Current Evidence on the Bioavailability of Food Bioactive Peptides
Abstract
:1. Introduction
2. Bioavailability of Food Peptides
2.1. Digestibility of Food Peptides
2.1.1. Parameters Limiting Peptides Digestibility
2.1.2. Models to Evaluate Digestibility
2.2. Absorption of Food Peptides
2.2.1. Limitating Factors for Peptides Absorption
2.2.2. Models of Peptide Absorption
2.3. Effects of Gastrointestinal Endogenous Protein-Derived Peptides
2.4. Strategies to Improve Bioavailability of Food Peptides
2.4.1. New Food Processing Techniques
2.4.2. Modifications in Peptides Structure and Properties
2.4.3. Protease and Peptidase Inhibitors
2.4.4. Absorption Enhancers
2.4.5. Delivery Systems of Food Bioactive Peptides
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, Y.; Shen, L.; Ma, C.; Chen, M.; Pan, Y.; Yin, L.; Zhou, J.; Lei, X.; Ren, Q.; Duan, Y.; et al. Protein hydrolysates’ absorption characteristics in the dynamic small intestine in vivo. Molecules 2018, 23, 1591. [Google Scholar] [CrossRef] [Green Version]
- Udenigwe, C.C.; Aluko, R.E. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Udenigwe, C.C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol. 2014, 36, 137–143. [Google Scholar] [CrossRef]
- Wang, L.; Ding, L.; Du, Z.; Liu, J. Effects of hydrophobicity and molecular weight on the transport permeability of oligopeptides across Caco-2 cell monolayers. J. Food Biochem. 2020, e13188. [Google Scholar] [CrossRef]
- Fitzgerald, R.J.; Murray, B.A.; Walsh, D.J. Hypotensive peptides from milk proteins. J. Nutr. 2004, 134, 980S–988S. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Rivera, L.; Martinez-Maqueda, D.; Cruz-Huerta, E.; Miralles, B.; Recio, I. Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Res. Int. 2014, 63, 170–181. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, R.; McClements, D.J. Control of protein digestion under simulated gastrointestinal conditions using biopolymer microgels. Food Res. Int. 2017, 100, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Bouzerzour, K.; Morgan, F.; Cuinet, I.; Bonhomme, C.; Jarin, J.; Le Huérou-Luron, I.; Dupont, D. In vivo digestion of infant formula in piglets: Protein digestion kinetics and release of bioactive peptides. Br. J. Nutr. 2012, 108, 2105–2114. [Google Scholar] [CrossRef] [Green Version]
- Guerra, A.; Etienne-Mesmin, L.; Livrelli, V.; Denis, S.; Blanquet-Diot, S.; Alric, M. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 2012, 30, 591–600. [Google Scholar] [CrossRef]
- Woda, A.; Mishellany-Dutour, A.; Batier, L.; François, O.; Meunier, J.-P.; Reynud, B.; Alric, M.; Peyrone, M.-A. Development and validation of a mastication simulator. J. Biomech. 2010, 43, 1667–1673. [Google Scholar] [CrossRef]
- Barret, K.E. Gastrointestinal Physiology; Lange Medical Books/McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Kong, F.; Singh, R.P. Disintegration of solid foods in human stomach. J. Food Sci. 2008, 73, R67–R80. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Ye, A.; Ferrua, M.J. Aspects of food structures in the digestive tract. Curr. Opin. Food Sci. 2015, 3, 85–93. [Google Scholar] [CrossRef]
- Calbet, J.A.; Holst, J.J. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur. J. Nutr. 2004, 43, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.P.; Maubois, J.L.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef] [Green Version]
- Jahan-Mihan, A.; Luhovyy, B.L.; El Khoury, D.; Anderson, G.H. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Nutrients 2011, 3, 574–603. [Google Scholar] [CrossRef] [Green Version]
- Moughan, P.J.; Cranwell, P.D.; Smith, W.C. An evaluation with piglets ofbovine milk, hydrolyzed bovine milk, and isolated soybean proteins included in infant milk formulas. II. Stomachemptying rate and the postprandial change in gastric pH and milk-clotting enzyme activity. J. Pediatr. Gastroenterol. Nutr. 1991, 12, 253–259. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Bhandari, B.; Cichero, J.; Prakash, S. Gastrointestinal digestion of dairy and soy proteins in infant formulas: An in vitro study. Food Res. Int. 2015, 76, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Drulyte, D.; Orlien, V. The effect of processing on digestion of legume proteins. Foods 2019, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Govers, C.; Tomassen, M.; Hettinga, K.; Wichers, H.J. Heat treatment of β-lactoglobulin affects its digestion and translocation in the upper digestive tract. Food Chem. 2020, 330, 127184. [Google Scholar] [CrossRef]
- Schubert, M.L. Hormonal regulation of gastric acid secretion. Curr. Gastroenterol. Rep. 2008, 10, 523–527. [Google Scholar] [CrossRef]
- Mayer, E.A. Gut feelings: The emerging biology of gut-brain communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef]
- Calbet, J.A.; MacLean, D.A. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 2002, 132, 2174–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duraffourd, C.; De Vadder, F.; Goncalves, D.; Delare, F.; Penhoat, A.; Brusset, B.; Rajas, F.; Chassard, D.; Duchampt, A.; Stefanutti, A.; et al. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 2012, 150, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Dalziel, J.E.; Anderson, R.C.; Bassett, S.A.; Lloyd-West, C.M.; Haggarty, N.W.; Rou, C. Influence of bovine whey protein concentrate and hydrolysate preparation methods on motility in the isolated rat distal colon. Nutrients 2016, 8, 809. [Google Scholar] [CrossRef] [Green Version]
- Domenger, D.; Cudennec, B.; Kouach, M.; Touche, V.; Landry, C.; Lesage, J.; Gosselet, F.; Lestavel, S.; Goossens, J.-F.; Dhulster, O.; et al. Food-derived hemorphins cross intestinal and blood–brain barriers in vitro. Front. Endocrinol. 2018, 9, 159. [Google Scholar] [CrossRef] [PubMed]
- Somaratne, G.; Ferrua, M.J.; Ye, A.; Nau, F.; Floury, J.; Dupont, D.; Singh, J. Food material properties as determining factors in nutrient release during human gastric digestion: A review. Crit. Rev. Food Sci. Nutr. 2020, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, L.M.; Kehoe, J.J.; Barry, L.; Buckley, M.J.M.; Shanahan, F.; Mok, K.H.; Brodkorb, A. Gastric digestion of α-lactalbumin in adult human subjects using capsule endoscopy and nasogastric tube sampling. Br. J. Nutr. 2014, 112, 638–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutrou, R.; Gaudichon, C.; Dupont, D.; Jardin, J.; Airinei, G.; Marsset-Baglieri, A.; Benamouzig, R.; Tomé, D.; Léonil, J. Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am. J. Clin. Nutr. 2013, 97, 1314–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devle, H.; Ulleberg, E.K.; Naess-Andressen, C.F.; Rukke, E.-O.; Vegarud, G.; Ekeberg, D. Repricocal interacting effects of proteins and lipids during ex vivo digestion of bovine milk. Int. Dairy J. 2014, 36, 6–13. [Google Scholar] [CrossRef]
- Mackie, A.R.; Rafiee, H.; Malcolm, P.; Salt, L.; van Aken, G. Specific food structures supress appetite through reduced gastric emptying rate. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G1038–G1043. [Google Scholar] [CrossRef]
- Koziolek, M.; Schneider, F.; Grimm, M.; Modeβ, C.; Seekamp, A.; Roustom, T.; Siegmund, W.; Weitschie, W. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J. Control. Release 2015, 220, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Bornhorst, G.M.; Singh, R.P. Gastric digestion in vivo and in vitro: How the structural aspects of food influence the digestion process. Ann. Rev. Food Sci. Technol. 2014, 5, 111–132. [Google Scholar] [CrossRef] [PubMed]
- Deglaire, A.; Bos, C.; Tomé, D.; Moughan, P.J. Ileal digestibility of dietary protein in the growing pig and adult human. Br. J. Nutr. 2009, 102, 1752–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutrou, R.; Henry, G.; Sánchez-Rivera, L. On the trail of milk bioactive peptides in human and animal intestinal tracts during digestion: A review. Dairy Sci. Technol. 2015, 95, 815–829. [Google Scholar] [CrossRef] [Green Version]
- Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Menard, O.; et al. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr. 2018, 58, 2239–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchón, J.; Fernández-Tomé, S.; Miralles, B.; Hernández-Ledesma, B.; Tomé, D.; Gaudichon, C.; Recio, I. Protein degradation and peptide release form milk proteins in human jejunum. Comparison with in form milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem. 2018, 239, 486–494. [Google Scholar] [CrossRef]
- Dallas, D.C.; Guerrero, A.; Khaldi, N.; Borghese, R.; Bhandari, A.; UnderwoodM, A.; Lebrilla, C.B.; German, J.B.; Barile, D. A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specific degradation patterns. J. Nutr. 2014, 144, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Miralles, B.; Sanchón, J.; Sánchez-Rivera, L.; Martínez-Maqueda, D.; Le Gouar, Y.; Dupont, D.; Amigo, L.; Recio, I. Digestion of micellar casein in duodenum cannulated pigs. Correlation between in vitro simulated gastric digestion and in vivo data. Food Chem. 2020, in press. [Google Scholar]
- Barbé, F.; Le Feunteun, S.; Rémond, D.; Ménard, O.; Jardin, J.; Henry, G.; Laroche, B.; Dupont, D. Tracking the in vivo release of bioactive peptides in the gut during digestion: Mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrix fed mini-pigs. Food Res. Int. 2014, 63, 147–156. [Google Scholar]
