Oxidative Stress Biomarkers and Peripheral Endothelial Dysfunction in Rheumatoid Arthritis: A Monocentric Cross-Sectional Case-Control Study
Abstract
:1. Introduction
2. Results
2.1. Patients and Controls
2.2. Oxidative Stress Biomarkers, Ln-RHI and Peripheral ED
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Clinical Variables
4.3. Laboratory Variables
4.4. Flow-Mediated Pulse Amplitude Tonometry (PAT)
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Erre, G.L.; Buscetta, G.; Paliogiannis, P.; Mangoni, A.A.; Carru, C.; Passiu, G.; Zinellu, A. Coronary flow reserve in systemic rheumatic diseases: A systematic review and meta-analysis. Rheumatol. Int. 2018, 38, 1179–1190. [Google Scholar] [CrossRef] [PubMed]
- Erre, G.L.; Piras, A.; Mura, S.; Mundula, N.; Piras, M.; Taras, L.; Longu, M.G.; Saba, P.S.; Ganau, A.; Carru, C.; et al. Asymmetric dimethylarginine and arterial stiffness in patients with rheumatoid arthritis: A case–control study. J. Int. Med. Res. 2016, 44, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Hansen, P.R.; Feineis, M.; Abdulla, J. Rheumatoid arthritis patients have higher prevalence and burden of asymptomatic coronary artery disease assessed by coronary computed tomography: A systematic literature review and meta-analysis. Eur. J. Intern. Med. 2019, 62, 72–79. [Google Scholar] [CrossRef]
- Erre, G.L.; Piras, A.; Piga, M.; Fedele, A.L.; Mangoni, A.A.; Lazzerini, P.E.; Gremese, E.; Mathieu, A.; Ferraccioli, G.; Passiu, G.; et al. QT and QT dispersion intervals in long-standing and moderately active rheumatoid arthritis: Results from a multicentre cross-sectional study. Clin. Exp. Rheumatol. 2020, 38, 516–522. [Google Scholar]
- Erre, G.L.; Piga, M.; Fedele, A.L.; Mura, S.; Piras, A.; Cadoni, M.L.; Cangemi, I.; Dessi, M.; Di Sante, G.; Tolusso, B.; et al. Prevalence and Determinants of Peripheral Microvascular Endothelial Dysfunction in Rheumatoid Arthritis Patients: A Multicenter Cross-Sectional Study. Mediators Inflamm. 2018, 2018, 6548715. [Google Scholar] [CrossRef]
- Erre, G.L.; Mangoni, A.A.; Passiu, G.; Bassu, S.; Castagna, F.; Carru, C.; Piga, M.; Zinellu, A.; Sotgia, S. Comprehensive arginine metabolomics and peripheral vasodilatory capacity in rheumatoid arthritis: A monocentric cross-sectional study. Microvasc. Res. 2020, 131, 104038. [Google Scholar] [CrossRef]
- England, B.R.; Thiele, G.M.; Anderson, D.R.; Mikuls, T.R. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ 2018, 361, k1036. [Google Scholar] [CrossRef]
- Hassan, S.Z.; Gheita, T.A.; Kenawy, S.A.; Fahim, A.T.; El-Sorougy, I.M.; Abdou, M.S. Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: Relationship to disease manifestations and activity. Int. J. Rheum. Dis. 2011, 14, 325–331. [Google Scholar] [CrossRef]
- Rasheed, Z.; Ahmad, R.; Rasheed, N.; Ali, R. Enhanced recognition of reactive oxygen species damaged human serum albumin by circulating systemic lupus erythematosus autoantibodies. Autoimmunity 2007, 40, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Erre, G.L.; De Muro, P.; Dellacà, P.; Fenu, P.; Cherchi, G.M.; Faedda, R.; Passiu, G. Iloprost therapy acutely decreases oxidative stress in patients affected by systemic sclerosis. Clin. Exp. Rheumatol. 2008, 26, 1095. [Google Scholar]
