A Brief Overview of Dietary Zeaxanthin Occurrence and Bioaccessibility
Abstract
:1. Introduction
2. Dietary Sources of Zeaxanthin
3. Zeaxanthin Bioaccessibility
4. Zeaxanthin and Health Related Benefits
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yabuzaki, J. Carotenoids Database: Structures, chemical fingerprints and distribution among organisms. Database 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005, 26, 459–516. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J.; Neuringer, M.; Russell, R.M.; Schalch, W.; Snodderly, D.M. Nutritional manipulation of primate retinas, III: Effects of lutein or zeaxanthin supplementation on adipose tissue and retina of xanthophyll-free monkeys. Investig. Ophthalmol. Vis. Sci. 2005, 46, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Shyam, R.; Gorusupudi, A.; Nelson, K.; Horvath, M.P.; Bernstein, P.S. RPE65 has an additional function as the lutein to meso-zeaxanthin isomerase in the vertebrate eye. Proc. Natl. Acad. Sci. USA 2017, 114, 10882–10887. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Amaya, D.B. Bioaccessibility and bioavailability. In Food Carotenoids: Chemistry, Biology and Technology; Rodriguez-Amaya, D.B., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; Chapter 9; pp. 225–254. [Google Scholar]
- Reboul, E. Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins. Nutrients 2013, 5, 3563–3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopec, R.E.; Failla, M.L. Recent Advances in the Bioaccessibility and Bioavailability of Carotenoids and Effects of Other Dietary Lipophiles. J. Food Compos. Anal. 2017, 68. [Google Scholar] [CrossRef]
- Giordano, E.; Quadro, L. Lutein, zeaxanthin and mammalian development: Metabolism, functions and implications for health. Arch. Biochem. Biophys. 2018, 647, 33–40. [Google Scholar] [CrossRef]
- Lintig, J.; Moon, J.; Lee, J.; Srinivasagan, R. Carotenoid metabolism at the intestinal barrier. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2019, 1865, 158580. [Google Scholar] [CrossRef]
- Niesor, E.J.; Chaput, E.; Mary, J.L.; Staempfli, A.; Topp, A.; Stauffer, A.; Wang, H.; Durrwell, A. Effect of Compounds Affecting ABCA1 Expression and CETP Activity on the HDL Pathway Involved in Intestinal Absorption of Lutein and Zeaxanthin. Lipids 2014, 49, 1233–1243. [Google Scholar] [CrossRef]
- Wang, W.; Connor, S.L.; Johnson, E.J.; Klein, M.L.; Hughes, S.; Connor, W.E. Effect of dietary lutein and zeaxanthin on plasma carotenoids and their transport in lipoproteins in age-related macular degeneration. Am. J. Clin. Nutr. 2007, 85, 762–769. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Dixon, Z.; Chen, Y.; Llerena, C.M. Lutein and Zeaxanthin in the Eyes, Serum and Diet of Human Subjects. Exp. Eye Res. 2000, 71, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Renzi-Hammond, L.M.; Hammond, B.R.; Dengler, M.; Roberts, R. The relation between serum lipids and lutein and zeaxanthin in the serum and retina: Results from cross-sectional, case-control and case study designs. Lipids Health Dis. 2012, 11, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Delaimy, W.K.; Kappel, A.L.; Ferrari, P.; Slimani, N.; Steghens, J.P.; Bingham, S.; Johansson, I.; Wallström, P.; Overvad, K.; Tjønneland, A.; et al. Plasma levels of six carotenoids in nine European countries: Report from the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2004, 7, 713–722. [Google Scholar] [CrossRef] [PubMed]
- During, A.; Doraiswamy, S.; Harrison, E.H. Xanthophylls are preferentially taken up compared with beta-carotene by retinal cells via a SRBI-dependent mechanism. J. Lipid Res. 2008, 49, 1715–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shyam, R.; Vachali, P.; Gorusupudi, A.; Nelson, K.; Bernstein, P.S. All three human scavenger receptor class B proteins can bind and transport all three macular xanthophyll carotenoids. Arch. Biochem. Biophys. 2017, 634, 21–28. [Google Scholar] [CrossRef]
- Bhosale, P.; Larson, A.J.; Frederick, J.M.; Southwick, K.; Thulin, C.D.; Bernstein, P.S. Identification and Characterization of a Pi Isoform of Glutathione S-Transferase (GSTP1) as a Zeaxanthin-binding Protein in the Macula of the Human Eye. J. Biol. Chem. 2004, 279, 49447–49454. [Google Scholar] [CrossRef] [Green Version]
- Canene-Adams, K.; Erdman, J. Absorption, Transport, Distribution in Tissues and Bioavailability. In Carotenoids; Britton, G., Pfander, H., Liaaen-Jensen, S., Eds.; Birkhäuser: Basel, Switzerland, 2009; Chapter 7; pp. 115–148. [Google Scholar] [CrossRef]
- Knockaert, G.; Lemmens, L.; van Buggenhout, S.; Hendrickx, M.; van Loey, A. Changes in β-carotene bioaccessibility and concentration during processing of carrot puree. Food Chem. 2012, 133, 60–67. [Google Scholar] [CrossRef]