- Sánchez-Rivera, L.; Ménard, O.; Recio, I.; Dupont, D. Peptide mapping during dynamic gastric digestion of heated and unheated skimmed milk powder. Food Res. Int. 2015, 77, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Asledottir, T.; Le, T.T.; Poulsen, N.A.; Devold, T.G.; Larsen, L.B.; Vegarud, G.E. Release of β-casomorphin-7 from bovine milk of different β-casein variants after ex vivo gastrointestinal digestion. Int. Dairy J. 2018, 81, 8–11. [Google Scholar] [CrossRef]
- Asledottir, T.; Le, T.T.; Petrat-Melin, B.; Devold, T.G.; Larsen, L.B.; Vegarud, G.E. Identification of bioactive peptides and quantification of β-casomorphin-7 from bovine β-casein A1, A2 and I after ex vivo gastrointestinal digestion. Int. Dairy J. 2017, 71, 98–106. [Google Scholar] [CrossRef]
- Cattaneo, S.; Stuknytė, M.; Ferraretto, A.; De Noni, I. Impact of the in vitro gastrointestinal digestion protocol on casein phosphopeptide profile of Grana Padano cheese digestates. Lebensm. Wiss. Technol. 2017, 77, 356–361. [Google Scholar] [CrossRef]
- De Noni, I.; Stuknytė, M.; Cattaneo, S. Identification of β-casomorphins 3 to 7 in cheeses and in their in vitro gastrointestinal digestates. Lebensm. Wiss. Technol. 2015, 63, 550–555. [Google Scholar] [CrossRef]
- Su, M.Y.; Broadhurst, M.; Liu, C.P.; Gathercole, J.; Cheng, W.-L.; Qi, X.-Y.; Clerens, S.; Dyer, J.; Day, L.; Haigh, B. Comparative analysis of human milk and infant formula derived peptides following in vitro digestion. Food Chem. 2017, 221, 1895–1903. [Google Scholar] [CrossRef]
- Kopf-Bolanz, K.A.; Schwander, F.; Gijs, M.; Vergères, G.; Portmann, R.; Egger, L. Impact of milk processing on the generation of peptides during digestion. Int. Dairy J. 2014, 35, 130–138. [Google Scholar] [CrossRef]
- Sánchez-Rivera, L.; Diezhandino, I.; Gómez-Ruiz, J.A.; Fresno, J.M.; Miralles, B.; Recio, I. Peptidomic study of Spanish blue cheese (Valdeón) and changes after simulated gastrointestinal digestion. Electrophoresis 2014, 35, 1627–1636. [Google Scholar] [CrossRef]
- Qureshi, T.M.; Vegarud, G.E.; Abrahamsen, R.K.; Skeie, S. Angiotensin I-converting enzyme-inhibitory activity of the Norwegian autochthonous cheeses Gamalost and Norvegia after in vitro human gastrointestinal digestion. J. Dairy Sci. 2013, 96, 838–853. [Google Scholar] [CrossRef] [Green Version]
- Hur, S.J.; Lim, B.O.; Decker, E.A.; McClements, D.J. In vitro human digestion models for food applications. Food Chem. 2011, 125, 1–12. [Google Scholar] [CrossRef]
- Bornhorst, G.M.; Singh, R.P. Kinetics of in vitro bread bolus digestion with varying oral and gastric digestion parameters. Food Biophys. 2013, 8, 50–59. [Google Scholar] [CrossRef]
- Minekus, M.; Alminge, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assuncao, R.; Ballance, S.; Recio, I. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Egger, L.; Ménard, O.; Delgado-Andrade, C.; Alvito, P.; Assunçao, R.; Balance, S.; Barberá, R.; Brodkorb, A.; Cattenoz, T.; Clemente, A.; et al. The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Res. Int. 2016, 88, 217–225. [Google Scholar] [CrossRef]
- Mulet-Cabero, A.-I.; Egger, L.; Portmann, R.; Ménard, O.; Marze, S.; Minekus, M.; Le Feunteun, S.; Sarkar, A.; Grundy, M.; Carrière, F.; et al. A standardised semi-dynamic in vitro digestion method suitable for food—An international consensus. Food Funct. 2020, 11, 1702–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J.; et al. Can dynamic in vitro digestion systems mimic the physiological reality? Crit. Rev. Food Sci. Nutr. 2019, 59, 1546–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giromini, C.; Cheli, F.; Rebucci, R.; Baldi, A. Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. J. Dairy Sci. 2019, 102, 929–942. [Google Scholar] [CrossRef] [Green Version]
- Wickham, M.J.S.; Faulks, R.M.; Mann, J.; Mandalari, G. The design, operation, and application of a dynamic gastric model. Dissolut. Technol. 2012, 19, 15–22. [Google Scholar] [CrossRef]
- Vardakou, M.; Mercuri, A.; Barker, S.; Craig, D.; Faulks, R.; Wickham, M. Achieving antral grinding forces in biorelevant in vitro models: Comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data. AAPS Pharm. Sci. Tech. 2011, 12, 620–626. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cundiff, J.K.; Maria, S.D.; McMahon, R.J.; Wickham, M.S.J.; Faulks, R.M. Differential digestion of human milk proteins in a simulated stomach model. J. Proteom. Res. 2014, 13, 1055–1064. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. A human gastric simulator (HGS) to study food digestion in human stomach. J. Food Sci. 2010, 75, E627–E635. [Google Scholar] [CrossRef]
- Phinney, D.M. Design, construction, and evaluation of a reactor designed to mimic human gastric digestion. Davis: University of California. ProQuest Dissertation Publish. 2013, 2013, 1548376. [Google Scholar]
- Guo, Q.; Ye, A.; Lad, M.; Dalgleish, D.; Singh, H. Effect of gel structure on the gastric digestion of whey protein emulsion gels. Soft Matter 2014, 10, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Vatier, J.; Cai, S.; Célice-Pingaud, C.; Castela-Papin, N.; Mignon, M.; Farinotti, R. Interests of the ‘artificial stomach’ techniques to study antacid formulations: Comparison with in vivo evaluation. Fundam. Clin. Pharmacol. 1998, 12, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Mainville, I.; Arcand, Y.; Farnworth, E.R. A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int. J. Food Microbiol. 2005, 99, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Yvon, M.; Beucher, S.; Scanff, P.; Thirouin, S.; Pelissier, P. In vitro simulation of gastric digestion of milk proteins: Comparison between in vitro and in vivo data. J. Agric. Food Chem. 1992, 40, 239–244. [Google Scholar] [CrossRef]
- Minekus, M.; Marteau, P.; Havenaar, R.; Huis In’t Veld, J. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. ATLA Altern. Lab. Anim. 1995, 23, 197–209. [Google Scholar] [CrossRef]
- Minekus, M.; Smeets-Peeters, M.; Bernalier, A.; Marol-Bonnin, S.; Havenaar, R.; Marteau, P.; Alric, M.; Fonty, G.; Veld, J. A computer controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl. Microbiol. Biotechnol. 1999, 53, 108–114. [Google Scholar] [CrossRef]
- Havenaar, R.; Anneveld, B.; Hanff, L.M.; de Wildt, S.N.; de Koning, B.A.E.; Mooij, M.G.; Lelieveld, J.P.A.; Minekus, M. In vitro gastrointestinal model (TIM) with predictive power, even for infants and children? Int. J. Pharm. 2013, 457, 327–332. [Google Scholar] [CrossRef]
- Roussel, C.; Cordonnier, C.; Galia, W.; Le Goff, O.; Thévenot, J.; Chalancon, S.; Alric, M.; Thévenot-Sergentet, D.; Leriche, F.; Van de Wiele, T.; et al. Increased EHEC survival and virulence gene expression indicate an enhanced pathogenicity upon simulated pediatric gastrointestinal conditions. Pediatr. Res. 2016, 80, 734. [Google Scholar] [CrossRef]
- Denis, S.; Sayd, T.; Georges, A.; Chambon, C.; Chalancon, S.; Sante-Lhoutellier, V.; Blanquet-Diot, S. Digestion of cooked meat proteins is slightly affected by age as assessed using the dynamic gastrointestinal TIM model and mass spectrometry. Food Funct. 2016, 7, 2682–2691. [Google Scholar] [CrossRef]
- Bellmann, S.; Lelieveld, J.; Gorissen, T.; Minekus, M.; Havenaar, R. Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Res. Int. 2016, 88, 191–198. [Google Scholar] [CrossRef]
- Molly, K.; Woestyne, M.V.; Verstraete, W. Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microbiol. Biotechnol. 1993, 39, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Van den Abbeele, P.; Belzer, C.; Goossens, M.; Kleerebezem, M.; De Vos, W.; Thas, O.; De Weirdt, R.; Kerckhof, F.; Van de Wiele, T. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2013, 7, 949–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meddah, A.T.; Yazourh, A.; Desmet, I.; Risbourg, B.; Verstraete, V.; Romond, M.B. The regulatory effects of whey retentate from bifidobacteria fermented milk on the microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). J. Appl. Microbiol. 2001, 91, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Ménard, O.; Picque, D.; Dupont, D. The DIDGI® System. In The Impact of Food Bioactives on Health; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, L., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer Nature: Cham, Switzerland, 2015. [Google Scholar]
- Ménard, O.; Cattenoz, T.; Guillemin, H.; Souchon, I.; Deglaire, A.; Dupont, D.; Picque, D. Validation of a new in vitro dynamic system to simulate infant digestion. Food Chem. 2014, 145, 1039–1045. [Google Scholar] [CrossRef]
- de Oliveira, S.C.; Bourlieu, C.; Ménard, O.; Bellanger, A.; Henry, G.; Rousseau, F.; Dirson, E.; Carrière, F.; Dupont, D.; Deglaire, M. Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chem. 2016, 211, 171–179. [Google Scholar] [CrossRef]
- de Oliveira, S.C.; Deglaire, A.; Ménard, O.; Bellanger, A.; Rousseau, F.; Henry, G.; Dirson, E.; Carrière, F.; Dupont, D.; Bourlieu, C. Holder pasteurization impacts the proteolysis, lipolysis and disintegration of human milk under in vitro dynamic term newborn digestion. Food Res. Int. 2016, 88, 263–275. [Google Scholar] [CrossRef]
- Deglaire, A.; De Oliveira, S.C.; Jardin, J.; Briard-Bion, V.; Kroell, F.; Emily, M.; Ménard, O.; Bourlieu, C.; Dupont, D. Impact of human milk pasteurization on the kinetics of peptide release during in vitro dynamic digestion at the preterm newborn stage. Food Chem. 2019, 30, 281–294. [Google Scholar] [CrossRef]
