Development and Physical Characterization of α-Glucan Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. DSC Analysis
2.2. Morphology Analysis of α-Glucans and Nanoparticles
2.3. Fluorescence Anisotropy Analysis
2.4. DLS and ζ-Potential Analysis
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. α-Glucan Synthesis and Structural Characterization
3.2.2. Differential Scanning Calorimetry (DSC)
3.2.3. Thermogravimetric Analysis (TGA)
3.2.4. Nanoparticle Preparation via High-Pressure Homogenization
3.2.5. Morphological Analysis
3.2.6. Fluorescence Anisotropy Measurements
3.2.7. Dynamic Light Scattering (DLS) and Zeta Potential Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
mPa | mega Pascal |
DPH | 1,6-diphenyl-1,3,5-hexatriene |
DLS | dynamic light scattering |
DSC | differential scanning calorimetry |
ARS | Agricultural Research Service |
References
- Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric Nanoparticles. Sci. Technol. Adv. Mater. 2010, 11, 014104. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.-H.; Chang, L.W.; Lin, P. Metal-Based Nanoparticles and the Immune System: Activation, Inflammation, and Potential Applications. Biomed. Res. Int. 2015, 2015, 143720. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.A.; Scott, W.E. Polysaccharide conformation. Part VI. Computer model-building for linear and branched pyranoglycans. Correlations with biological function. Preliminary assessment of inter-residue forces in aqueous solution. Further interpretation of optical rotation in terms of chain conformation. J. Chem. Soc. B Phys. Org. 1971, 469–479. [Google Scholar]
- Ogawa, K.; Yui, T.; Okamura, K.; Misaki, A. Crystalline Features of Streptococcal (1→3)-α-d-Glucans of Human Saliva. Biosci. Biotechnol. Biochem. 1994, 58, 1326–1327. [Google Scholar] [CrossRef]
- Yui, T.; Goto, K.; Kawano, Y.; Ogawa, K. Molecular Modeling Study of Highly Branching (1→3)-α-d-Glucan, a Model Polysaccharide for Cariogenic Glucan, Using the N/H Mapping Method. Biosci. Biotechnol. Biochem. 2000, 64, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Cote, G.L.; Ahlgren, J.A.; Smith, M.R. Some structural features of an insoluble α-d-glucan from a mutant strain of Leuconostoc mesenteroides NRRL B-1355. J. Ind. Microbiol. Biotechnol. 1999, 23, 656–660. [Google Scholar] [CrossRef]
- Côté, G.L.; Leathers, T.D. Insoluble glucans from planktonic and biofilm cultures of mutants of Leuconostoc mesenteroides NRRL B-1355. Appl. Microbiol. Biotechnol. 2009, 82, 149–154. [Google Scholar] [CrossRef]
- Funane, K.; Ishii, T.; Matsushita, M.; Hori, K.; Mizuno, K.; Takahara, H.; Kitamura, Y.; Kobayashi, M. Water-soluble and water-insoluble glucans produced by Escherichia coli recombinant dextransucrases from Leuconostoc mesenteroides NRRL B-512F. Carbohydr. Res. 2001, 334, 19–25. [Google Scholar] [CrossRef]
- Jeon, M.K.; Kwon, T.H.; Park, J.S.; Shin, J.H. In situ viscoelastic properties of insoluble and porous polysaccharide biopolymer dextran produced by Leuconostoc mesenteroides using particle-tracking microrheology. Geomech. Eng. 2017, 12, 849–862. [Google Scholar] [CrossRef]
- Seymour, F.R.; Julian, R.L.; Jeanes, A.; Lamberts, B.L. Structural analysis of insoluble d-glucans by fourier-transform, infrared difference-spectrometry: Correlation between structures of dextrans from strains of leuconostoc mesenteroides and of d-glucans from strains of streptococcus mutans. Carbohydr. Res. 1980, 86, 227–246. [Google Scholar] [CrossRef]
- Shukla, R.; Shukla, S.; Bivolarski, V.; Iliev, I.; Ivanova, I.; Goyal, A. Structural characterization of insoluble dextran produced by Leuconostoc mesenteroides NRRL B-1149 in the presence of maltose. Food Technol. Biotechnol. 2011, 49, 291–296. [Google Scholar]