- Schweiggert, R.M.; Carle, R. Carotenoid Deposition in Plant And Animal Foods and Its Impact on Bioavailability. Crit. Rev. Food Sci. Nutr. 2015, 57, 1807–1830. [Google Scholar] [CrossRef]
- de Oliveira, G.P.R.; Rodriguez-Amaya, D.B. Processed and Prepared Corn Products As Sources of Lutein and Zeaxanthin: Compositional Variation in the Food Chain. J. Food Sci. 2007, 72, S079–S085. [Google Scholar] [CrossRef]
- Zhang, S.; Ji, J.; Zhang, S.; Guan, C.; Wang, G. Effects of three cooking methods on content changes and absorption efficiencies of carotenoids in maize. Food Funct. 2020, 11, 944–954. [Google Scholar] [CrossRef]
- Hempel, J.; Schädle, C.N.; Sprenger, J.; Heller, A.; Carle, R.; Schweiggert, R.M. Ultrastructural deposition forms and bioaccessibility of carotenoids and carotenoid esters from goji berries (Lycium barbarum L.). Food Chem. 2017, 218, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, L.; Colle, I.; Van Buggenhout, S.; Palmero, P.; Van Loey, A.; Hendrickx, M. Carotenoid bioaccessibility in fruit- and vegetable-based food products as affected by product (micro) structural characteristics and the presence of lipids: A review. Trends Food Sci. Technol. 2014, 38, 125–135. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parada, J.; Aguilera, J.M. Food microstructure affects the bioavailability of several nutrients. J. Food Sci. 2007, 72, R21–R32. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Lopes-Lutz, D.; Schieber, A.; Wu, J. Effect of Domestic Cooking Methods on Egg Yolk Xanthophylls. J. Agric. Food Chem. 2012, 60, 12547–12552. [Google Scholar] [CrossRef]
- Humphries, J.M.; Khachik, F. Distribution of Lutein, Zeaxanthin, and Related Geometrical Isomers in Fruit, Vegetables, Wheat, and Pasta Products. J. Agric. Food Chem. 2003, 51, 1322–1327. [Google Scholar] [CrossRef]
- Olmedilla-Alonso, B.; Estévez-Santiago, R. Fruit and vegetable intake and the macular pigment optical density. In Handbook of Nutrition, Diet and the Eye; Preedy, V.R., Watson, R.R., Eds.; Academic Press (AP), Elsevier Inc.: Cambridge, MA, USA, 2019; Chapter 32; pp. 529–549. [Google Scholar]
- Bone, R.A.; Landrum, J.T.; Friedes, L.M.; Gomez, C.M.; Kilburn, M.D.; Menendez, E.; Vidal, I.; Wang, W. Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp. Eye Res. 1997, 64, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Fernández-García, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res. 2009, 29, 751–760. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Perry, A.; Rasmussen, H.; Johnson, E.J. Xantophyll (lutein, zeaxanthin) conten in fruits, vegetables and corn and egg products. J. Food Compos. Anal. 2009, 22, 9–15. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Young, J.C.; Rabalski, I.; Hucl, P.; Frégeau Reid, J. Identification and Quantification of Seed Carotenoids in Selected Wheat Species. J. Agr. Food Chem. 2007, 55, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Leth, T.; Jakobsen, J.; Andersen, N.L. The intake of carotenoids in Denmark. Eur. J. Lipid Sci. Tech. 2000, 102, 128–132. [Google Scholar] [CrossRef]
- de la Parra, C.; Serna-Saldivar, S.O.; Liu, R.H. Effect of Processing on the Phytochemical Profiles and Antioxidant Activity of Corn for Production of Masa, Tortillas, and Tortilla Chips. J. Agric. Food Chem. 2007, 55, 4177–4183. [Google Scholar] [CrossRef] [PubMed]
- Murillo, E.; Meléndez-Martínez, A.J.; Portugal, F. Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chem. 2010, 122, 167–172. [Google Scholar] [CrossRef]
- Schweiggert-Weisz, U.; Kurz, C.; Schieber, A.; Carle, R. Effects of processing and storage on the stability of free and esterified carotenoids of red peppers (Capsicum annuum L.) and hot chilli peppers (Capsicum frutescens L.). Eur. Food Res. Technol. 2007, 225, 261–270. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Martínez-Guirado, C.; Rebolloso-Fuentes, M.; Carrique-Pérez, A. Nutrient composition and antioxidant activity of 10 pepper (Capsicum annuun) varieties. Eur. Food Res. Technol. 2006, 224, 1–9. [Google Scholar] [CrossRef]
- Mageney, V.; Baldermann, S.; Albach, D.C. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica. J. Agric. Food Chem. 2016, 64, 3251–3257. [Google Scholar] [CrossRef]
- Weller, P.; Breithaupt, D.E. Identification and Quantification of Zeaxanthin Esters in Plants Using Liquid Chromatography–Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 7044–7049. [Google Scholar] [CrossRef]