- Miralles, B.; del Barrio, R.; Cueva, C.; Recio, I.; Amigo, L. Dynamic gastric digestion of a comercial whey protein concentrate. J. Sci. Food Agric. 2018, 98, 1873–1879. [Google Scholar] [CrossRef]
- Schultze, K.S. The imaging and modelling of the physical processes involved in digestion and absorption. Acta Physiol. 2015, 213, 394–405. [Google Scholar] [CrossRef]
- Foltz, M.; Meynen, E.E.; Bianco, V.; van Platerink, C.; Koning, T.M.; Kloek, J. Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr. 2007, 137, 953–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righard, L.; Carlsson-Jonsson, A.; Nyberg, F. Enhanced levels of immunoreactive β-casomorphin-8 in milk of breastfeeding women with mastitis. Peptides 2014, 51, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A review. J. Funct. Foods 2015, 17, 640–656. [Google Scholar] [CrossRef] [Green Version]
- Salamat-Miller, N.; Johnston, T.P. Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. Int. J. Pharm. 2005, 294, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Marchiando, A.M.; Graham, W.V.; Turner, J.R. Epithelial barriers in homeostasis and disease. Ann. Rev. Pathol. Mech. Dis. 2010, 5, 119–144. [Google Scholar] [CrossRef]
- Lundquist, P.; Artursson, P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev. 2016, 106, 256–276. [Google Scholar] [CrossRef]
- Wang, B.; Li, B. Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model. Food Chem. 2017, 218, 1–8. [Google Scholar] [CrossRef]
- Aluko, R.E. Antihypertensive peptides from food proteins. Ann. Rev. Food Sci. Technol. 2015, 6, 235–262. [Google Scholar] [CrossRef]
- Matsui, T. Are peptides absorbable compounds? J. Agric. Food Chem. 2018, 66, 393–394. [Google Scholar] [CrossRef]
- Xu, Q.; Hong, H.; Wu, J.; Yan, Y. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends Food Sci. Technol. 2019, 86, 399–401. [Google Scholar] [CrossRef]
- Fernández-Tomé, S.; Sanchón, J.; Recio, I.; Hernández-Ledesma, B. Transepithelial transport of lunasin and derived peptides: Inhibitory effects on the gastrointestinal cancer cells viability. J. Food Comp. Anal. 2018, 68, 101–110. [Google Scholar] [CrossRef]
- Jochems, P.G.M.; Garssen, J.; van Keulen, A.M.; Masereeuw, R.; Jeurink, P.V. Evaluating human intestinal cell lines for studying dietary protein absorption. Nutrients 2018, 10, 322. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, S.; Hu, M. Oral Absorption Basics. Developing Solid Oral Dosage Forms, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 263–288. [Google Scholar]
- Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.S.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm. 2013, 447, 75–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regazzo, D.; Molle, D.; Gabai, G.; Tome, D.; Dupont, D.; Leonil, J.; Boutrou, R. The (193–209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer. Mol. Nutr. Food Res. 2010, 54, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Komin, A.; Russell, L.M.; Hristova, K.A.; Searson, P.C. Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: Mechanisms and challenges. Adv. Drug Deliv. Rev. 2017, 110–111, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Tsunogai, M.; Arai, S. Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2. Peptides 1997, 18, 681–687. [Google Scholar] [CrossRef]
- Vermeirssen, V.; Van Camp, J.; Verstraete, W. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 2004, 92, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wang, L.; Ju, X.; Zhang, J.; Yin, S.; Shi, J.; He, R.; Yuan, Q. Transepithelial transport of YWDHNNPQIR and its metabolic fate with cytoprotection against oxidative stress in human intestinal Caco-2 cells. J. Agric. Food Chem. 2017, 65, 2056–2065. [Google Scholar] [CrossRef]
- Burton, P.S.; Conradi, R.A.; Ho, N.F.; Hilgers, A.R.; Borchardt, R.T. How structural features influence the biomembrane permeability of peptides. J. Pharm. Sci. 1996, 85, 1336–1340. [Google Scholar] [CrossRef]
- Zhao, K.; Luo, G.; Zhao, G.M.; Schiller, P.W.; Szeto, H.H. Transcellular transport of a highly polar 31 net charge opioid tetrapeptide. J. Pharmacol. Exp. Therap. 2003, 304, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di, L.; Ecker, G.F.; Faller, B.; Fischer, H.; Gerebtzoff, G.; et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat. Rev. Drug Discov. 2010, 9, 597–614. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.R.; Wong, E.A.; Webb, K.E. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci. 2008, 86, 2135–2155. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wu, Y.; Liu, H.; Xie, Y.; Huang, X.; Liu, J. Establishment and characterization of an omasal epithelial cell model derived from dairy calves for the study of small peptide absorption. PLoS ONE 2014, 9, e88993. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, Z.; Liu, H.; Zhao, F.; Huang, X.; Wu, Y.; Liu, J. Functional characterization of oligopeptide transporter 1 of dairy cows. J. Anim. Sci. Biotechnol. 2018, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, H.; Zietek, T. Taste and move: Glucose and peptide transporters in the gastrointestinal tract. Exp. Physiol. 2015, 100, 1441–1450. [Google Scholar] [CrossRef]
- Vig, B.S.; Stouch, T.R.; Timoszyk, J.K.; Quan, Y.; Wall, D.A.; Smith, R.L.; Faria, T.N. Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. J. Med. Chem. 2006, 49, 3636–3644. [Google Scholar] [CrossRef]
- Omkvist, D.H.; Larsen, S.B.; Nielsen, C.U.; Steffansen, B.; Olsen, L.; Jørgensen, F.S.; Brodin, B. A quantitative structure-activity relationship for translocation of tripeptides via the human proton-coupled peptide transporter, hPEPT1 (SLC15A1). AAPS J. 2010, 12, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, J.P.; Brayden, D.J.; Ryan, S.M. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models. Eur. J. Pharm. Biopharm. 2017, 115, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Matsui, T.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim. Biophys. Acta 2012, 1820, 1753–1763. [Google Scholar] [CrossRef]
- Ding, F.; Qian, B.; Zhao, X.; Shen, S.; Deng, Y.; Wang, D.; Zhang, F.; Sui, Z.; Jing, P. VPPIPP and IPPVPP: Two hexapeptides innovated to exert antihypertensive activity. PLoS ONE 2013, 8, e62384. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Wang, L.; Zhang, Y.; Liu, J. Transport of antihypertensive peptide RVPSL, ovotransferrin 328–332, in human intestinal Caco-2 cell monolayers. J. Agric. Food Chem. 2015, 63, 8143–8150. [Google Scholar] [CrossRef] [PubMed]
- Sontakke, S.B.; Jung, J.H.; Piao, Z.; Chung, H.J. Orally available collagen tripeptide: Enzymatic stability, intestinal permeability, and absorption of Gly-Pro-Hyp and ProHyp. J. Agric. Food Chem. 2016, 64, 7127–7133. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Fan, H.; Yu, W.; Hong, H.; Wu, J. Transport study of egg-derived antihypertensive peptides (LKP and IQW) using Caco-2 and HT29 coculture monolayers. J. Agric. Food Chem. 2017, 65, 7406–7414. [Google Scholar] [CrossRef]
- Terada, T.; Sawada, K.; Irie, M.; Saito, H.; Hashimoto, Y.; Inui, K. Structural requirements for determining the substrate affinity of peptide transporters PEPT1. Pfluegers Archiv. Eur. J. Physiol. 2000, 440, 679–684. [Google Scholar] [CrossRef]
- Irie, M.; Terada, T.; Okuda, M.; Inui, K.I. Efflux properties of basolateral peptide transporter in human intestinal cell line Caco-2. Pfluegers Archiv. Eur. J. Physiol. 2004, 449, 186–194. [Google Scholar] [CrossRef]
- Shen, W.; Matsui, T. Current knowledge of intestinal absorption of bioactive peptides. Food Funct. 2017, 8, 4306–4314. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Zhao, D.; Sun, M.; Wang, Z.; Lin, B.; Bao, Y.; Li, Y.; He, Z.; Sun, Y.; Sun, J. Intestinal absorption and activation of decitabine amino acid ester prodrugs mediated by peptide transporter PEPT1 and enterocyte enzymes. Int. J. Pharm. 2018, 541, 64–71. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Fogliano, V. Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin? J. Funct. Foods 2017, 35, 9–12. [Google Scholar] [CrossRef]
- Kamdem, J.P.; Tsopmo, A. Reactivity of peptides within the food matrix. J. Food Biochem. 2019, 43, e12489. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, I.M.E.; Chen, X.-M.; Kitts, D.D.; Li-Chan, E.C.Y. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers. Food Funct. 2017, 8, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Jappar, D.; Hu, Y.; Smith, D.E. Effect of dose escalation on the in vivo oral absorption and disposition of glycylsarcosine in wild-type and Pept1 knockout mice. Drug Metab. Dispos. 2011, 39, 2250–2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, J.; Park, H.Y.; Kunitake, Y.; Yoshiura, K.; Matsui, T. Theaflavins, dimeric catechins, inhibit peptide transport across Caco-2 cell monolayers via down-regulation of AMP-activated protein kinase-mediated peptide transporter PEPT1. Food Chem. 2013, 138, 2140–2145. [Google Scholar] [CrossRef] [PubMed]
