Anti-Cancer Effects of Lactobacillus plantarum L-14 Cell-Free Extract on Human Malignant Melanoma A375 Cells
Abstract
:1. Introduction
2. Results
2.1. The L-14 Extract Affected the Growth and Viability of A375P and A375SM
2.2. The L-14 Extract Inhibited the Migration of A375P and A375SM
2.3. The L-14 Extract Changed the mRNA and Protein Expression of Genes Associated with Metastasis of Cancers
2.4. Changes in mRNA and Protein Expression of Genes was Associated with Apoptosis
2.5. Observation of the Release of Cytochrome C from the Mitochondria Following the Treatment with the L-14 Extract
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture
4.3. Preparation of L. Plantarum Extract
4.4. Cell Viability Assay
4.5. qRT-PCR
4.6. Animals and In Vivo Anti-Tumor Experiments
4.7. Cell Migration Assay
4.8. Protein Isolation and Western Blot
4.9. Immunofluorescence (IF) Staining for the Detection of Cytochrome C Release
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van der Walt, N.B.; Zakeri, Z.; Cronje, M.J. The induction of apoptosis in A375 malignant melanoma cells by Sutherlandia frutescens. Evid. Based Complement. Alternat. Med. 2016, 2016, 4921067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guy, G.P.; Ekwueme, D.U. Years of potential life lost and indirect costs of melanoma and non-melanoma skin cancer: A systematic review of the literature. Pharmacoeconomics 2011, 29, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Balch, C.M.; Gershenwald, J.E.; Soong, S.J.; Thompson, J.F.; Atkins, M.B.; Byrd, D.R.; Buzaid, A.C.; Cochran, A.J.; Coit, D.G.; Ding, S.; et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol. 2009, 27, 6199–6206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Zhao, Z.; Barber, B.; Farr, A.M.; Ivanov, B.; Novich, M. Overall survival in patients with metastatic melanoma. Curr. Med. Res. Opin. 2015, 31, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Aris, M.; Barrio, M.M. Combining immunotherapy with oncogene-targeted therapy: A new road for melanoma treatment. Front. Immunol. 2015, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Freeman, K.; Dinnes, J.; Chuchu, N.; Takwoingi, Y.; Bayliss, S.E.; Matin, R.N.; Jain, A.; Walter, F.M.; Williams, H.C.; Deeks, J.J. Algorithm based smartphone apps to assess risk of skin cancer in adults: Systematic review of diagnostic accuracy studies. Br. Med. J. 2020, 368, m127. [Google Scholar] [CrossRef] [Green Version]
- Faiao-Flores, F.; Coelho, P.R.; Arruda-Neto, J.; Maria, D.A. Boron neutron capture therapy induces cell cycle arrest and DNA fragmentation in murine melanoma cells. Appl. Radiat. Isot. 2011, 69, 1741–1744. [Google Scholar] [CrossRef]
- Ozben, T. Antioxidant supplementation on cancer risk and during cancer therapy: An update. Curr. Top. Med. Chem. 2015, 15, 170–178. [Google Scholar] [CrossRef]
- Cosentino, D.; Piro, F. Hyaluronic acid for treatment of the radiation therapy side effects: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7562–7572. [Google Scholar] [CrossRef]
- Zielinska, D.; Kolozyn-Krajewska, D. Food-origin lactic acid bacteria may exhibit probiotic properties: Review. Biomed. Res. Int. 2018, 2018, 5063185. [Google Scholar] [CrossRef] [Green Version]
- Ren, D.; Zhu, J.; Gong, S.; Liu, H.; Yu, H. Antimicrobial characteristics of lactic acid bacteria isolated from homemade fermented foods. Biomed. Res. Int. 2018, 2018, 5416725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bintsis, T. Lactic acid bacteria: Their applications in foods. J. Bacteriol. Mycol. 2018, 6, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Perdigon, G.; Alvarez, S.; Rachid, M.; Aguero, G.; Gobbato, N. Immune system stimulation by probiotics. J. Dairy. Sci. 1995, 78, 1597–1606. [Google Scholar] [CrossRef]