- Lu, Q.Y.; Arteaga, J.R.; Zhang, Q.; Huerta, S.; Go, V.L.W.; Heber, D. Inhibition of prostate cancer cell growth by an avocado extract: Role of lipid-soluble bioactive substances. J. Nutr. Biochem. 2005, 16, 23–30. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res. Int. 2014, 65, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Dragović Uzelac, V.; Levaj, B.; Mrkic, V.; Bursać Kovačević, D.; Boras, M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007, 102, 966–975. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Food Chem. 2016, 199, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, E.; Fraser, P.D.; Martens, S. Carotenoids and tocopherols in yellow and red raspberries. Food Chem. 2013, 139, 744–752. [Google Scholar] [CrossRef]
- Zhong, L.; Gustavsson, K.E.; Oredsson, S.; Głąb, B.; Yilmaz, J.L.; Olsson, M.E. Determination of free and esterified carotenoid composition in rose hip fruit by HPLC-DAD-APCI(+)-MS. Food Chem. 2016, 210, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Inbaraj, B.S.; Lu, H.; Hung, C.F.; Wu, W.B.; Lin, C.L.; Chen, B.H. Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC-DAD-APCI-MS. J. Pharm. Biomed. Anal. 2008, 47, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Hempel, J.; Schweiggert, R.M.; Ni, Y.-Y.; Carle, R. Carotenoids and Carotenoid Esters of Red and Yellow Physalis (Physalis alkekengi L. and P. pubescens L.) Fruits and Calyces. J. Agric. Food Chem. 2017, 65, 6140–6151. [Google Scholar] [CrossRef]
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.P.; Gruppen, H. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tudor, C.; Bohn, T.; Iddir, M.; Dulf, F.V.; Focsan, M.; Rugină, D.O.; Pintea, A. Sea Buckthorn Oil as a Valuable Source of Bioaccessible Xanthophylls. Nutrients 2020, 12, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, D.B.; Mariutti, L.R.B.; Mercadante, A.Z. An in vitro digestion method adapted for carotenoids and carotenoid esters: Moving forward towards standardization. Food Funct. 2016, 7, 4992–5001. [Google Scholar] [CrossRef]
- Garzón, G.A.; Narvaez-Cuenca, C.E.; Kopec, R.E.; Barry, A.M.; Riedl, K.M.; Schwartz, S.J. Determination of Carotenoids, Total Phenolic Content, and Antioxidant Activity of Araza (Eugenia stipitata McVaugh), an Amazonian Fruit. J. Agric. Food Chem. 2012, 60, 4709–4717. [Google Scholar] [CrossRef]
- Cano, M.P.; Gómez-Maqueo, A.; Fernández-López, R.; Welti-Chanes, J.; García-Cayuela, T. Impact of high hydrostatic pressure and thermal treatment on the stability and bioaccessibility of carotenoid and carotenoid esters in astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante). Food Res. Int. 2019, 123, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Schweiggert, R.M.; Vargas, E.; Conrad, J.; Hempel, J.; Gras, C.C.; Ziegler, J.U.; Mayer, A.; Jiménez, V.; Esquivel, P.; Carle, R. Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.). Food Chem. 2016, 200, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Maqueo, A.; Bandino, E.; Hormaza, J.I.; Cano, M.P. Characterization and the impact of in vitro simulated digestion on the stability and bioaccessibility of carotenoids and their esters in two Pouteria lucuma varieties. Food Chem. 2020, 316, 126369. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pelayo, R.; Hornero-Méndez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Agric. Food Chem. 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulshof, P.J.M.; Roekel-Jansen, T.; Bovenkamp, P.; West, C.E. Variation in retinol and carotenoid content of milk and milk products in The Netherlands. J. Food Compos. Anal. 2006, 19, 67–75. [Google Scholar] [CrossRef]
- Sachindra, N.M.; Bhaskar, N.; Mahendrakar, N.S. Carotenoids in crabs from marine and fresh waters of India. LWT - Food Sci. Technol. 2005, 38, 221–225. [Google Scholar] [CrossRef]
- Asensio Grau, A.; Peinado, I.; Heredia, A.; Andrés, A. Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. J. Funct. Foods 2018, 46, 579–586. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Verstreken, H.; Dejonghe, C.; Gheysen, L.; Foubert, I.; Grauwet, T.; Loey, A.M. Cell disruption of Nannochloropsis sp. improves in vitro bioaccessibility of carotenoids and ω3-LC-PUFA. J. Funct. Foods 2020, 65, 103770. [Google Scholar] [CrossRef]
- Cha, K.H.; Koo, S.Y.; Song, D.G.; Pan, C.H. Effect of Microfluidization on Bioaccessibility of Carotenoids from Chlorella ellipsoidea during Simulated Digestion. J. Agric. Food Chem. 2012, 60, 9437–9442. [Google Scholar] [CrossRef]
- Hu, C.C.; Lin, J.T.; Lu, F.J.; Chou, F.P.; Yang, D.J. Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chem. 2008, 109, 439–446. [Google Scholar] [CrossRef]