- Osmanyan, A.K.; Ghazi Harsini, S.; Mahdavi, R.; Ivanovich, V.; Arkhipova, A.L.; Glazko, T.T.; Koyachuk, S.N.; Kosovsky, G.Y. Intestinal amino acid and peptide transporters in broiler are modulated by dietary amino acids and protein. Amino Acids 2018, 50, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Scarpellini, E.; Campanale, M.; Leone, D.; Purchiaroni, F.; Vitale, G.; Lauritano, E.C.; Gasbarrini, A. Gut microbiota and obesity. Intern. Emerg. Med. 2010, 5, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.; Zhang, Y.H.; Zhang, W. Regulation of intestinal epithelial cells properties and functions by amino acids. BioMed Res. Int. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Beaumont, M.; Andriamihaja, M.; Armand, L.; Grauso, M.; Jaffrézic, F.; Laloë, D.; Moroldo, M.; Davila, A.-M.; Tomé, D.; Blachier, F.; et al. Epithelial response to a high-protein diet in rat colon. BMC Genom. 2017, 18, 116. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Liu, S.; Xie, X.-N.; Tan, Z.-R. Regulation profile of the intestinal peptide transporter 1 (PepT1). Drug Des. Dev. Ther. 2017, 11, 3511–3517. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.E.; Ambort, D.; Pelaseyed, T.; Schütte, A.; Gustafsson, J.K.; Ermund, A.; Subramani, D.B.; Holmén-Larsson, J.M.; Thomsson, K.A.; Bergström, J.H. Composition and functional role of the mucus layers in the intestine. Cell. Mol. Life Sci. 2011, 68, 3635–3641. [Google Scholar] [CrossRef]
- Pelaseyed, T.; Bergström, J.H.; Gustafsson, J.K.; Ermund, A.; Birchenough, G.M.; Schütte, A.; Post, S.; Svensson, F.; Rodríguez-Piñeiro, A.M.; Nyström, E.E. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol. Rev. 2014, 260, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Helander, H.F.; Fändriks, L. Surface area of the digestive tract—Revisited. Scand. J. Gastroenterol. 2014, 49, 681–689. [Google Scholar] [CrossRef]
- Lawless, E.; Griffin, B.T.; O’Mahony, A.; O’Driscoll, C.M. Exploring the impact of drug properties on the extent of intestinal lymphatic transport—In vitro and in vivo studies. Pharm. Res. 2015, 32, 1817–1829. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, E.; Baraniak, B.; Karas, M. Identification of antioxidant and anti-inflammatory peptides obtained by simulatedgastrointestinal digestion of three edible insects species (Gryllodessigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 2018, 53, 2542–2551. [Google Scholar] [CrossRef]
- Deferme, S.; Annaert, P.; Augustijns, P. In vitro screening models to assess intestinal drug absorption and metabolism. In Drug Absorption Studies—In Situ, In Vitro, and In Silico Models; Erhardt, C., Kim, K.-J., Eds.; Springer: New York, NY, USA, 2008; pp. 182–215. [Google Scholar]
- Artursson, P. Epithelial transport of drugs in cell culture. I: Amodel for studying the passive diffusion of drugs over intestinal absorbtive (Caco-2) cells. J. Pharm. Sci. 1990, 79, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.; Hassan, I.F.; Dix, C.J.; Williamson, I.; Shah, R.; Mackay, M.; Artursson, P. Transport and permeability properties of human Caco-2 cells: An in vitro model of the intestinal epithelial cell barrier. J. Control. Release 1990, 11, 25–40. [Google Scholar] [CrossRef]
- Hilgers, A.R.; Conradi, R.A.; Burton, P.S. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 1990, 7, 902–910. [Google Scholar] [CrossRef]
- Zhang, Q.; Tong, X.; Qi, B.; Wang, Z.; Li, Y.; Sui, X.; Jiang, L. Changes in antioxidant activity of Alcalase-hydrolyzed soybean hydrolysate under simulated gastrointestinal digestion and transepithelial transport. J. Funct. Foods 2018, 42, 298–305. [Google Scholar] [CrossRef]
- Ding, L.; Wang, L.; Zhang, T.; Yu, Z.; Liu, J. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers. Food Res. Int. 2018, 106, 475–480. [Google Scholar] [CrossRef]
- Pepe, G.; Sommella, E.; Ventre, G.; Scala, M.C.; Adesso, S.; Ostacolo, C.; Marzocco, S.; Novellino, E.; Campiglia, P. Antioxidant peptides released from gastrointestinal digestion of “Stracchino” soft cheese: Characterization, in vitro intestinal protection and bioavailability. J. Funct. Foods 2016, 26, 494–505. [Google Scholar] [CrossRef]
- Wang, B.; Xie, N.; Li, B. Charge properties of peptides derived from casein affect their bioavailability and cytoprotection against H2O2-induced oxidative stress. J. Dairy Sci. 2016, 99, 2468–2479. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Liu, R.; Tang, C.; Pereira, J.; Zhou, G.; Zhang, W. The antioxidant activity and transcellular pathway of Asp-Leu-Glu-Glu in a Caco-2 cell monolayer. Int. J. Food Sci. Technol. 2018, 53, 2405–2414. [Google Scholar] [CrossRef]
- Fernández-Musoles, R.; Salom, J.B.; Castelló-Ruiz, M.; Contreras, M.M.; Recio, I.; Manzanares, P. Bioavailability of antihypertensive lactoferricin B-derived peptides: Transepithelial transport and resistance to intestinal and plasma peptidases. Int. Dairy J. 2013, 32, 169–174. [Google Scholar] [CrossRef]
- Grootaert, C.; Jacobs, G.; Matthijs, B.; Pitart, J.; Baggerman, G.; Possemiers, S.; Van der Saagd, H.; Smagghe, G.; Van Camp, J.; Voorspoels, S. Quantification of egg ovalbumin hydrolysate-derived anti-hypertensive peptides in an in vitro model combining luminal digestion with intestinal Caco-2 cell transport. Food Res. Int. 2017, 99, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Lammi, C.; Aiello, G.; Vistoli, G.; Zanoni, C.; Arnoldi, A.; Sambuy, Y.; Ferruzza, S.; Ranaldi, G. A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein. J. Funct. Foods 2016, 24, 297–306. [Google Scholar] [CrossRef]
- Aiello, G.; Ferruzza, S.; Ranaldi, G.; Sambuy, Y.; Arnoldi, A.; Vistoli, G.; Lammi, C. Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell. J. Funct. Foods 2018, 45, 363–370. [Google Scholar] [CrossRef]
- Lin, Q.; Xu, Q.; Bai, J.; Wu, W.; Hong, H.; Wu, J. Transport of soybean protein-derived antihypertensive peptide LSW across Caco-2 monolayers. J. Funct. Foods 2017, 39, 96–102. [Google Scholar] [CrossRef]
- Lammi, C.; Zanoni, C.; Arnoldi, A.; Aiello, G. YDFYPSSTKDQQS (P3), a peptide from lupin protein, absorbed by Caco-2 cells, modulates cholesterol metabolism in HepG2 cells via SREBP-1 activation. J. Food Biochem. 2018, 42, e12524. [Google Scholar] [CrossRef]
- Schisano, C.; Narciso, V.; Maisto, M.; Annunziata, G.; Grieco, P.; Sommella, E.M.; Tenore, G.C.; Novellino, E. In vitro effects of protein fractions from Controne beans (Phaseolus vulgaris L. ecotype Controne) on intestinal permeability, ACE and α-amylase activities. Eur. Food Res. Technol. 2019, 245, 2311–2322. [Google Scholar] [CrossRef]
- Yang, Y.-J.; He, H.-Y.; Wang, F.-Z.; Ju, X.-R.; Yuan, J.; Wang, L.-F.; Aluko, R.E.; He, R. Transport of angiotensin converting enzyme and renin dual inhibitory peptides LY, RALP and TF across Caco-2 cell monolayers. J. Funct. Foods 2017, 35, 303–314. [Google Scholar] [CrossRef]
- Rodrigues Marques, M.; Cerda, A.; Fontanari, G.G.; Carvalho Pimenta, D.; Manólio Soares-Freitas, R.; Hiroyuki Hirata, M.; Dominguez Crespo Hirata, R.; Gomes Arêas, J.A. Transport of cowpea bean derived peptides and their modulator effects on mRNA expression of cholesterol-related genes in Caco-2 and HepG2 cells. Food Res. Int. 2018, 107, 165–171. [Google Scholar] [CrossRef]
- Guo, Y.; Gan, J.; Zhu, Q.; Zeng, X.; Sun, Y.; Wu, Z.; Pan, D. Transepithelial transport of milk-derived angiotensin-I converting enzyme inhibitory peptide with the RLSFNP sequence. J. Sci. Food Agric. 2018, 98, 976–983. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Mats, L.; Liu, R.; Deng, Z.; Mine, Y.; Tsao, R. Anti-inflammatory effect and cellular uptake mechanism of peptides from common bean (Phaseolus vulga L.) milk and yogurts in Caco-2 mono- and Caco-2/EA.hy926 co-culture models. J. Agric. Food Chem. 2019, 67, 8370–8381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Su, M.; Jiang, X.; Xue, Y.; Zhang, J.; Zeng, X.; Wu, Z.; Guo, Y.; Pan, D. Transepithelial transport route and liposome encapsulation of milk-derived ACE-inhibitory peptide Arg-Leu-Ser-Phe-Asn-Pro. J. Agric. Food Chem. 2019, 67, 5544–5551. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Jiang, X.; Xiong, B.; Zhang, T.; Zeng, X.; Wu, Z.; Sun, Y.; Pan, D. Production and transepithelial transportation of angiotensin-I-converting enzyme (ACE)-inhibitory peptides from whey protein hydrolyzed by immobilized Lactobacillus helveticus proteinase. J. Dairy Sci. 2019, 102, 961–975. [Google Scholar] [CrossRef] [Green Version]
- Corrochano, A.R.; Ferraretto, A.; Arranz, E.; Stuknytėd, M.; Bottani, M.; O’Connor, P.M.; Kelly, P.M.; De Noni, I.; Buckin, V.; Giblin, L. Bovine whey peptides transit the intestinal barrier to reduce oxidative stress in muscle cells. Food Chem. 2019, 288, 306–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenore, G.C.; Ritieni, A.; Campiglia, P.; Stiuso, P.; Di Maro, S.; Sommella, E.; Pepe, G.; D’Urso, E.; Novellino, E. Antioxidant peptides from “Mozzarella di Bufala Campana DOP” after simulated gastrointestinal digestion: In vitro intestinal protection, bioavailability, and anti-haemolytic capacity. J. Funct. Foods 2015, 15, 365–375. [Google Scholar] [CrossRef]
- Vij, R.; Reddi, S.; Kapila, S.; Kapila, R. Transepithelial transport of milk derived bioactive peptide VLPVPQK. Food Chem. 2016, 190, 681–688. [Google Scholar] [CrossRef]
- Xie, N.; Wang, B.; Jiang, L.; Liu, C.; Li, B. Hydrophobicity exerts different effects on bioavailability and stability of antioxidant peptide fractions from casein during simulated gastrointestinal digestion and Caco-2 cell absorption. Food Res. Int. 2015, 76, 518–526. [Google Scholar] [CrossRef]