- Erre, G.L.; Passiu, G. Antioxidant effect of iloprost: Current knowledge and therapeutic implications for systemic sclerosis. Reumatismo 2009, 61, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boin, F.; Erre, G.L.; Posadino, A.M.; Cossu, A.; Giordo, R.; Spinetti, G.; Passiu, G.; Emanueli, C.; Pintus, G. Oxidative stress-dependent activation of collagen synthesis is induced in human pulmonary smooth muscle cells by sera from patients with scleroderma-associated pulmonary hypertension. Orphanet J. Rare Dis. 2014, 9, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, H.R. ROS as signalling molecules in T cells-Evidence for abnormal redox signalling in the autoimmune disease, rheumatoid arthritis. Redox Rep. 2005, 10, 273–280. [Google Scholar] [CrossRef]
- Souliotis, V.L.; Vlachogiannis, N.I.; Pappa, M.; Argyriou, A.; Ntouros, P.A.; Sfikakis, P.P. DNA damage response and oxidative stress in systemic autoimmunity. Int. J. Mol. Sci. 2020, 21, 55. [Google Scholar] [CrossRef] [Green Version]
- Aviram, M.; Rosenblat, M.; Bisgaier, C.L.; Newton, R.S.; Primo-Parmo, S.L.; La Du, B.N. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions: A possible peroxidative role for paraoxonase. J. Clin. Investig. 1998, 101, 1581–1590. [Google Scholar] [CrossRef] [Green Version]
- Berrougui, H.; Loued, S.; Khalil, A. Purified human paraoxonase-1 interacts with plasma membrane lipid rafts and mediates cholesterol efflux from macrophages. Free Radic. Biol. Med. 2012, 52, 1372–1381. [Google Scholar] [CrossRef]
- Kowalska, K.; Socha, E.; Milnerowicz, H. Review: The role of paraoxonase in cardiovascular diseases. Ann. Clin. Lab. Sci. 2015, 45, 226–233. [Google Scholar]
- Bhattacharyya, T.; Nicholls, S.J.; Topol, E.J.; Zhang, R.; Yang, X.; Schmitt, D.; Fu, X.; Shao, M.; Brennan, D.M.; Ellis, S.G.; et al. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA-J. Am. Med. Assoc. 2008, 299, 1265–1276. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Carrio, J.; López-Mejías, R.; Alperi-López, M.; López, P.; Ballina-García, F.J.; González-Gay, M.Á.; Suárez, A. Paraoxonase 1 Activity Is Modulated by the rs662 Polymorphism and IgG Anti-High-Density Lipoprotein Antibodies in Patients With Rheumatoid Arthritis: Potential Implications for Cardiovascular Disease. Arthritis Rheumatol. 2016, 68, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Banna, H.; Jiman-Fatani, A. Anti-cyclic citrullinated peptide antibodies and paraoxonase-1 polymorphism in rheumatoid arthritis. BMC Musculoskelet. Disord. 2014, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanimoto, N.; Kumon, Y.; Suehiro, T.; Ohkubo, S.; Ikeda, Y.; Nishiya, K.; Hashimoto, K. Serum paraoxonase activity decreases in rheumatoid arthritis. Life Sci. 2003, 72, 2877–2885. [Google Scholar] [CrossRef]