- Gille, A.; Hollenbach, R.; Trautmann, A.; Posten, C.; Briviba, K. Effect of sonication on bioaccessibility and cellular uptake of carotenoids from preparations of photoautotrophic Phaeodactylum tricornutum. Food Res. Int. 2017, 118, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Granado-Lorencio, F.; Herrero-Barbudo, C.; Acien-Fernandez, G.; Molina-Grima, E.; Fernandez-Sevilla, J.M.; Pérez-Sacristán, B.; Blanco-Navarro, I. In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chem. 2009, 114, 747–752. [Google Scholar] [CrossRef]
- Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Mariutti, L.R.B. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef] [PubMed]
- Mariutti, L.R.B.; Mercadante, A.Z. Carotenoid esters analysis and occurrence: What do we know so far? Arch. Biochem. Biophys. 2018, 648, 36–43. [Google Scholar] [CrossRef]
- Xavier, A.A.O.; Mercadante, A.Z. The bioaccessibility of carotenoids impacts the design of functional foods. Curr. Opin. Food Sci. 2019, 26, 1–8. [Google Scholar] [CrossRef]
- Grashorn, M. Feed Additives for Influencing Chicken Meat and Egg Yolk Color. In Handbook on Natural Pigments in Food and Beverages; Carle, R., Schweiggert, R.M., Eds.; Woodhead Publishing: Cambridge, UK, 2016; Chapter 14; pp. 283–304. [Google Scholar] [CrossRef]
- Nolan, J.M.; Meagher, K.A.; Howard, A.N.; Moran, R.; Thurnham, D.I.; Beatty, S. Lutein, zeaxanthin and meso-zeaxanthin content of eggs laid by hens supplemented with free and esterified xanthophylls. J. Nutr. Sci. 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.S.; Kim, J.W.; Kim, J.H.; Lee, D.G.; Lee, S.; Kil, D.Y. Effect of feeding duration of diets containing corn distillers dried grains with solubles on productive performance, egg quality, and lutein and zeaxanthin concentrations of egg yolk in laying hens. Poult. Sci. 2016, 95, 2366–2371. [Google Scholar] [CrossRef]
- Chung, H.Y.; Rasmussen, H.M.; Johnson, E.J. Lutein Bioavailability Is Higher from Lutein-Enriched Eggs than from Supplements and Spinach in Men. J. Nutr. 2004, 134, 1887–1893. [Google Scholar] [CrossRef] [Green Version]
- Fernández Cordero, B.; Couso, I.; León, R.; Rodríguez, H.; Vargas, M.A. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl. Microbiol. Biotechnol. 2011, 91, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Lin, Y.; He, M.; Gong, Y.; Huang, J. Induced High-Yield Production of Zeaxanthin, Lutein, and β-Carotene by a Mutant of Chlorella zofingiensis. J. Agric. Food Chem. 2018, 66, 891–897. [Google Scholar] [CrossRef]
- Failla, M.; Bobrowski Rodrigues, D.; Chitchumroonchokchai, C. Bioavailability and Metabolism of Carotenoid Esters. In Carotenoid Esters in Foods: Physical, Chemical and Biological Properties; Mercadante, A., Ed.; Royal Society of Chemistry: London, UK, 2019; Chapter 13; pp. 390–420. [Google Scholar] [CrossRef]
- Marhuenda-Muñoz, M.; Hurtado-Barroso, S.; Tresserra-Rimbau, A.; Lamuela-Raventós, R.M. A review of factors that affect carotenoid concentrations in human plasma: Differences between Mediterranean and Northern diets. Eur. J. Clin. Nutr. 2018, 72, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa, F.; Cortes, C.; Esteve, M.J.; Frigola, A. Effect of High-Intensity Pulsed Electric Fields Processing and Conventional Heat Treatment on Orange–Carrot Juice Carotenoids. J. Agric. Food Chem. 2005, 53, 9519–9525. [Google Scholar] [CrossRef] [PubMed]
- Sentandreu, E.; Stinco, C.M.; Vicario, I.M.; Mapelli-Brahm, P.; Navarro, J.L.; Meléndez-Martínez, A.J. High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. J. Clean. Prod. 2020, 262, 121325. [Google Scholar] [CrossRef]
- Stinco, C.; Sentandreu, E.; Mapelli-Brahm, P.; Navarro, J.L.; Vicario, I.M.; Meléndez-Martínez, A.J. Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chem. 2020, 331, 127259. [Google Scholar] [CrossRef]
- Fernández-García, E.; Carvajal-Lérida, I.; Jarén-Galán, M.; Garrido-Fernández, J.; Pérez-Gálvez, A.; Hornero-Méndez, D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res. Int. 2012, 46, 432–450. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Chitchumroonchokchai, C.; Mariutti, L.R.B.; Mercadante, A.Z.; Failla, M.L. Comparison of two static in vitro digestion methods for screening bioaccessibility of carotenoids in fruits, vegetables and animal products. J. Agric. Food Chem. 2017, 65, 11220–11228. [Google Scholar] [CrossRef]
- Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.P.; Ferris, F.L.; Elman, M.J.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; Bressler, S.B.; et al. Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression AREDS2 Report No. 3. JAMA Ophthalmol. 2013, 132, 142–149. [Google Scholar] [CrossRef]
- Stinco, C.M.; Pumilia, G.; Giuffrida, D.; Dugo, G.; Meléndez-Martínez, A.J.; Vicario, I.M. Bioaccessibility of carotenoids, vitamin A and α-tocopherol, from commercial milk-fruit juice beverages: Contribution to the recommended daily intake. J. Food Compos. Anal. 2019, 78, 24–32. [Google Scholar] [CrossRef]