- Corr, S.C.; Gahan, C.G.; Hill, C. Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol. Med. Microbiol. 2007, 50, 380–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pochard, P.; Gosset, P.; Grangette, C.; Andre, C.; Tonnel, A.B.; Pestel, J.; Mercenier, A. Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients. J. Allergy Clin. Immunol. 2002, 110, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Kassayova, M.; Bobrov, N.; Strojny, L.; Orendas, P.; Demeckova, V.; Jendzelovsky, R.; Kubatka, P.; Kiskova, T.; Kruzliak, P.; Adamkov, M.; et al. Anticancer and immunomodulatory effects of Lactobacillus plantarum LS/07, inulin and melatonin in NMU-induced rat model of breast cancer. Anticancer. Res. 2016, 36, 2719–2728. [Google Scholar]
- Chuah, L.O.; Foo, H.L.; Loh, T.C.; Mohammed Alitheen, N.B.; Yeap, S.K.; Abdul Mutalib, N.E.; Abdul Rahim, R.; Yusoff, K. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement. Altern. Med. 2019, 19, 114. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Liu, L.; Liu, P.; Li, Y.; Lu, H.; Li, Y.; Zhang, G.; Duan, X. Cardamonin as a potential treatment for melanoma induces human melanoma cell apoptosis. Oncol. Lett. 2020, 19, 1393–1399. [Google Scholar] [CrossRef] [Green Version]
- Long, G.V.; Menzies, A.M.; Nagrial, A.M.; Haydu, L.E.; Hamilton, A.L.; Mann, G.J.; Hughes, T.M.; Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J. Clin. Oncol. 2011, 29, 1239–1246. [Google Scholar] [CrossRef]
- Escandon Brehm, J.; Bedogni, B. Blockade of CCR5 in melanoma: An alternative immune checkpoint modulator. Exp. Dermatol. 2020, 29, 196. [Google Scholar] [CrossRef] [Green Version]
- Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 2017, 7, 1016–1036. [Google Scholar] [PubMed]
- Li, L.T.; Jiang, G.; Chen, Q.; Zheng, J.N. Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol. Med. Rep. 2015, 11, 1566–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.C.; Gatter, K.C. Ki67 protein: The immaculate deception? Histopathology 2002, 40, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Boyer, B.; Thiery, J.P. Epithelium-mesenchyme interconversion as example of epithelial plasticity. APMIS. 1993, 101, 257–268. [Google Scholar] [CrossRef]
- Wels, C.; Joshi, S.; Koefinger, P.; Bergler, H.; Schaider, H. Transcriptional activation of ZEB1 by Slug leads to cooperative regulation of the epithelial-mesenchymal transition-like phenotype in melanoma. J. Invest. Dermatol. 2011, 131, 1877–1885. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.W.; Park, Y.M.; Lee, S.J.; Cho, H.J.; Kim, D.H.; Lee, J.I.; Kang, M.S.; Seol, H.J.; Shim, Y.M.; Nam, D.H.; et al. Alpha-smooth muscle actin (ACTA2) is required for metastatic potential of human lung adenocarcinoma. Clin. Cancer Res. 2013, 19, 5879–5889. [Google Scholar] [CrossRef] [Green Version]
- Mrozik, K.M.; Blaschuk, O.W.; Cheong, C.M.; Zannettino, A.C.W.; Vandyke, K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018, 18, 939. [Google Scholar] [CrossRef]
- Li, M.; Zhang, B.; Sun, B.; Wang, X.; Ban, X.; Sun, T.; Liu, Z.; Zhao, X. A novel function for vimentin: The potential biomarker for predicting melanoma hematogenous metastasis. J. Exp. Clin. Cancer Res. 2010, 29, 109. [Google Scholar] [CrossRef] [Green Version]
- Zeisberg, M.; Neilson, E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Investig. 2009, 119, 1429–1437. [Google Scholar] [CrossRef] [Green Version]
- Gotzmann, J.; Mikula, M.; Eger, A.; Schulte-Hermann, R.; Foisner, R.; Beug, H.; Mikulits, W. Molecular aspects of epithelial cell plasticity: Implications for local tumor invasion and metastasis. Mutat. Res. 2004, 566, 9–20. [Google Scholar] [CrossRef]
- Chang, J.C. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine 2016, 95, S20–S25. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem. 2000, 275, 31199–31203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Kim, C.N.; Yang, J.; Jemmerson, R.; Wang, X. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 1996, 86, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Quan, L.T.; O’Rourke, K.; Desnoyers, S.; Zeng, Z.; Beidler, D.R.; Poirier, G.G.; Salvesen, G.S.; Dixit, V.M. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 1995, 81, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, E.; Pulicati, A.; Cencioni, M.T.; Cozzolino, M.; Navoni, F.; di Martino, S.; Nardacci, R.; Carri, M.T.; Cecconi, F. Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol. Biol. Cell 2008, 19, 3576–3588. [Google Scholar] [CrossRef] [Green Version]