- Zahnley, J.C.; Smith, M.R. Insoluble glucan formation by Leuconostoc mesenteroides B-1355. Appl. Environ. Microbiol. 1995, 61, 1120–1123. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, C.; Liu, P.; Ahmed, Z.; Xiao, P.; Bai, X. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr. Polym. 2010, 82, 895–903. [Google Scholar] [CrossRef]
- Aradmehr, A.; Javanbakht, V. A novel biofilm based on lignocellulosic compounds and chitosan modified with silver nanoparticles with multifunctional properties: Synthesis and characterization. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124952. [Google Scholar] [CrossRef]
- Lentz, B.R. Membrane “fluidity” as detected by diphenylhexatriene probes. Chem. Phys. Lipids 1989, 50, 171–190. [Google Scholar] [CrossRef]
- Evans, K.O.; Compton, D.L. Phosphatidyl-hydroxytyrosol and phosphatidyl-tyrosol bilayer properties. Chem. Phys. Lipids 2017, 202, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Lentz, B.R.; Barenholz, Y.; Thompson, T.E. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 1. Single component phosphatidylcholine liposomes. Biochemistry 1976, 15, 4521–4528. [Google Scholar] [CrossRef] [PubMed]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, M.; Pérez-Morales, R.; Goycoolea, F.M.; Mueller, M.; Praznik, W.; Loeppert, R.; Bermúdez-Morales, V.; Zavala-Padilla, G.; Ayala, M.; Olvera, C. Self-assembled high molecular weight inulin nanoparticles: Enzymatic synthesis, physicochemical and biological properties. Carbohydr. Polym. 2019, 215, 160–169. [Google Scholar] [CrossRef]
- Šimšíková, M.; Antalík, M.; Kaňuchová, M.; Škvarla, J. Anionic 11-mercaptoundecanoic acid capped ZnO nanoparticles. Appl. Surf. Sci. 2013, 282, 342–347. [Google Scholar] [CrossRef]
- McClements, D.J.; Gumus, C.E. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amantea, B.E.; Piazza, R.D.; Chacon, J.R.V.; Santos, C.C.; Costa, T.P.; Rocha, C.O.; Brandt, J.V.; Godoi, D.R.M.; Jafelicci, M.; Marques, R.F.C. Esterification influence in thermosensitive behavior of copolymers PNIPAm-co-PAA and PNVCL-co-PAA in magnetic nanoparticles surface. Colloids Surf. A Physicochem. Eng. Asp. 2019, 575, 18–26. [Google Scholar] [CrossRef]
- Côté, G.L.; Skory, C.D. Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Appl. Microbiol. Biotechnol. 2012, 93, 2387–2394. [Google Scholar] [CrossRef] [PubMed]
- Cormier, R.; Cote, G.L.; Skory, C.D. Nanoparticles and Films Composed of Water-insoluble Glucan. U.S. Patent 9,708,417, 18 July 2017. [Google Scholar]
Sample Availability: Samples of the compounds α-glucan nanoparticles are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, K.O.; Skory, C.; Compton, D.L.; Cormier, R.; Côté, G.L.; Kim, S.; Appell, M. Development and Physical Characterization of α-Glucan Nanoparticles. Molecules 2020, 25, 3807. https://doi.org/10.3390/molecules25173807
Evans KO, Skory C, Compton DL, Cormier R, Côté GL, Kim S, Appell M. Development and Physical Characterization of α-Glucan Nanoparticles. Molecules. 2020; 25(17):3807. https://doi.org/10.3390/molecules25173807
Chicago/Turabian StyleEvans, Kervin O., Christopher Skory, David L. Compton, Ryan Cormier, Gregory L. Côté, Sanghoon Kim, and Michael Appell. 2020. "Development and Physical Characterization of α-Glucan Nanoparticles" Molecules 25, no. 17: 3807. https://doi.org/10.3390/molecules25173807
APA StyleEvans, K. O., Skory, C., Compton, D. L., Cormier, R., Côté, G. L., Kim, S., & Appell, M. (2020). Development and Physical Characterization of α-Glucan Nanoparticles. Molecules, 25(17), 3807. https://doi.org/10.3390/molecules25173807