- Costa, G.A.; Mercadante, A.Z. In vitro bioaccessibility of free and esterified carotenoids in cajá frozen pulp-based beverages. J. Food Compos. Anal. 2017, 68, 53–59. [Google Scholar] [CrossRef]
- de Campo, C.; Queiroz Assis, R.; Marques da Silva, M.; Haas Costa, T.M.; Paese, K.; Stanisçuaski Guterres, S.; de Oliveira Rios, A.; Hickmann Flôres, S. Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chem. 2019, 301, 125230. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Falsafi, S.R.; Jafari, S.M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Control. Release 2019, 298, 38–67. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Peng, S.-F. Current status in our understanding of physicochemical basis of bioaccessibility. Curr. Opin. Food Sci. 2019, 31, 57–62. [Google Scholar] [CrossRef]
- Burgos, G.; Muñoa, L.; Sosa, P.; Bonierbale, M.; zum Felde, T.; Díaz, C. In vitro bioaccessibility of lutein and zeaxanthin of yellow fleshed boiled potatoes. Plant Foods Hum. Nutr. 2013, 68, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, M.J.; Cilla, A.; Barberá, R.; Zacarías, L. Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins. Food Funct. 2015, 6, 1950–1959. [Google Scholar] [CrossRef] [PubMed]
- Granado-Lorencio, F.; Olmedilla-Alonso, B.; Herrero-Barbudo, C.; Pérez-Sacristan, B.; Blanco-Navarro, I.; Blazquez-García, S. Comparative in Vitro Bioaccessibility of Carotenoids from Relevant Contributors to Carotenoid Intake. J. Agric. Food Chem. 2007, 55, 6387–6394. [Google Scholar] [CrossRef]
- Victoria Campos, C.I.; Ornelas-Paz, J.; Yahia, E.M.; Jiménez-Castro, J.A.; Cervantes-Paz, B.; Ibarra-Junquera, V.; Pérez-Martínez, J.D.; Zamudio-Flores, P.B.; Escalante-Minakata, P. Effect of Ripening, Heat Processing, and Fat Type on the Micellarization of Pigments from Jalapeno Peppers. J. Agric. Food Chem. 2013, 61, 9938–9949. [Google Scholar] [CrossRef]
- Victoria Campos, C.I.; Ornelas-Paz, J.; Yahia, E.M.; Failla, M.L. Effect of the Interaction of Heat-Processing Style and Fat Type on the Micellarization of Lipid-Soluble Pigments from Green and Red Pungent Peppers (Capsicum annuum). J. Agric. Food Chem. 2013, 61, 3642–3653. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, A.; O’Callaghan, Y.; Tundis, R.; Galvin, K.; Menichini, F.; O’Brien, N.; Loizzo, M.R. In vitro investigation of the bioaccessibility of carotenoids from raw, frozen and boiled red chili peppers (Capsicum annuum). Eur. J. Nutr. 2013, 53, 501–510. [Google Scholar] [CrossRef]
- Cilla, A.; Alegría, A.; Ancos, B.; Sánchez-Moreno, C.; Cano, M.P.; Plaza, L.; Clemente, G.; Lagarda, M.J.; Barberá, R. Bioaccessibility of Tocopherols, Carotenoids, and Ascorbic Acid from Milk- and Soy-Based Fruit Beverages: Influence of Food Matrix and Processing. J. Agric. Food Chem. 2012, 60, 7282–7290. [Google Scholar] [CrossRef]
- O’Connell, O.F.; Ryan, L.; O’Brien, N.M. Xanthophyll carotenoids are more bioaccessible from fruits than dark green vegetables. Nutr. Res. 2007, 27, 258–264. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Connor, T.P.; O’Brien, N.M. The content and bioaccessibility of carotenoids from selected commercially available health supplements. Proc. Nutr. Soc. 2011, 70, E62. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutr. Rev. 2014, 72, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Barker, F.M., 2nd; Snodderly, D.M.; Johnson, E.J.; Schalch, W.; Koepcke, W.; Gerss, J.; Neuringer, M. Nutritional manipulation of primate retinas, V: Effects of lutein, zeaxanthin, and n-3 fatty acids on retinal sensitivity to blue-light-induced damage. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3934–3942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishwanathan, R.; Johnson, E. Lutein and Zeaxanthin and Eye Disease. In Carotenoids and Human Health; Tanumihardjo, S.A., Ed.; Humana Press: Totowa, NJ, USA, 2013; Chapter 13; pp. 215–235. [Google Scholar] [CrossRef]
- Pintea, A.; Rugină, D.O.; Pop, R.; Bunea, A.; Socaciu, C. Xanthophylls protect against induced oxidation in cultured human retinal pigment epithelial cells. J. Food Compos. Anal. 2011, 24, 830–836. [Google Scholar] [CrossRef]
- Johnson, E.J.; Maras, J.E.; Rasmussen, H.M.; Tucker, K.L. Intake of Lutein and Zeaxanthin Differ with Age, Sex, and Ethnicity. J. Am. Diet. Assoc. 2010, 110, 1357–1362. [Google Scholar] [CrossRef]
- Gale, C.R.; Hall, N.F.; Phillips, D.I.W.; Martyn, C.N. Lutein and Zeaxanthin Status and Risk of Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2461–2465. [Google Scholar] [CrossRef] [Green Version]