- Mohana-Kumaran, N.; Hill, D.S.; Allen, J.D.; Haass, N.K. Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment. Cell Melanoma Res. 2014, 27, 525–539. [Google Scholar] [CrossRef]
- Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A target for anticancer therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Singh, R.K. Resistance to chemotherapy and molecularly targeted therapies: Rationale for combination therapy in malignant melanoma. Curr. Mol. Med. 2011, 11, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Gutman, M.; Singh, R.K.; Xie, K.; Bucana, C.D.; Fidler, I.J. Regulation of interleukin-8 expression in human melanoma cells by the organ environment. Cancer Res. 1995, 55, 2470–2475. [Google Scholar]
- Varney, M.L.; Li, A.; Dave, B.J.; Bucana, C.D.; Johansson, S.L.; Singh, R.K. Expression of CXCR1 and CXCR2 receptors in malignant melanoma with different metastatic potential and their role in interleukin-8 (CXCL-8)-mediated modulation of metastatic phenotype. Clin. Exp. Metastasis 2003, 20, 723–731. [Google Scholar] [CrossRef]
- Shang, F.M.; Li, J. A small-molecule antagonist of CXCR1 and CXCR2 inhibits cell proliferation, migration and invasion in melanoma via PI3K/AKT pathway. Med. Clin. 2019, 152, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Gehlsen, K.R.; Davis, G.E.; Sriramarao, P. Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin. Exp. Metastasis 1992, 10, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Stupack, D.G.; Cheresh, D.A. A Bit-role for integrins in apoptosis. Nat. Cell Biol. 2004, 6, 388–389. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the L-14 cell-free extract are available from the authors. |
Gene | Sequence (5′-3′) | Product Size (bp) | |
---|---|---|---|
Ki-67 | Forward | AGT TTG CGT GGC CTG TAC TAA | 202 |
Reverse | AGA AGA AGT GGT GCT TCG GAA | ||
N-cadherin | Forward | ACA GTG GCC ACC TAC AAA GG | 201 |
Reverse | CCG AGA TGG GGT TGA TAA TG | ||
Vimentin | Forward | ATC CAA GTT TGC TGA CCT CTC TGA | 99 |
Reverse | GAC TGC ACC TGT CTC CGG TAC TC | ||
α-SMA | Forward | GAC GTA CAA CTG GTA TTG TG | 144 |
Reverse | TCA GGA TCT TCA TGA GGT AG | ||
Slug | Forward | TTG TGG CCT TCT TTG AGT TCG GTG | 146 |
Reverse | GGT GCC TCA GGT ACT CAG TCA | ||
Bcl-2 | Forward | TTG TGG CCT TCT TTG AGT TCG GTG | 111 |
Reverse | GGT GCC TCA GGT ACT CAG TCA | ||
Bax | Forward | CCT GTG CAC CAA GGT GCC GGA ACT | 99 |
Reverse | CCA CCC TGG TCT TGG ATC CAG CCC | ||
GAPDH | Forward | CGC TGA GTA CGT CGT GGA GTC | 172 |
Reverse | GCT GAT GAT CTT GAG GCT GTT GTC |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kwon, M.; Lee, J.; Park, S.; Seo, J.; Roh, S. Anti-Cancer Effects of Lactobacillus plantarum L-14 Cell-Free Extract on Human Malignant Melanoma A375 Cells. Molecules 2020, 25, 3895. https://doi.org/10.3390/molecules25173895
Park J, Kwon M, Lee J, Park S, Seo J, Roh S. Anti-Cancer Effects of Lactobacillus plantarum L-14 Cell-Free Extract on Human Malignant Melanoma A375 Cells. Molecules. 2020; 25(17):3895. https://doi.org/10.3390/molecules25173895
Chicago/Turabian StylePark, Jaehyun, Mijin Kwon, Jaehoon Lee, Sangkyu Park, Jeongmin Seo, and Sangho Roh. 2020. "Anti-Cancer Effects of Lactobacillus plantarum L-14 Cell-Free Extract on Human Malignant Melanoma A375 Cells" Molecules 25, no. 17: 3895. https://doi.org/10.3390/molecules25173895
APA StylePark, J., Kwon, M., Lee, J., Park, S., Seo, J., & Roh, S. (2020). Anti-Cancer Effects of Lactobacillus plantarum L-14 Cell-Free Extract on Human Malignant Melanoma A375 Cells. Molecules, 25(17), 3895. https://doi.org/10.3390/molecules25173895