- Rossi, R.; Giustarini, D.; Milzani, A.; Dalle-Donne, I. Cysteinylation and homocysteinylation of plasma protein thiols during ageing of healthy human beings. J. Cell. Mol. Med. 2009, 13, 3131–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkus, M.E.; Altiparmak, I.H.; Akyuz, A.R.; Demirbag, R.; Sezen, Y.; Gunebakmaz, O.; Neselioglu, S.; Erel, O. The association between plasma thiol levels and left ventricular diastolic dysfunction in patient with hypertension. Scand. J. Clin. Lab. Investig. 2015, 75, 667–673. [Google Scholar] [CrossRef]
- Kundi, H.; Ates, I.; Kiziltunc, E.; Cetin, M.; Cicekcioglu, H.; Neselioglu, S.; Erel, O.; Ornek, E. A novel oxidative stress marker in acute myocardial infarction; Thiol/disulphide homeostasis. Am. J. Emerg. Med. 2015, 33, 1567–1571. [Google Scholar] [CrossRef]
- Kundi, H.; Erel, Ö.; Balun, A.; Çiçekçioğlu, H.; Cetin, M.; Kiziltunç, E.; Neşelioğlu, S.; Topçuoğlu, C.; Örnek, E. Association of thiol/disulfide ratio with syntax score in patients with NSTEMI. Scand. Cardiovasc. J. 2015, 49, 95–100. [Google Scholar] [CrossRef]
- Seven, A.; Güzel, S.; Aslan, M.; Hamuryudan, V. Lipid, protein, DNA oxidation and antioxidant status in rheumatoid arthritis. Clin. Biochem. 2008, 41, 538–543. [Google Scholar] [CrossRef]
- Jaswal, S.; Mehta, H.C.; Sood, A.K.; Kaur, J. Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin. Chimica Acta 2003, 338, 123–129. [Google Scholar] [CrossRef]
- Uchida, K. Lipofuscin-like fluorophores originated from malondialdehyde. Free Radic. Res. 2006, 40, 1335–1338. [Google Scholar] [CrossRef]
- María Quiñonez-Flores, C.; Aideé González-Chávez, S.; Del, D.; Nájera, R.; Pacheco-Tena, C. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review. BioMed Res. Int. 2016, 2016, 6097417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiele, G.M.; Duryee, M.J.; Anderson, D.R.; Klassen, L.W.; Mohring, S.M.; Young, K.A.; Benissan-Messan, D.; Sayles, H.; Dusad, A.; Hunter, C.D.; et al. Malondialdehyde-acetaldehyde adducts and anti-malondialdehyde-acetaldehyde antibodies in rheumatoid arthritis. Arthritis Rheumatol. 2015, 67, 645–655. [Google Scholar] [CrossRef] [Green Version]
- England, B.R.; Duryee, M.J.; Roul, P.; Mahajan, T.D.; Singh, N.; Poole, J.A.; Ascherman, D.P.; Caplan, L.; Demoruelle, M.K.; Deane, K.D.; et al. Malondialdehyde–Acetaldehyde Adducts and Antibody Responses in Rheumatoid Arthritis–Associated Interstitial Lung Disease. Arthritis Rheumatol. 2019, 71, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Salonen, J.T.; Nyyssönen, K.; Salonen, R.; Porkkala-Sarataho, E.; Tuomainen, T.P.; Diczfalusy, U.; Björkhem, I. Lipoprotein oxidation and progression of carotid atherosclerosis. Circulation 1997, 95, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Antoniades, C.; Bakogiannis, C.; Leeson, P.; Guzik, T.J.; Zhang, M.H.; Tousoulis, D.; Antonopoulos, A.S.; Demosthenous, M.; Marinou, K.; Hale, A.; et al. Rapid, direct effects of statin treatment on arterial redox state and nitric oxide bioavailability in human atherosclerosis via tetrahydrobiopterin- mediated endothelial nitric oxide synthase coupling. Circulation 2011, 124, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.F.; Jacob, R.F.; Jeffers, B.; Ghadanfar, M.M.; Preston, G.M.; Buch, J.; Mason, R.P. Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: A longitudinal analysis of the PREVENT study. J. Am. Coll. Cardiol. 2004, 44, 1996–2002. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.R.; Duryee, M.J.; Shurmur, S.W.; Um, J.Y.; Bussey, W.D.; Hunter, C.D.; Garvin, R.P.; Sayles, H.R.; Mikuls, T.R.; Klassen, L.W.; et al. Unique antibody responses to malondialdehyde-acetaldehyde (MAA)-protein adducts predict coronary artery disease. PLoS ONE 2014, 9, e107440. [Google Scholar] [CrossRef]
- März, W.; Kleber, M.E.; Scharnagl, H.; Speer, T.; Zewinger, S.; Ritsch, A.; Parhofer, K.G.; von Eckardstein, A.; Landmesser, U.; Laufs, U. HDL cholesterol: Reappraisal of its clinical relevance. Clin. Res. Cardiol. 2017, 106, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Endo, H.; Kashiwazaki, S. Serum oxidation activities and rheumatoid arthritis. Int. J. Tissue React. 1987, 9, 307–316. [Google Scholar]
- Kumon, Y.; Nakauchi, Y.; Suehiro, T.; Shiinoki, T.; Tanimoto, N.; Inoue, M.; Nakamura, T.; Hashimoto, K.; Sipe, J.D. Proinflammatory cytokines but not acute phase serum amyloid A or C-reactive protein, downregulate paraoxonase 1 (PON1) expression by HepG2 cells. Amyloid 2002, 9, 160–164. [Google Scholar] [CrossRef]
- Mackness, B.; Mackness, M.I.; Arrol, S.; Turkie, W.; Durrington, P.N. Effect of the molecular polymorphisms of human paraoxonase (PON1) on the rate of hydrolysis of paraoxon. Br. J. Pharmacol. 1997, 122, 265–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaragoza-García, O.; Guzmán-Guzmán, I.P.; Moreno-Godínez, M.E.; Navarro-Zarza, J.E.; Antonio-Vejar, V.; Ramírez, M.; Parra-Rojas, I. PON-1 haplotype (-108C > T, L55M, and Q192R) modulates the serum levels and activity PONase promoting an atherogenic lipid profile in rheumatoid arthritis patients. Clin. Rheumatol. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kerekes, G.; Szekanecz, Z.; Dér, H.; Sándor, Z.; Lakos, G.; Muszbek, L.; Csipö, I.; Sipka, S.; Seres, I.; Paragh, G.; et al. Endothelial dysfunction and atherosclerosis in rheumatoid arthritis: A multiparametric analysis using imaging techniques and laboratory markers of inflammation and autoimmunity. J. Rheumatol. 2008, 35, 398–406. [Google Scholar] [PubMed]
- Bae, S.C.; Lee, Y.H. Associations between paraoxonase 1 (PON1) polymorphisms and susceptibility and PON1 activity in rheumatoid arthritis patients, and comparison of PON1 activity in patients and controls: A meta-analysis. Clin. Rheumatol. 2019, 38, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