- Nolan, J.M.; Kenny, R.; O’Regan, C.; Cronin, H.; Loughman, J.; Connolly, E.E.; Kearney, P.; Loane, E.; Beatty, S. Macular Pigment Optical Density in an Ageing Irish Population: The Irish Longitudinal Study on Ageing. Ophthalmic. Res. 2010, 44, 131–139. [Google Scholar] [CrossRef]
- Sadda, S. Lutein/Zeaxanthin and Omega-3 Fatty Acids for Age-Related Macular Degeneration. The Age-Related Eye Disease Study 2 (AREDS2) Randomized Clinical Trial. Ophthalmologica 2013, 230, 10–11. [Google Scholar]
- Chew, E.Y.; SanGiovanni, J.P.; Ferris, F.L.; Wong, W.T.; Agron, E.; Clemons, T.E.; Sperduto, R.; Danis, R.; Chandra, S.R.; Blodi, B.A.; et al. Lutein/Zeaxanthin for the Treatment of Age-Related Cataract AREDS2 Randomized Trial Report No. 4. JAMA Ophthalmol. 2013, 131, 843–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.J. A possible role for lutein and zeaxanthin in cognitive function in the elderly. Am. J. Clin. Nutr. 2012, 96, 1161S–1165S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, B.R.; Miller, L.S.; Bello, M.O.; Lindbergh, C.A.; Mewborn, C.; Renzi-Hammond, L.M. Effects of Lutein/Zeaxanthin Supplementation on the Cognitive Function of Community Dwelling Older Adults: A Randomized, Double-Masked, Placebo-Controlled Trial. Front. Aging Neurosci. 2017, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, R.; Kuchan, M.J.; Sen, S.; Johnson, E.J. Lutein is the Predominant Carotenoid in Infant Brain: Preterm Infants Have Decreased Concentrations of Brain Carotenoids. J. Pediatr. Gastroenterol. Nutr. 2014, 59. [Google Scholar] [CrossRef] [PubMed]
- Walk, A.M.; Khan, N.A.; Barnett, S.M.; Raine, L.R.; Kramer, A.F.; Cohen, N.J.; Moulton, C.J.; Renzi-Hammond, L.M.; Hammond, B.R.; Hillman, C.H. From neuro-pigments to neural efficiency: The relationship between retinal carotenoids and behavioral and neuroelectric indices of cognitive control in childhood. Int. J. Psychophysiol. 2017, 118, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, B.S.; Chan, G.; Hoffman, R.O.; Sharifzadeh, M.; Ermakov, I.V.; Gellermann, W.; Bernstein, P.S. Interrelationships between Maternal Carotenoid Status and Newborn Infant Macular Pigment Optical Density (MPOD) and Carotenoid Status. Invest. Ophthalmol. Vis. Sci. 2013, 54, 5568–5578. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.L. Lutein, Zeaxanthin, and Skin Health. Am. J. Lifestyle Med. 2013, 7, 182–185. [Google Scholar] [CrossRef]
- Palombo, P.; Fabrizi, G.; Ruocco, V.; Ruocco, E.; Fluhr, J.; Roberts, R.; Morganti, P. Beneficial Long-Term Effects of Combined Oral/Topical Antioxidant Treatment with the Carotenoids Lutein and Zeaxanthin on Human Skin: A Double-Blind, Placebo-Controlled Study. Skin Pharmacol. Phys. 2007, 20, 199–210. [Google Scholar] [CrossRef]
- Christensen, K.; Lawler, T.; Mares, J. Dietary Carotenoids and Non-Alcoholic Fatty Liver Disease among US Adults, NHANES 2003–2014. Nutrients 2019, 11, 1101. [Google Scholar] [CrossRef] [Green Version]
- Murillo, A.G.; Hu, S.; Fernandez, M.L. Zeaxanthin: Metabolism, Properties, and Antioxidant Protection of Eyes, Heart, Liver, and Skin. Antioxidants 2019, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, J.H.; Paul-Labrador, M.J.; Fan, J.; Shircore, A.M.; Merz, C.N.B.; Dwyer, K.M. Progression of Carotid Intima-Media Thickness and Plasma Antioxidants: The Los Angeles Atherosclerosis Study. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Xu, X.; Huang, Y.; Xiao, X.; Ma, L.; Sun, T.; Dong, P.; Wang, X.; Lin, X. High serum level of lutein may be protective against early atherosclerosis: The Beijing Atherosclerosis Study. Atherosclerosis 2011, 219, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, Y.; Taguchi, C.; Saita, E.; Suzuki-Sugihara, N.; Nishiyama, H.; Wang, W.; Masuda, Y.; Kondo, K. Additional consumption of one egg per day increases serum lutein plus zeaxanthin concentration and lowers oxidized low-density lipoprotein in moderately hypercholesterolemic males. Food Res. Int. 2017, 99, 944–949. [Google Scholar] [CrossRef] [PubMed]
Plant Sources | Zeaxanthin | Ref. |
---|---|---|
Einkorn wheat (Triticum monococcum) | 0.94 a | [34] |
Khorasan wheat (Triticum turgidum subsp. turanicum) | 0.71 a | [34] |
Durum wheat (Triticum turgidum subsp. durum) | 0.49 a | [34] |
Corn (Zea mays L.) | 10.31 a | [34] |
Corn flakes | 1.02–2.97 a | [35] |
Corn chips | 1.05 a | [36] |
Corn tortilla | 0.93 a | [36] |
Corn masa | 1.13 a | [36] |
Corn flour | 9.4 a | [37] |
Boiled corn | 3.7 a | [37] |
Potato (Solanum tuberosum L.) | 7.7 a | [37] |
Sweet potato (Ipomoea batatas) | 0.3 a | [37] |
Squash (Cucurbita maxima) | 1.9 a | [37] |
Kidney been (Phaseolus vulgaris L.) | 0.1 a | [37] |
Okra (Abelmoschus esculentus) | 0.1 a | [37] |
Beet (Beta vulgaris L.) | 0.7 a | [37] |
Tomato (Solanum lycopersicum L.) | 1.3 a | [37] |
