildebrandt, N. Direct conjugation of antibodies to the ZnS shell of quantum dots for FRET immunoassays with low picomolar detection limits. Chem. Commun. 2016, 52, 14423–14425. [Google Scholar] [CrossRef] [PubMed]
- Ferrigno, D.; Buccheri, G.; Giordano, C. Neuron-specific enolase is an effective tumour marker in non-small cell lung cancer (NSCLC). Lung Cancer 2003, 41, 311–320. [Google Scholar] [CrossRef]
- Jin, Z.; Geißler, D.; Qiu, X.; Wegner, K.D.; Hildebrandt, N. A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of MicroRNA. Angew. Chem. Int. Ed. 2015, 54, 10024–10029. [Google Scholar] [CrossRef]
- Jennings, T.L.; Becker-Catania, S.G.; Triulzi, R.C.; Tao, G.; Scott, B.; Sapsford, K.E.; Spindel, S.; Oh, E.; Jain, V.; Delehanty, J.B.; et al. Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis. ACS Nano 2011, 5, 5579–5593. [Google Scholar] [CrossRef] [PubMed]
- The Molecular Probes Handbook, 11th ed. Available online: https://www.thermofisher.com/fr/fr/home/references/molecular-probes-the-handbook/mp-handbook-download.html (accessed on 23 June 2020).
- Hildebrandt, N. How to apply FRET: From experimental design to data analysis. In FRET—Förster Resonance Energy Transfer: From Theory to Applications; Medintz, I., Hildebrandt, N., Eds.; Wiley VCH: Weinheim, Germany, 2013; pp. 105–164. ISBN 978-3-527-65605-9. [Google Scholar]
- Bhuckory, S.; Kays, J.C.; Dennis, A.M. In vivo biosensing using resonance energy transfer. Biosensors 2019, 9. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Donor-IgG | Tb (µM) | IgG (µM) | Tb/IgG | Acceptor-F(ab’)2 | QD (µM) | F(ab’)2 (µM) | F(ab’)2/QD |
---|---|---|---|---|---|---|---|
Tb-antiCEA1 | 33.6 | 3.5 | 9.7 ± 2.0 | eQD650-antiCEA2 | 0.48 | 2.0 | 4.2 ± 2.0 |
Tb-antiNSE1 | 43.8 | 3.5 | 12.5 ± 3.0 | eQD605-antiNSE2 | 0.20 | 0.7 | 3.8 ± 2.0 |
Tb-antiPSA1 | 33.0 | 2.8 | 9.9 ± 2.0 | iQD705-antiPSA2 | 0.19 | 2.8 | 14.9 ± 7.0 |
Donor–IgG | Acceptor–F(ab’)2 | Antigen | R0 (nm) | LoD (nM) | LoD (ng/mL) |
---|---|---|---|---|---|
Tb–antiCEA1 | eQD650–antiCEA2 | CEA | 11 | 0.007 | 1.2 |
Tb–antiNSE1 | eQD605–antiNSE2 | NSE | 8 | 0.016 | 1.5 |
Tb–antiPSA1 | iQD705–antiPSA2 | PSA | 11 | 0.006 | 0.2 |
Donor–IgG | Acceptor–F(ab’)2 | Antigen | LoD (nM) | LoD (ng/mL) |
---|---|---|---|---|
Single-antigen assay with one AB FRET pair | ||||
Tb–antiCEA1 | eQD650–antiCEA2 | CEA | 0.007 | 1.2 |
Tb–antiNSE1 | eQD605–antiNSE2 | NSE | 0.016 | 1.5 |
Tb–antiPSA1 | iQD705–antiPSA2 | PSA | 0.006 | 0.2 |
Single-antigen assay with all AB FRET pairs | ||||
Tb–antiCEA1 | eQD650–antiCEA2 | CEA | 0.017 | 3.1 |
Tb–antiNSE1 | eQD605–antiNSE2 | NSE | 0.033 | 3.1 |
Tb–antiPSA1 | iQD705–antiPSA2 | PSA | 0.006 | 0.2 |
Triplexed assay (all AGs and all AB FRET pairs) | ||||
Tb–antiCEA1 | eQD650–antiCEA2 | CEA | 0.020 | 3.6 |
Tb–antiNSE1 | eQD605–antiNSE2 | NSE | 0.035 | 3.5 |
Tb–antiPSA1 | iQD705–antiPSA2 | PSA | 0.009 | 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhuckory, S.; Wegner, K.D.; Qiu, X.; Wu, Y.-T.; Jennings, T.L.; Incamps, A.; Hildebrandt, N. Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET. Molecules 2020, 25, 3679. https://doi.org/10.3390/molecules25163679
Bhuckory S, Wegner KD, Qiu X, Wu Y-T, Jennings TL, Incamps A, Hildebrandt N. Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET. Molecules. 2020; 25(16):3679. https://doi.org/10.3390/molecules25163679
Chicago/Turabian StyleBhuckory, Shashi, K. David Wegner, Xue Qiu, Yu-Tang Wu, Travis L. Jennings, Anne Incamps, and Niko Hildebrandt. 2020. "Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET" Molecules 25, no. 16: 3679. https://doi.org/10.3390/molecules25163679
APA StyleBhuckory, S., Wegner, K. D., Qiu, X., Wu, Y. -T., Jennings, T. L., Incamps, A., & Hildebrandt, N. (2020). Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET. Molecules, 25(16), 3679. https://doi.org/10.3390/molecules25163679