- Contreras, M.M.; Sancho, A.I.; Recio, I.; Mills, C. Absorption of casein antihypertensive peptides through an in vitro model of intestinal epithelium. Food Dig. 2012, 3, 16–24. [Google Scholar] [CrossRef]
- Feng, M.; Betti, M. Transepithelial transport efficiency of bovine collagen hydrolysates in a human Caco-2 cell line model. Food Chem. 2017, 224, 242–250. [Google Scholar] [CrossRef]
- Fan, H.; Xu, Q.; Hong, H.; Wu, J. Stability and transport of spent hen-derived ACE-inhibitory peptides IWHHT, IWH, and IW in human intestinal Caco-2 cell monolayers. J. Agric. Food Chem. 2018, 66, 11347–11354. [Google Scholar] [CrossRef]
- Sangsawad, P.; Roytrakul, S.; Choowongkomon, K.; Kitts, D.D.; Chen, X.-M.; Meng, G.; Li-Chan, E.C.Y.; Yongsawatdigula, J. Transepithelial transport across Caco-2 cell monolayers of angiotensin converting enzyme (ACE) inhibitory peptides derived from simulated in vitro gastrointestinal digestion of cooked chicken muscles. Food Chem. 2018, 251, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Toopcham, T.; Mes, J.J.; Wichers, R.J.; Roytrakul, S.; Yongsawatdigul, J. Bioavailability of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle proteins. Food Chem. 2017, 220, 190–197. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-Y.; Li, T.-T.; Chen, J.-X.; She, X.-X.; Ren, D.-F.; Lu, J. Transport of ACE inhibitory peptides Ile-Gln-Pro and Val-Glu-Pro derived from Spirulina platensis across Caco-2 monolayers. J. Food Sci. 2018, 83, 2586–2592. [Google Scholar] [CrossRef] [PubMed]
- Verhoeckx, K.; Cotter, P.; López-Expósito, I.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; Swiatecka, D.; Wichers, H. The Impact of Food Bioactives on Health; Springer: New York, NY, USA, 2015. [Google Scholar]
- Wikman-Larhed, A.; Artursson, P. Co-cultures of human intestinal goblet (HT29-H) and absorptive (Caco-2) cells for studies of drug and peptide absorption. Eur. J. Pharm. Sci. 1995, 3, 171–183. [Google Scholar] [CrossRef]
- Hilgendorf, C.; Spahn-Langguth, H.; Regardh, C.G.; Lipka, E.; Amidon, G.L.; Langguth, P. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: Permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 2000, 89, 63–75. [Google Scholar] [CrossRef]
- Lesuffleur, T.; Barbat, A.; Dussaulx, E.; Zweibaum, A. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 1990, 50, 6334–6343. [Google Scholar]
- Gullberg, E.; Leonard, M.; Karlsson, J.; Hopkins, A.M.; Brayden, D.; Baird, A.W.; Artursson, P. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem. Biophys. Res. Commun. 2000, 279, 808–813. [Google Scholar] [CrossRef]
- Ilina, P.; Partti, S.; Niklander, J.; Ruponen, M.; Lou, Y.-R.; Yliperttula, M. Effect of differentiation on endocytic profiles of endothelial and epithelial cell culture models. Exp. Cell Res. 2015, 332, 89–101. [Google Scholar] [CrossRef]
- Kim, H.J.; Huh, D.; Hamilton, G.; Ingber, D.E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab. Chip. 2012, 12, 2165–2174. [Google Scholar] [CrossRef]
- Kim, H.J.; Ingber, D.E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 2013, 5, 1130–1140. [Google Scholar] [CrossRef] [Green Version]
- Karas, M. Influence of physiological and chemical factors on the absorption of bioactive peptides. Int. J. Food Sci. Technol. 2019, 54, 1486–1496. [Google Scholar] [CrossRef]
- Rath, E.; Zietek, T. Intestinal organoids: A model for biomedical and nutritional research. Organoids Mini-Organs 2018, 2018, 195–214. [Google Scholar] [CrossRef]
- Zieztek, T.; Rath, E.; Haller, D.; Daniel, H. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Sci. Rep. 2015, 5, 16831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouglé, D.; Bouhallab, S. Dietary bioactive peptides: Human studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Gerocarni, B.; Laghi, L.; Borghi, C. Blood pressure lowering effect of lactotripeptides assumed as functional foods: A meta-analysis of currentavailable clinical trials. J. Hum. Hypert. 2011, 25, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol. 2017, 174, 1378–1394. [Google Scholar] [CrossRef] [PubMed]
- Moughan, P.J.; Rutherfurd, S.M. Gut luminal endogenous protein: Implications for the determination of ileal amino acid digestibility in humans. Br. J. Nutr. 2012, 108 (Suppl. S2), S258–S263. [Google Scholar] [CrossRef] [Green Version]
- Moughan, P.J.; Rutherfurd, S.M.; Montoya, C.A.; Dave, L.A. Food-derived bioactive peptides—A new paradigm. Nutr. Res. Rev. 2014, 27, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Dave, L.A.; Montoya, C.A.; Rutherfurd, S.M.; Moughan, P.J. Gastrointestinal endogenous proteins as a source of bioactive peptides an in silico study. PLoS ONE 2014, 9, e98922. [Google Scholar] [CrossRef] [PubMed]
- Dave, L.A.; Hayes, M.; Mora, L.; Montoya, C.A.; Moughan, P.J.; Rutherfurd, S.M. Gastrointestinal endogenous protein-derived bioactive peptides: An in vitro study of their gut modulatory potential. Int. J. Mol. Sci. 2016, 17, 482. [Google Scholar] [CrossRef] [Green Version]
- Dave, L.A.; Montoya, C.A.; Moughan, P.J.; Rutherfurd, S.M. Novel dipeptidyl peptidase IV inhibitory and antioxidant peptides derived from human gastrointestinal endogenous proteins. Int. J. Pept. Res. Ther. 2016, 22, 355–369. [Google Scholar] [CrossRef]
- Dave, L.A.; Hayes, M.; Montoya, C.A.; Rutherfurd, S.M.; Moughan, P.J. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides. Peptides 2016, 76, 30–44. [Google Scholar] [CrossRef]
- Sun, X.; Acquah, C.; Aluko, R.E.; Udenigwe, C.C. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. J. Funct. Foods 2020, 64, 103680. [Google Scholar] [CrossRef]
- Pereira, R.N.; Vicente, A.A. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res. Int. 2010, 43, 1936–1943. [Google Scholar] [CrossRef] [Green Version]
- Piccolomini, A.F.; Iskandar, M.M.; Lands, L.C.; Kubow, S. High hydrostatic pressure pre-treatment of whey proteins enhances whey protein hydrolysate inhibition of oxidative stress and IL-8 secretion in intestinal epithelial cells. Food Nutr. Res. 2012, 56, 17549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, R.J. Acetylation of peptides inhibits their degradation by rumen microorganisms. Br. J. Nutr. 1992, 68, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnesen, T. Towards a functional understanding of protein N-terminal acetylation. PLoS Biol. 2011, 9, e1001074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colgrave, M.L.; Craik, D.J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: The importance of the cyclic cystine knot. Biochemistry 2004, 43, 5965–5975. [Google Scholar] [CrossRef]
- Boutrou, R.; Jardin, J.; Blais, A.; Tomé, D.; Léonil, J. Glycosylations of κ–casein derived caseinomacropeptide reduce its accessibility to endo- but not exointestinal brush border membrane peptidases. J. Agric. Food Chem. 2008, 56, 8166–8173. [Google Scholar] [CrossRef]
- Tanzadehpanah, H.; Asoodeh, A.; Saidijam, M.; Chamani, J.; Mahaki, H. Improving efficiency of an angiotensin converting enzyme inhibitory peptide as multifunctional peptides. J. Biomol. Struct. Dyn. 2017, 7, 1–16. [Google Scholar] [CrossRef]
- Pauletti, G.M.; Okumu, F.W.; Borchardt, R.T. Effect of size and charge on the passive diffusion of peptides across Caco-2 cell monolayers via the paracellular pathway. Pharm. Res. 1997, 14, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Knipp, G.T.; Vander Velde, D.G.; Siahaan, T.J.; Borchardt, R.T. The effect of beta-turn structure on the passive diffusion of peptides across Caco-2 cell monolayers. Pharm. Res. 1997, 14, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Mahato, R.I.; Narang, A.S.; Thoma, L.; Miller, D.D. Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst. 2003, 20, 153–214. [Google Scholar] [CrossRef] [PubMed]
- Malik, D.K.; Baboota, S.; Ahuja, A.; Hasan, S.; Ali, J. Recent advances in protein and peptide drug delivery systems. Curr. Drug Deliv. 2007, 4, 141–151. [Google Scholar] [CrossRef]
- Werle, M.; Makhlof, A.; Takeuchi, H. Oral protein delivery: A patent review of academic and industrial approaches. Recent Pat. Drug Deliv. Formul. 2009, 3, 94–104. [Google Scholar] [CrossRef]
- Cruz-Huerta, E.; Fernández-Tomé, S.; Arques, M.C.; Amigo, L.; Recio, I.; Clemente, A.; Hernández-Ledesma, B. The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: The effect of released peptides on colon cancer growth. Food Funct. 2015, 6, 2626–2635. [Google Scholar] [CrossRef] [Green Version]
- Shaji, J.; Patole, V. Protein and peptide drug delivery: Oral approaches. Indian J. Pharm. Sci. 2008, 70, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Senel, S.; Hincal, A.A. Drug permeation enhancement via buccal route: Possibilities and limitations. J. Control. Release 2001, 72, 133–144. [Google Scholar] [CrossRef]
- Jitendra, S.P.K.; Bansal, S.; Banik, A. Noninvasive routes of proteins and peptides drug delivery. Indian J. Pharm. Sci. 2011, 73, 367–375. [Google Scholar] [CrossRef]
- Iyer, H.; Anand, K.; Verma, M. Oral insulin—A review of current status. diabetes. Diabetes Obes. Met. 2010, 12, 179–185. [Google Scholar] [CrossRef]
- Sood, A.; Panchagnula, R. Peroral route: An opportunity for protein and peptide drug delivery. Chem. Rev. 2001, 101, 3275–3303. [Google Scholar] [CrossRef] [PubMed]
- Joye, I.J.; Davidov-Pardo, G.; McClements, D.J. Nanotechnology for increased micronutrient bioavailability. Trends Food Sci. Technol. 2014, 40, 168–182. [Google Scholar] [CrossRef]