Hot chili peppers (Capsicum frutescens L.) | 1230 a* | [38] |
Pepper (Capsicum annuum L.) | ||
red | 55.0–97.0 a | [39] |
green | 1.7–5.7 a | [39] |
orange | 62.0 a | [37] |
yellow | 4.4 a | [37] |
India mustard (Brassica juncea) | 0.8 a | [37] |
Watercress (Nasturtoum officinale) | 0.4 a | [37] |
Endive (Cichorium endivia L.) | 0.5 a | [37] |
Romaine lettuce (Lactuca sativa L. var. longifolia) | 0.7 a | [37] |
Lettuce (Lactuca sativa L.) | 0.1 a | [37] |
Cabbage (Brassica oleracea L.) | 0.1 a | [37] |
Spinach (Spinacia oleracea L.) | 0.7 a | [37] |
Kale (Brassica oleracea L. var. sabellica) | 163–2460 a | [40] |
Zucchini blossoms (Cucurbita pepo L.) | 32.7 b* | [41] |
Artichoke heart (Cynara cardunculus L. var. scolymus) | 0.18 b | [33] |
Avocado (Persea americana) | 0.08–0.18 b | [42] |
Apple (Malus domestica) | ||
flesh | nd– 0.04 a | [43] |
peel | nd–0.52 a | [43] |
Apricot (Prunus armeniaca L.) | nd–0.39 b | [44] |
European plum (Prunus domestica L.) | 0.1 a | [37] |
Nectarine (Prunus persica) | 0.2 a | [37] |
Orange ‡ (Citrus sinensis) | 0.3 a | [37] |
Orange juice ‡ (Citrus sinensis) | 0.1 a | [37] |
Grafted orange ‡ (Citrus sinensis) | 1.1 a | [37] |
Grafted orange (juice) ‡ | 0.6 a | [37] |
Mandarin ‡ (Citrus reticulata) | 2.1 a | [37] |
Mandarin juice ‡ (Citrus reticulata) | 1.7 a | [37] |
Red grapefruit ‡ (Citrus paradisi) | 0.2 a | [37] |
Peruvian groundcherry (Physalis peruviana L.) | 0.4 a | [37] |
Strawberry tree (Arbutus unedo L.) fruits | 0.7–2.0 a | [45] |
Raspberry (Rubus idaeus L.) | 0.14–0.49 a | [46] |
Rose hip (Rosa spp.) | 23–107 a* | [47] |
Wolfberry (goji berry) (Lycium barbarum L.) | 1231.1 a* | [48] |
Red Chinese lantern fruit (Physalis alkekengi L.) | 847–1035 a* | [49] |
Sea buckthorn (Hippophae rhamnoides L.) | ||
berries | 193–424 a* | [50] |
oil (cold-pressed) | 2312.2 b* | [51] |
Murici fruit (Byrsonima crassifolia) | 5.4 a* | [52] |
Arazá fruit (Eugenia stipitata) | ||
peel | 1.14 b | [53] |
pulp | 0.17 b | [53] |
Astringent persimmon (Diospyros kaki Thunb. var. Rojo brillante) | 10.2 b* | [54] |
Cashew apples (Anacardium occidentale L.) | ||
peel | 0.51–2.69 b* | [55] |
pulp | 0.04–0.58 b* | [55] |
Corozo ‡ (Aiphanes aculeata) | 79.2 a | [37] |
South American sapote ‡ (Quararibea cordata) | 46.2 a | [37] |
Passion fruit ‡ (Passiflora edulis) | 0.2 a | [37] |
Mango ‡ (Mangifera indica) | 0.5 a | [37] |
Red papaya ‡ (Carica papaya) | 0.6 a | [37] |
Yellow guava ‡ (Psidium guajava L.) | 0.2 a | [37] |
Pineapple ‡ (Ananas comosus) | 0.1 a | [37] |
Melon ‡ (Cucumis melo L.) | 0.1 a | [37] |
Tahitian apple ‡ (Spondias dulcis) | 0.1 a | [37] |
Cassabanana ‡ (Sicana odorífera) | 0.4 a | [37] |
Tree tomato ‡ (Cyphomandra betacea) | 1.7 a | [37] |
Red tree tomato ‡ (Cyphomandra betacea) | 2.4 a | [37] |
Roselle ‡ (Hibiscus sabdariffa L.) | 0.8 a | [37] |
Membrillo # (Gustavia superba) | 37.6 a | [37] |
Canistel # (Pouteria campechiana) | 19.7 a | [37] |
Chinese passion fruit # (Cionosicyos macranthus) | 2.8 a | [37] |
Sastra # (Garcinia intermedia) | 84.7 a | [37] |
Yellow mombin # (Spondias mombin L.) | 1.2 a | [37] |
Guanabana toreta # (Annona purpurea) | 6.8 a | [37] |
Purple mombin # (Spondias purpurea L.) | 0.8 a | [37] |
Chinese rose # (Pereskia bleo) | 0.8 a | [37] |
Nance # (Byrsonima crassiflora) | 0.2 a | [37] |
Lucuma fruit (Pouteria lucuma) | ||
Molina variety | 3.44–5.76 b* | [56] |
Beltran variety | 5.74 –6.66 b* | [56] |
Sarsaparilla (Smilax aspera L.) berries | 8.56 b* | [57] |
Animal sources | ||
Butter | nd - 0.02 b | [58] |
Marine crab (Charybdis cruciata) | ||
meat | 0.02 b | [59] |
Freshwater crab (Potamon potamon) | ||
meat | 1.72 b | [59] |
Eggs | ||
raw | 1.5 a | [60] |
boiled | 1.3 a | [60] |
poached | 1.3 a | [60] |
omelette | 1.14 a | [60] |
Microalgal sources | ||
Nannochloropsis sp. | ||
suspension | 420 a | [61] |
oil | 1930 b | [61] |
Chlorella ellipsoidea | 1999 a | [62] |
Dunaliella salina | 11270 a | [63] |
Phaeodactylum tricornutum | 679.2 a | [64] |
Scenedesmus almeriensis | 370 a | [65] |
Food Matrix | Bioaccessibility (%) | Ref. | Observations | |
---|---|---|---|---|
Sea buckthorn (Hippophae rhamnoides L.) | [51] | The oral phase was not considered and porcine cholesterol esterase was included in the protocol. | ||
oil | 61.5 | |||
oil-in-water (o/w) emulsion | 64.6 | |||
Plant sources | Goji berries (Lycium barbarum L.) | 13.3 | [23] | The tested food sample (dried goji berries) was supplemented with 1% (w/w) coconut fat. |
Astringent persimmon (Diospyros kaki Thunb, var. Rojo Brillante) | 2.5 | [54] | The persimmon samples were subjected to a high hydrostatic pressure treatment and the protocol was slightly amended as concerns the simulated digestion fluids. | |