- Charles-Schoeman, C.; Lee, Y.Y.; Shahbazian, A.; Gorn, A.H.; Fitzgerald, J.; Ranganath, V.K.; Taylor, M.; Ragavendra, N.; McMahon, M.; Elashoff, D.; et al. Association of paraoxonase 1 gene polymorphism and enzyme activity with carotid plaque in rheumatoid arthritis. Arthritis Rheum. 2013, 65, 2765–2772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren, E.; Ellidag, H.Y.; Aydin, O.; Yılmaz, N. Homocysteine, Paraoxonase-1 and vascular endothelial dysfunction: Omnibus viis romam pervenitur. J. Clin. Diagnostic Res. 2014, 8, CE01–CE04. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Zinellu, A.; Carru, C.; Attia, J.R.; Mcevoy, M. Serum thiols and cardiovascular risk scores: A combined assessment of transsulfuration pathway components and substrate/product ratios. J. Transl. Med. 2013, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O.; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Gan, K.N.; Smolen, A.; Eckerson, H.W.; La Du, B.N. Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab. Dispos. 1991, 19, 100–106. [Google Scholar]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- LOWRY, O.H.; ROSEBROUGH, N.J.; FARR, A.L.; RANDALL, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, P.O.; Pumper, G.M.; Higano, S.T.; Holmes, D.R.; Kuvin, J.T.; Lerman, A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 2004, 44, 2137–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds employed for the laboratory evaluation of oxidative stress markers are available from the authors. |
Rheumatoid Arthritis n = 164 | Controls n = 101 | p | |
---|---|---|---|
age, years | 55.0 ± 6.8 | 54.9 ± 5.6 | 0.96 |
female, n(%) | 102(62.2) | 51(50.5) | 0.07 |
hypertension, n(%) | 47(28.7) | 26(25.7) | 0.639 |
dyslipidaemia, n(%) | 36(21.9) | 21(20.7) | 0.855 |
diabetes, n(%) | 9(5.4) | 6(5.9) | 0.684 |
current smoker, n(%) | 46(28) | 19(18.8) | 0.098 |
total cholesterol, mg/dL | 207.0 ± 36 | 212.1 ± 36 | 0.294 |
triglycerides, mg/dL | 95.3 ± 45 | 82.3 ± 34 | 0.013 |
creatinine, mg/dL | 0.82 ± 0.2 | 0.84 ± 0.1 | 0.567 |
Variable | Value |
---|---|
disease duration, months | 114.9 ± 99.8 |
DAS-28 | 3.4 ± 0.6 |
RF, % | 65 |
CRP, mg/dL | 2.9 ± 2.2 |
ESR, mm/h | 27.6 ± 1.7 |
ACPA, % | 62 |
steroid use, % | 34 |
steroid, mg/day | 2.4 ± 0.3 |
DMARDs use, n(%) | 67 |
TNF-inhibitors use, n(%) | 28 |
Ln-RHI | 0.68 ± 0.02 |
endothelial dysfunction, % | 24.3 |
Rheumatoid Arthritis n = 164 | Controls n = 101 | p | |
---|---|---|---|
PON-1 | 109.73 ± 67.4 | 128.09 ± 76.2 | 0.042 |
PSH | 3.15 ± 3.7 | 3.77 ± 0.7 | <0.001 |
MDA | 2.58 ± 0.7 | 2.52 ± 0.6 | 0.55 |
PSH | PON-1 | MDA | CRP | ESR | DAS28 | Steroid | DMARDs | TNFi | Ln-RHI | |
---|---|---|---|---|---|---|---|---|---|---|
PSH | 1.0000 | |||||||||
PON-1 | 0.0812 0.3016 | 1.0000 | ||||||||
MDA | 0.1780 0.0226 | 0.1264 0.1067 | 1.0000 | |||||||
CRP | −0.1265 0.1192 | −0.0411 0.6135 | −0.0039 0.9616 | 1.0000 | ||||||
ESR | −0.1901 0.0190 | −0.1433 0.6135 | −0.2010 0.0130 | 0.2349 0.0037 | 1.0000 | |||||
DAS28 | −0.0937 0.2328 | −0.0895 0.2543 | −0.0898 0.2527 | 0.0186 0.8198 | 0.6087 0.0000 | 1.0000 | ||||
steroid | −0.0073 0.9265 | −0.1590 0.0433 | 0.1208 0.1258 | −0.0582 0.4781 | 0.1756 0.0310 | 0.1787 0.0229 | 1.0000 | |||