- Batista, P.; Castro, P.M.; Madureira, A.R.; Sarmento, B.; Pintado, M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides 2018, 101, 112–123. [Google Scholar] [CrossRef]
- Kwak, H.-S. Overview of Nano- and Microencapsulation for FOODS, 1st ed.; John Wiley & Sons: New York, NY, USA, 2013; pp. 1–14. [Google Scholar] [CrossRef]
- Perry, S.L.; McClements, D.J. Recent advances in encapsulation, protection, and oral delivery of bioactive proteins and peptides using colloidal systems. Molecules 2020, 25, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interfac. Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef]
- Mohan, A.; Rajendran, S.R.C.K.; He, Q.S.; Bazinet, L.; Udenigwe, C.C. Encapsulation of food protein hydrolysates and peptides: A review. RSC Adv. 2015, 5, 79270–79278. [Google Scholar] [CrossRef]
- Liu, W.; Ye, A.; Liu, W.; Liu, C.; Han, J.; Singh, H. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chem. 2015, 175, 16–24. [Google Scholar] [CrossRef]
- Yokota, D.; Moraes, M.; Pinho, S.C. Characterization of lyophilized liposomes produced with non-purified soy lecithin: A case study of casein hydrolysate microencapsulation. Braz. J. Chem. Eng. 2012, 29, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-A.A.; Pawelchak, J. Effect of pH, ionic strength and oxygen burden on the chemical stability of EPC/cholesterol liposomes under accelerated conditions Part 1: Lipid hydrolysis. Eur. J. Pharm. Biopharm. 2000, 50, 357–364. [Google Scholar] [CrossRef]
- Bokkhim, H.; Bansal, N.; Grøndahl, S.; Bhandari, B. In-vitro digestion of different forms of bovine lactoferrin encapsulated in alginate micro-gel particles. Food Hydrocoll. 2016, 52, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Dix, C.; Wright, O. Bioavailability of a novel form of microencapsulated bovine lactoferrin and its effect on inflammatory markers and the gut microbiome: A pilot study. Nutrients 2018, 10, 1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Z.; Loveday, S.M.; Barbe, V.; Thielend, I.; Hee, Y.; Singh, H. Protection of native lactoferrin under gastric conditions through complexation with pectin and chitosan. Food Hydrocoll. 2019, 93, 120–130. [Google Scholar] [CrossRef]
- Vergara, D.; Lopez, O.; Bustamante, M.; Shene, C. An in vitro digestion study of encapsulated lactoferrin in rapeseed phospholipid–based liposomes. Food Chem. 2020, 321, 126717. [Google Scholar] [CrossRef] [PubMed]
- Raei, M.; Rajabzadeh, G.; Zibaei, S.; Jafari, S.M.; Sani, L.M. Nano-encapsulation of isolated lactoferrin from camel milk bycalcium alginate and evaluation of its release. Int. J. Biol. Macromol. 2015, 79, 669–673. [Google Scholar] [CrossRef]
- Sabaa, M.W.; Hanna, D.H.; Abu Elella, M.H.; Mohamed, R.R. Encapsulation of bovine serum albumin within novel xanthan gum based hydrogel for protein delivery. Mater. Sci. Eng. C 2019, 94, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Varnier, K.; Vieira, T.; Wolf, M.; Belfiore, L.A.; Tambourgi, E.B.; Paulino, A.T. Polysaccharide-based hydrogels for the immobilization and controlled release of bovine serum albumin. Int. J. Biol. Macromol. 2018, 120, 522–528. [Google Scholar] [CrossRef]
- Giroux, H.J.; Robitaille, G.; Britten, M. Controlled release of casein-derived peptides in the gastrointestinal environment by encapsulation in water-in-oil-in-water double emulsions. LWT-Food Sci. Technol. 2016, 69, 225–232. [Google Scholar] [CrossRef]
- Singh Rao, P.; Kumar Bajaj, R.; Mann, B.; Arora, S.; Tomar, S.K. Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin–gum arabic blend. J. Food Sci. Technol. 2016, 53, 3834–3843. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, Y.; Muro, C.; Illescas, J.; Díaz, M.C.; Riera, F. Encapsulation of antihypertensive peptides from whey proteins and their releasing in gastrointestinal conditions. Biomolecules 2019, 9, 164. [Google Scholar] [CrossRef] [Green Version]
- Mohan, A.; McClements, D.J.; Udenigwe, C.C. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight. Food Chem. 2016, 213, 143–148. [Google Scholar] [CrossRef]
- Mohan, A.; Rajendran, S.R.C.K.; Thibodeau, J.; Bazinet, L.; Udenigwe, C.C. Liposome encapsulation of anionic and cationic whey peptides: Influence of peptide net charge on properties of the nanovesicles. LWT-Food Sci. Technol. 2018, 87, 40–46. [Google Scholar] [CrossRef]
- Folmer Corrêa, A.P.; Bertolini, D.; Almeida Lopes, N.; Fonseca Veras, F.; Gregory, G.; Brandelli, A. Characterization of nanoliposomes containing bioactive peptides obtained from sheep whey hydrolysates. LWT-Food Sci. Technol. 2019, 101, 107–112. [Google Scholar] [CrossRef]
- Auwal, S.M.; Zarei, M.; Tan, C.P.; Basri, M.; Saari, N. Improved in vivo efficacy of anti-hypertensive biopeptides encapsulated in chitosan nanoparticles fabricated by ionotropic gelation on spontaneously hypertensive rats. Nanomaterials 2017, 7, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auwal, S.M.; Zarei, M.; Tan, C.P.; Basri, M.; Saari, N. Enhanced physicochemical stability and efficacy of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides by chitosan nanoparticles optimized using Box-Behnken design. Sci. Rep. 2018, 8, 10411. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Ramezanzade, L.; Nikkhah, M. Nano-liposomal entrapment of bioactive peptidic fraction from fish gelatin hydrolysate. Int. J. Biol. Macromol. 2017, 105, 1455–1463. [Google Scholar] [CrossRef]
- Ramezanzade, L.; Hosseini, S.F.; Nikkhah, M. Biopolymer-coated nanoliposomes as carriers of rainbow trout skin-derived antioxidant peptides. Food Chem. 2017, 234, 220–229. [Google Scholar] [CrossRef]
- Marin-Peñalver, D.; Aleman, A.; Gomez-Guillen, M.C.; Montero, P. Carboxymethyl cellulose films containing nanoliposomes loaded with an angiotensin-converting enzyme inhibitory collagen hydrolysate. Food Hydrocoll. 2019, 94, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Mosquera, M.; Giménez, B.; Mallmann da Silva, I.; Ferreira Boelter, J.; Montero, P.; Gómez-Guillén, M.C.; Brandelli, A. Nanoencapsulation of an active peptidic fraction from sea bream scales collagen. Food Chem. 2014, 156, 144–150. [Google Scholar] [CrossRef]
- Chotphruethipong, L.; Battino, M.; Benjakul, S. Effect of stabilizing agents on characteristics, antioxidant activities and stability of liposome loaded with hydrolyzed collagen from defatted Asian sea bass skin. Food Chem. 2020, 328, 127127. [Google Scholar] [CrossRef]
- Tkaczewska, J.; Jamróz, E.; Piatkowska, E.; Borczak, B.; Kapusta-Duch, J.; Morawska, M. Furcellaran-coated microcapsules as carriers of Cyprinus carpio skin-derived antioxidant hydrolysate: An in vitro and in vivo study. Nutrients 2019, 11, 2502. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Liu, J.; Zhang, T.; Yu, Y.; Zhang, Y.; Zhai, J.; Huang, H.; Wei, S.; Ding, L.; Liu, B. A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Food Chem. 2019, 286, 530–536. [Google Scholar] [CrossRef]
- Pugliese, R.; Bollati, C.; Gelain, F.; Arnoldi, A.; Lammi, C. A Supramolecular approach to develop new soybean and lupin peptide nanogels with enhanced dipeptidyl peptidase IV (DPP-IV) inhibitory activity. J. Agric. Food Chem. 2019, 67, 3615–3623. [Google Scholar] [CrossRef] [PubMed]
- Akbarbaglu, Z.; Jafari, S.M.; Sarabandi, K.; Mohammadi, M.; Heshmati, M.K.; Pezeshki, A. Influence of spray drying encapsulation on the retention of antioxidant properties and microstructure of flaxseed protein hydrolysates. Colloids Surf. B Biointerfaces 2019, 178, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Sarabandi, K.; Jafari, S.M.; Mohammadi, M.; Akbarbaglu, Z.; Pezeshki, A.; Heshmati, M.K. Production of reconstitutable nanoliposomes loaded with flaxseed protein hydrolysates: Stability and characterization. Food Hydrocoll. 2019, 96, 442–450. [Google Scholar] [CrossRef]
- Sarabandi, K.; Jafari, S.M. Improving the antioxidant stability of flaxseed peptide fractions during spray drying encapsulation by surfactants: Physicochemical and morphological features. J. Food Eng. 2020, 286, 110131. [Google Scholar] [CrossRef]
- Cian, R.E.; Campos-Soldini, A.; Chel-Guerrero, L.; Drago, S.R.; Betancur-Ancona, D. Bioactive Phaseolus lunatus peptides release from maltodextrin/gum arabic microcapsules obtained by spray drying after simulated gastrointestinal digestion. Int. J. Food Sci. Technol. 2019, 54, 2002–2009. [Google Scholar] [CrossRef] [Green Version]
- Gong, K.-J.; Shi, A.-M.; Liu, H.-Z.; Liu, L.; Hu, H.; Yang, Y.; Adhikari, B.; Wang, Q. Preparation of nanoliposome loaded with peanut peptide fraction: Stability and bioavailability. Food Funct. 2016, 7, 2034–2042. [Google Scholar] [CrossRef]
- Li, N.; Shi, A.; Wang, Q.; Zhang, G. Multivesicular liposomes for the sustained release of angiotensin I-converting enzyme (ACE) inhibitory peptides from peanuts: Design, characterization, and in vitro evaluation. Molecules 2019, 24, 1746. [Google Scholar] [CrossRef] [Green Version]
- Mazloomi, S.N.; Mahoonak, A.S.; Ghorbani, M.; Houshmand, G. Physicochemical properties of chitosan-coated nanoliposome loaded with orange seed protein hydrolysate. J. Food Eng. 2020, 280, 109976. [Google Scholar] [CrossRef]
- Su, L.; Zhou, F.; Yua, M.; Ge, R.; He, J.; Zhang, B.; Zhang, Y.; Fan, J. Solid lipid nanoparticles enhance the resistance of oat-derived peptides that inhibit dipeptidyl peptidase IV in simulated gastrointestinal fluids. J. Funct. Foods 2020, 65, 103773. [Google Scholar] [CrossRef]