Cajá (Spondias mombin L.) water and milk based beverages | 7.4–15.2 | [84] | Six homemade cajá frozen pulp based beverages were analyzed through the slightly adjusted protocol. | |
Ortanique mandarin juices (Citrus reticulata x Citrus sinensis) | 8.8–82 | [78] | Five mandarin juices subjected to traditional pasteurization and energy-saving high-pressure homogenization treatments were analyzed through the slightly adjusted protocol in which the oral phase was not considered. | |
Orange juice (Citrus sinensis L. Osb.) | 16–79 | [79] | Five orange juices subjected to traditional pasteurization, energy-saving high-pressure homogenization and a combined centrifugation and homogenization technique were analyzed through the slightly adjusted protocol in which the oral phase was not considered. | |
Commercial milk-fruit juice beverages | 45.3 | [83] | Twenty-two commercial milk-fruit juice beverages were analyzed through the slightly adjusted protocol. The oral phase was not considered and the bioaccessibility of zeaxanthin was expressed as mean percentage of the twenty-two commercial beverages investigated. | |
Pouteria lucuma fruits | [56] | Two varieties of seedless lucuma fruit pulps were analyzed through the slightly adjusted protocol. | ||
variety “Molina” | 5.8 | |||
variety “Beltran” | 1.6 | |||
Murici (Byrsonima crassifolia) fruit | 22 | [52] | The freeze-dried murici fruit were rehydrated and analyzed through the slightly adjusted protocol along with other reported in vitro digestion methods. | |
Maize (Zea mays L.) | [22] | After their preparation from maize, boiled kernels, porridge and tortilla were analyzed through the slightly adjusted protocol. In the case of porridge, the oral phase was not included. | ||
boiled kernels | 2.4 | |||
porridge | 7.8 | |||
tortilla | 18.4 | |||
Animal sources | Egg yolk (hard boiled) | 90 | [81] | The yolk of hard-boiled commercial eggs was analyzed through the slightly adjusted protocol along with another in vitro digestion method. |
Egg yolk | [60] | The protocol was amended so as to simulate the digestion conditions of exocrine pancreatic insufficiency patients. | ||
boiled | 26–98 | |||
poached | 28–103 | |||
omelette | 31–111 | |||
Microalgal sources | Nannochloropsis sp. | [61] | Nannochloropsis sp. (untreated biomass, high pressure homogenized biomass and oil-in-water emulsion) was analyzed through the slightly adjusted protocol. The oral phase was not considered and the results are expressed in terms of micellar incorporation (%). | |
Untreated suspension | 9 | |||
HPH suspension | 19 | |||
o/w emulsion | 54 |
Food Matrix | Bioaccessibility (%) | Ref. | |
---|---|---|---|
Plant sources | Boiled yellow-fleshed potato (Solanum tuberosum L.) | 55–71 | [88] |
Clementine mandarins (Citrus x clementina) | [89] | ||
pulp | 14.1–27.2 | ||
juice | 65.9 | ||
Spinach (Spinacia oleracea L.) | 6.7 | [90] | |
Lettuce (Lactuca sativa L.) | 5.7 | ||
Sweet corn (Zea mays L.) | 54 | ||
Red pepper (Capsicum annuum L.) | 48.4 | ||
Orange (Citrus sinensis) | 38.9 | ||
Jalapeño peppers (Capsicum annuum L.) | [91] | ||
brown peppers | 87.1 | ||
50% red peppers | 59.3 | ||
75% red peppers | 47.4 | ||
Pungent Peppers (Capsicum annuum L.) | [92] | ||
green pepper | 75.6 | ||
red pepper | 72.9 | ||
Red chili peppers (Capsicum annuum L.) | [93] | ||
fresh | 0–74.5 | ||
frozen | 23.9–90 | ||
boiled | 0–93.4 | ||
Processed milk- and soy-based fruit beverages | [94] | ||
whole milk-fruit beverages | 30.2–71.2 | ||
skimmed milk-fruit beverages | 7.5–35.2 | ||
soy milk-fruit beverages | 29.9–100.5 | ||
Honeydew melon (Cucumis melo L.) | 50.2 | [95] | |
Animal sources | Egg yolk | 91 | [81] |
Microalgal sources | Arthrospira sp. | 4.9 | [96] |
Phaeodactylum tricornutum | 29 | [64] | |
Chlorella ellipsoidea | |||
Untreated | 2.6 | [62] | |
Microfluidized at 5000 psi | 7.8 | ||
Microfluidized at 10,000 psi | 22 | ||
Microfluidized at 20,000 psi | 32.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudor, C.; Pintea, A. A Brief Overview of Dietary Zeaxanthin Occurrence and Bioaccessibility. Molecules 2020, 25, 4067. https://doi.org/10.3390/molecules25184067
Tudor C, Pintea A. A Brief Overview of Dietary Zeaxanthin Occurrence and Bioaccessibility. Molecules. 2020; 25(18):4067. https://doi.org/10.3390/molecules25184067
Chicago/Turabian StyleTudor, Cristina, and Adela Pintea. 2020. "A Brief Overview of Dietary Zeaxanthin Occurrence and Bioaccessibility" Molecules 25, no. 18: 4067. https://doi.org/10.3390/molecules25184067
APA StyleTudor, C., & Pintea, A. (2020). A Brief Overview of Dietary Zeaxanthin Occurrence and Bioaccessibility. Molecules, 25(18), 4067. https://doi.org/10.3390/molecules25184067