DMARDs | 0.1484 0.0594 | 0.0254 0.7483 | 0.0848 0.2833 | 0.0536 0.5130 | −0.1246 0.1274 | −0.1343 0.0884 | 0.0462 0.5592 | 1.0000 | ||
TNFi | −0.0496 0.5312 | −0.0099 0.9003 | −0.0907 0.2510 | −0.0530 0.5184 | 0.0410 0.6169 | 0.0347 0.6611 | −0.1044 0.1861 | −0.2554 0.0010 | 1.0000 | |
Ln-RHI | −0.0244 0.7588 | −0.0907 0.2527 | −0.1767 0.0250 | 0.1005 0.2197 | −0.1607 0.0494 | −0.1211 0.1259 | −0.0646 0.4182 | −0.0368 0.6448 | −0.0446 0.5771 | 1.0000 |
Independent Variable | Univariate Linear Regression B coefficient (95%IC), p | Multiple Linear Regression B Coefficient (95%IC), p |
---|---|---|
ESR | −0.002 (−0.004 to −6.040), 0.049 | −0.003 (−0.005 to −0.0008), 0.008 |
MDA | −0.072 (−0.134 to −0.009), 0.025 | −0.071 (−0.135 to −0.006), 0.032 |
Model 1 | |||||
---|---|---|---|---|---|
independent variables | Odds Ratio | SE | z | p | 95%CI |
MDA | 1.751144 | 0.4472219 | 2.19 | 0.028 | 1.061536 to 2.888743 |
age | 1.007933 | 0.0326649 | 0.24 | 0.807 | 0.9459022 to 1.074032 |
gender | 1.223209 | 0.5648958 | 0.44 | 0.663 | 0.4947698 to 3.024113 |
ESR | 1.021651 | 0.0092615 | 2.36 | 0.018 | 1.003659 to 1.039965 |
constant | 0.0222555 | 0.0418738 | −2.02 | 0.043 | 0.0005571 to 0.8891565 |
Model 2 | |||||
independent variables | Odds Ratio | SE | z | p | 95%CI |
PON-1 | 1.006696 | 0.002803 | 2.40 | 0.017 | 1.001217 to 1.012205 |
age | 1.011697 | 0.0329131 | 0.36 | 0.721 | 0.949202 to 1.078306 |
gender | 1.513167 | 0.7026411 | 0.89 | 0.372 | 0.6090183 to 3.759616 |
ESR | 1.021511 | 0.0092764 | 2.34 | 0.019 | 1.003491 to 1.039855 |
constant | 0.0337423 | 0.0609748 | −1.88 | 0.061 | 0.0009772 to 1.165086 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassu, S.; Zinellu, A.; Sotgia, S.; Mangoni, A.A.; Floris, A.; Farina, G.; Passiu, G.; Carru, C.; Erre, G.L. Oxidative Stress Biomarkers and Peripheral Endothelial Dysfunction in Rheumatoid Arthritis: A Monocentric Cross-Sectional Case-Control Study. Molecules 2020, 25, 3855. https://doi.org/10.3390/molecules25173855
Bassu S, Zinellu A, Sotgia S, Mangoni AA, Floris A, Farina G, Passiu G, Carru C, Erre GL. Oxidative Stress Biomarkers and Peripheral Endothelial Dysfunction in Rheumatoid Arthritis: A Monocentric Cross-Sectional Case-Control Study. Molecules. 2020; 25(17):3855. https://doi.org/10.3390/molecules25173855
Chicago/Turabian StyleBassu, Stefania, Angelo Zinellu, Salvatore Sotgia, Arduino Aleksander Mangoni, Alberto Floris, Giuseppina Farina, Giuseppe Passiu, Ciriaco Carru, and Gian Luca Erre. 2020. "Oxidative Stress Biomarkers and Peripheral Endothelial Dysfunction in Rheumatoid Arthritis: A Monocentric Cross-Sectional Case-Control Study" Molecules 25, no. 17: 3855. https://doi.org/10.3390/molecules25173855
APA StyleBassu, S., Zinellu, A., Sotgia, S., Mangoni, A. A., Floris, A., Farina, G., Passiu, G., Carru, C., & Erre, G. L. (2020). Oxidative Stress Biomarkers and Peripheral Endothelial Dysfunction in Rheumatoid Arthritis: A Monocentric Cross-Sectional Case-Control Study. Molecules, 25(17), 3855. https://doi.org/10.3390/molecules25173855