- Cian, R.E.; Salgado, P.R.; Mauri, A.N.; Drago, S.R. Pyropia columbina phycocolloids as microencapsulating material improve bioaccessibility of brewers’ spent grain peptides with ACE-I inhibitory activity. Int. J. Food Sci. Technol. 2020, 55, 1311–1317. [Google Scholar] [CrossRef]
- Hejazi, R.; Amiji, M. Chitosan-based gastrointestinal delivery systems. J. Control. Release 2003, 29, 151–165. [Google Scholar] [CrossRef]
- Shu, X.Z.; Zhu, K.J. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur. J. Pharm. Biopharm. 2002, 54, 235–243. [Google Scholar] [CrossRef]
- Yuan, D.; Jacquier, J.C.; O’Riordan, E.D. Entrapment of protein in chitosan-tripolyphosphate beads and its release in an in vitro digestive model. Food Chem. 2017, 229, 495–501. [Google Scholar] [CrossRef]
- Sawtarie, N.; Cai, Y.; Lapitsky, Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Colloids Surf. B Biointerfaces 2017, 157, 110–117. [Google Scholar] [CrossRef]
- Molina Ortiz, S.E.; Mauri, A.; Monterrey-Quintero, E.S.; Trindade, M.A.; Santana, A.S.; Favaro-Trindade, C.S. Production and properties of casein hydrolysate microencapsulated by spraydrying with soybean protein isolate. LWT Food Sci. Technol. 2009, 42, 919–923. [Google Scholar] [CrossRef]
- Mendanha, D.V.; Molina Ortiz, S.E.; Favaro-Trindade, C.S.; Mauri, A.; Monterrey-Quintero, E.S.; Thomazini, M. Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Res. Int. 2009, 42, 1099–1104. [Google Scholar] [CrossRef]
- Ma, J.-J.; Mao, X.-Y.; Wang, Q.; Yang, S.; Zhang, D.; Chen, S.-W.; Li, Y.-H. Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. LWT-Food Sci. Technol. 2014, 56, 296–302. [Google Scholar] [CrossRef]
- Wang, Z.; Ju, X.; He, R.; Yuan, J.; Wang, L. The effect of rapeseed protein structural modification on microstructural properties of peptide microcapsules. Food Bioprocess. Technol. 2015, 8, 1305–1318. [Google Scholar] [CrossRef]
- Tavares, G.M.; Croguennec, T.; Carvalho, A.F.; Bouhallab, S. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends Food Sci. Technol. 2014, 37, 5–20. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol. Prog. 2013, 29, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Balassa, L.L.; Fanger, G.O.; Wurzburg, O.B. Microencapsulation in the food industry. Crit. Rev. Food Sci. Nutr. 1971, 2, 245–265. [Google Scholar] [CrossRef]
Dairy Food Product | Gastrointestinal Model | Site/Type | Outcomes | Reference |
---|---|---|---|---|
Casein and whey proteins | In vivo | Human jejunum |
| [37] |
Human milk | In vivo | Infant stomach |
| [38] |
Casein and whey proteins | In vivo | Human jejunum |
| [29] |
Skim mik | In vivo | Mini-pig duodenum |
| [39] |
Skim milk | In vivo | Mini-pig duodenum |
| [40] |
Infant formula | In vivo | Piglet jejunum and ileum |
| [8] |
Unheated and heat skim milk powder | In vitro | Dynamic: DIDGI® |
| [41] |
Skim milk with β-casein variants A1, A2, F and I | In vitro | Static INFOGEST with human gastric and duodenal juices |
| [42] |
Skim milk with β-casein variants A1, A2 and I | In vitro | Static INFOGEST with human gastric and duodenal juices |
| [43] |
Grana Padano cheese | In vitro | Static with porcine pepsin and porcine pancreatin (Pepn) and INFOGEST |
| [44] |
Cheddar, Gorgonzola, Maasdam and Grana Padano cheeses | In vitro | Static INFOGEST |
| [45] |
Human milk and infant formula | In vitro | Static |
| [46] |
Commercial dairy products | In vitro | Static |
| [47] |
Spanish blue cheese (Valdeon) | In vitro | Static |
| [48] |
Gamalost and Norvegia cheeses | In vitro | Static but with human gastric and duodenal juices |
| [49] |
Protein/Peptide Substrate | Biological Activity | Cell Model | Absorption Study Conditions | Outcomes | Reference | |||
---|---|---|---|---|---|---|---|---|
Density (cells/cm2) | Seeding Time (days) | Sample Concentr. | Time (min) | |||||
Simulated digest from Alcalase® soybean protein hydrolyzate | Antioxidant | Caco-2 | 1.2 × 105 | 18–21 | 1.0 c | 120 | Absorption of antioxidant peptides across cell monolayer | [140] |
Soybean peptides IAVPTGVA, LPYP, and IAVPGEVA | Hypocholesterolemic Hypoglycemic | Caco-2 | 3.5 × 105 | 17 | 0.5 d | 15–120 | Inefficient intestinal transport Remarkable hydrolysis by brush border enzymes | [148] |
Peptide LSW from soybean protein | ACE-inhibitory Anti-inflammatory | Caco-2 | 1.0 × 105 | 21 | 5.0 d | 60 | Transport of intact LSW across cell monolayer by paracellular diffusion via TJs and PepT1 pathway | [149] |
Peptide lunasin and RKQLQGVN from soybean protein | Multifunctional | Caco-2 | 1.5 × 105 a | 9 | 0.010–1.0 d | 60 | Absorption of intact peptides across cell monolayer by paracellular diffusion | [93] |
Tryptic and peptic peptides from lupin protein | Multifunctional | Caco-2 | 3.5 × 105 | 18 | 1.0 c | 240 | Efficient absorption of eleven tryptic and eight peptic bioactive lupin peptides | [147] |
Peptide YDFYPSSTKDQQS from lupin hydrolyzate by pepsin | Hypocholesterolemic | Caco-2 | 3.5 × 105 | 18 | 1.0 c | 240 | Efficient absorption of peptide | [150] |
Peptide fractions from Phaseolus vulgaris L. ecotype Controne beans | ACE-inhibitory Antioxidant α-amylase inhibitory | Caco-2 | 2.0 × 105 a | 21 | 0.1–1.0 c | 120 | Partial absorption of peptides across cell monolayer | [151] |
Peptide YWDHNNPQIR from rapeseed protein | Antioxidant | Caco-2 | 1.0 × 105 a | 21 | 0.025–0.25 d | 120 | Partial absorption of peptide across cell monolayer via intracellular transcytosis Susceptibility to hydrolysis by cell peptidases | [101] |
Peptides LY, RALP, and TF from rapeseed protein hydrolyzate by Alcalase® | ACE-inhibitory Renin inhibitory | Caco-2 | 1.0 × 105 a | 21 | 1.0–3.0 d | 180 | Highest absorption for peptide LY and lowest for peptide RALP Susceptibility to cell peptidases | [152] |
Peptides YFCLT and GLLLPH from corn gluten | Antioxidant | Caco-2 | 1.0 × 105 a | 21 | 4.0 d | 120 | Absorption of intact peptides across cell monolayer via TJs-mediated paracellular diffusion and energy-dependent transcytosis Susceptibility of peptides to brush border peptidases | [141] |
≤3 kDa hydrolyzate from cowpea bean protein | Hypocholesterolemic | Caco-2 | 5.0 × 104 | 21 | 5.0 c | 120 | Absorption of peptide MELNAVSVVHS across cell monolayer | [153] |
Peptide RLSFNP from whey protein hydrolyzate with proteinases of Lb. helveticus LB10 | ACE inhibitory | Caco-2 | 2.0 × 105 | 21 | 1.0 d | 60 | Absorption of intact RLSFNP and fragments F, FNP, SFNP, and RLSF Transport via paracelullar route | [154] |
Peptide fractions from simulated digests of common bean milk and yogurt | Anti-inflammatory | Caco-2 clone (C2BBe1) | --- | 5–7 | --- | 360 | Anti-inflammatory peptides transported across the cell monolayer Yogurt samples showed higher transport efficiency than milk samples | [155] |
Milk peptides LKPTPEGDL, LPYPY, IPIQY, IPI and WR | DPP-IV inhibitory | Caco-2 | 2.5 × 105 | 21 | 1–6 d | 120 | Low absorption capacity of peptides High susceptibility to brush border cell membrane enzymes | [123] |
Milk peptide RLSFNP | ACE inhibitory | Caco-2 | 2.0 × 105 | 21 | 1–6 d | 120 | Transport of peptide across cells via energy-dependent transcytosis | [156] |
Peptide mixture from whey protein hydrolyzed by immobilized Lb. helveticus proteinase | ACE inhibitory | Caco-2 | 2.0 × 105 | 21 | 1.0 c | 60 | Transport of peptides KA, EN, DIS, EVD, LF, AIV, and VFK across cell monolayer | [157] |
Simulated digests from whey proteins | Antioxidant Immunomodulatory | Co-culture of Caco-2 (70%) and HT-29 (30%) | 4 × 104 | 10 | 175 e | 120 | Bioactive peptides (ALPM, GDLE, TKIPA, VEELKPT, VGIN and AVEGPK) were transported across cell monolayer | [158] |
Lactoferrin-derived peptides WQ, RWQ, and RRWQWR | Antihypertensive | Caco-2 | 7.5 × 104 | 21 | 1.0 d | 120 | Absorption of peptides RWQ and WQ via paracellular diffusion Susceptibility of three peptides to brush border peptidases | [145] |
Peptides EAMAPK and AVPYPQ from simulated digests of Stracchino” soft cheese | Antioxidant | Caco-2 | 6.0 × 104 | 14–15 | 0.5–4.0 d | 240 | Absorption of peptides across cell monolayer Resistance to brush border peptidases | [142] |
Peptide fraction from simulated digest of “Mozzarella di Bufala Campana DOP” | Antioxidant | Caco-2 | 6.0 × 104 | 14–15 | 0.5–4.0 d | 240 | Absorption of intact peptides across cell monolayer | [159] |
Peptide VLPVPQK from casein hydrolyzate | ACE-inhibitory Antioxidant | Caco-2 | 3.0 × 105 a | 21 | 0.38 d | 60 | Partial absorption of peptide across cell monolayer via PepT1-like transporters | [160] |
Peptide fractions from casein hydrolyzate by Alcalase® and its simulated digest | Antioxidant | Caco-2 | 1.0 × 106 b | 21 | 40.0 c | 120 | Higher bioavailability for negatively charged peptides | [143] |
Peptide fractions from casein hydrolyzate by Alcalase® | Antioxidant | Caco-2 | 4.0 × 105 | 21 | 15.0 c | 120 | Amino acid sequence affects peptide bioavailability Absorption via paracellular route Susceptibility to brush border peptidases | [89] |
Peptide fractions from simulated digest of casein hydrolyzate by Alcalase® | Antioxidant | Caco-2 | 1.0 × 105 b | 21 | 25.0 c | 120 | High bioavailability for high hydrophobic peptide fractions | [161] |
Peptides RYLGY and AYFYPEL from casein hydrolyzate by pepsin | Antihypertensive | Caco-2, HT-29-MTX and co-culture Caco-2 (75%)/HT-29-MTX (25%) | 5.0 × 105 a | 21 | --- | 60 | Absorption of intact peptides across cell monolayer Susceptibility of peptide RYLGY to cell peptidases | [162] |
Simulated digests from collagen hydrolyzates by different proteases | Immunomodulatory | Caco-2 | 1.0 × 105 | 21 | 6.0 c | 120 | Greater transport efficiency of collagen hydrolysates due to the lower MW profile | [163] |
Simulated digests from egg ovalbumin hydrolyzate (Tensiocontrol®) | Antihypertensive | Caco-2 | 1 × 105 a | 21 | 0.1 c | 62 | Protection of food matrix against bioactive peptides luminal digestion | [146] |
Synthetic egg peptides IVF, YAEER, YAEERYPIL, RADHPFL, and RADHP | Antihypertensive | Caco-2 | 1.0 × 105 a | 21 | 1.05 f | 25 | Absorption of five egg peptides Faster transport for peptide IVF | [146] |
Ovotransferrin RVPSL | Antihypertensive | Caco-2 | 1.0 × 105 a | 21 | 5.0 d | 120 | Partial transport of peptide across cell monolayer via TJs-mediated paracellular pathway Susceptibility to brush border peptidases | [114] |
Peptides IWHHT, IWH, and IW from spent hen | ACE inhibitory | Caco-2 | 1.0 × 105 | 21 | 5.0 d | 120 | Partial absorption across cell monolayer Partial degradation by cell peptidases | [164] |
Peptides hemorphins from simulated hemoglobin digest | Opioid | Caco-2/TC7 clone | 6.0 × 104 | 21 | 5.0 a | 60 | Absoprtion of intact hemorphins across cell monolayer | [28] |
Simulated digests from cooked chicken muscles | ACE inhibitory | Caco-2 | 2.5 × 105 | 21 | 15.0 c | 120 | Higher permeability and bioactivity for samples heated at 70 °C than at 121 °C | [165] |
Peptide DLEE from Chinese dry-cured Xuanwei ham | Antioxidant | Caco-2 | 2.0 × 105 b | 22 | 1.0–10.0 d | 150 | Peptide absorption via paracellular transport | [144] |
Peptide fraction from tilapia hydrolyzed by V. halodenitrificans SK1-3-7 proteinases and its simulated digests | ACE inhibitory | Caco-2 | 2.3 × 105 a | 21 | 1.0 c | 360 | In vitro gastrointestinal digestion enhanced the transport of hydrolyzate across cell monolayer | [166] |
Peptides IQP and VEP from Spirulina platensis | ACE inhibitory | Caco-2 | 1.0 × 105 | 21 | 1.0–5.0 d | 120 | Absorption of intact peptides through cell monolayer by paracellular diffusion | [167] |
Protein Source | Hydrolyzate/Peptide Substrate | Encapsulation Method | Outcomes | Reference |
---|---|---|---|---|
Lactoferrin | Apo-, native- and holo-lactoferrin | Alginate micro-gel particles by the aerosol technique | Protection of encapsulated apo- and native-lactoferrin from pepsin action and release in the intestinal content | [216] |
Lactoferrin | Lactoferrin | Commercial microencapsulated (Progel) lactoferrin (InferrinTM) | Improvement of encapsulated lactoferrin absorption in humans Beneficial effects on the human microbiome and immune system | [217] |
Lactoferrin | Lactoferrin | Pectin-based colloidal delivery systems with and without chitosan coating | Retention of antimicrobial activity of systems Protection from pepsin digestion | [218] |
Lactoferrin | Lactoferrin | Rapeseed phospholipid, stigmasterol, and/or HPC liposomes by thin-layer dispersion | High and moderate protection against gastric and intestinal digestion, respectively | [219] |
Camel lactoferrin | Lactoferrin | Encapsulation into alginate nanocapsules | Gradual release of lactoferrin at gastrointestinal level | [220] |
Bovine seroalbumin | Seroalbumin | Encapsulation into liposomes of phosphatidylcholine | Protection of encapsulated seroalbumin from pepsin action and release of protein during intestinal phase | [213] |
Bovine seroalbumin | Seroalbumin | Encapsulation within xanthan gum/poly N-vinyl imidazole hydrogel | Retention of the structural integrity of protein Controlled release of seroalbumin | [221] |
Seroalbumin | Seroalbumin | Encapsulation into Arabic gum-based and chitosan-based hydrogels | Slightly more efficient release of protein from the Arabic gum-based hydrogel | [222] |
Azocasein | Azocasein hydrolyzate with trypsin | Encapsulation in water-in-oil-in-water double emulsions | Slow down of the release of peptides from encapsulated azocasein in the gastric phase and promotion of the peptides release in the intestinal phase | [223] |
Casein | Antioxidant casein hydrolyzate by papain | Encapsulation into a maltodextrin–Arabic gum blend | Reduction of bitterness of encapsulated hydrolyzates Retention of antioxidant activity | [224] |
Whey protein | Antihypertensive <3kDa fraction from hydrolyzates by proteinase from Bacillus subtilis | Biopolymers based on the sodium alginate matrix and filler materials (gelatin, Arabic gum, collagen) | Controlled release of ACE-inhibitory peptides from capsules subjected to simulated gastrointestinal digestion | [225] |
Whey protein | Peptide fraction from hydrolyzates by papain | Encapsulation into liposomes of soybean lecithin by film hydration | Similar encapsulation efficiencies in liposomes, despite differences in the molecular weights, heterogeneities and surface hydrophobicities of whey peptides | [226] |
Whey protein | Peptide fraction from hydrolyzates by papain | Encapsulation into liposomes of soybean lecithin | Lower encapsulation efficiency for anionic whey peptides than for cationic peptides | [227] |
Sheep whey protein | Antioxidant and ACE-inhibitory activity of peptide fractions from ovine whey protein hydrolyzate with a B. subtilis proteinase | Encapsulation into liposomes of phosphatidylcholine | Retention of bioactivities in encapsulated systems | [228] |
β-lactoglobulin | ACE-inhibitory peptide RLSFNP | Encapsulation into liposomes of soybean lecithin | Significant sustained release and storage capability Increase of intestinal absorption of encapsulated peptide | [156] |
Actinopyga lecanora (stone fish) protein | Antihypertensive hydrolyzate by bromelain | Chitosan nanoencapsulation by ionotropic gelation | Higher in vivo antihypertensive efficacy in encapsulated systems | [229] |
Actinopyga lecanora (stone fish) protein | Antihypertensive peptides from hydrolyzate with bromelain | Sodium TPP cross-linked chitosan nanoencapsulation by ionotropic gelation | Higher in vivo antihypertensive efficacy in encapsulated systems | [230] |
Onchorhynchus mykiss (rainbow trout) skin gelatin | Antioxidant peptide fraction from hydrolyzate with Alcalase® | Encapsulation into phosphatidylcholine liposomes | Sustained and prolonged peptide-release behavior in a concentration-dependent manner | [231] |
Onchorhynchus mykiss (rainbow trout) skin gelatin | Antioxidant < 30 kDa peptide fraction from hydrolyzate with Alcalase® | Encapsulation into chitosan-coated nanoliposomes | Sustained in vitro release of peptides Retention of antioxidant activity | [232] |
Dosidicus gigas (giant squid) collagen | ACE-inhibitory hydrolyzate with Alcalase® | Encapsulation into phosphatidylcholine liposomes | Improvement of the activity of liposomes Protection during simulated gastrointestinal digestion | [233] |
Sparus aurata (sea bream) scales | Antioxidant and ACE-inhibitory <3kDa peptide fraction from hydrolyzates by Esperase® 8.0 l | Encapsulation into liposomes of soybean lecithin by film hydration | Retention of the multifunctionality of hydrolyzates during storage | [234] |
Asian sea bass skin collagen | Antioxidant collagen hydrolyzates | Encapsulation into soybean phosphatidylcholine liposomes by film hydration | Retention of stability and antioxidant activity under simulated gastrointestinal digestion | [235] |
Cyprinus carpio (carp) skin gelatin | Antioxidant hydrolyzates by Protamex® enzymatic mixture | Encapsulation into furcellaran-coated microcapsules | Decrease in the in vitro and in vivo antioxidant activity of encapsulated hydrolyzates | [236] |
Egg white protein | Egg white derived peptides from hydrolyzate with Alcalase® | Chitosan–TPP nanoencapsulation | Optimized conditions for peptides entrapment with controlled properties | [237] |
Soybean 11S globulin | DPP-IV inhibitory peptide IAVPTGVA | Encapsulation into ionic self-complementary peptide hydrogels | Increase of stability under digestion conditions and bioavailability | [238] |
Flaxseed protein | Antioxidant hydrolyzates (alcalase, pancreatin, trypsin, pepsin) | Maltodextrin encapsulation by spray-drying | Retention of the antioxidant activity of alcalase hydrolyzates | [239] |
Flaxseed protein | Antioxidant hydrolyzates Alcalase®, pancreatin, trypsin) | Encapsulation into liposomes by thin-film hydration | High encapsulation efficiency Appropriate physicochemical, functional, and stability properties | [240] |
Flaxseed protein | Antioxidant peptide fractions from hydrolyzates by trypsin | Maltodextrin microencapsulation by spray drying | Lower hygroscopicity, higher production yield, and better retention of antioxidant activity by spray-dried peptides | [241] |
Phaseolus lunatus protein | Antidiabetic and antihypertensive peptides from Phaseolus lunatus hydrolyzate with Alcalase® and Flavourzyme® | Maltodextrin/Arabic gum microencapsulation by spray drying | Retention of the bioactivities after simulated gastrointestinal digestion | [242] |
Peanut protein | ACE-inhibitory peptide fraction from peanut protein hydrolyzate with B. subtilis proteinases and pepsin | Nanoliposome prepared by high pressure microfluidization | Increase of bioavailability and ACE-inhibitory activity of encapsulated peptides | [243] |
Peanut protein | ACE-inhibitory peanut meal hydrolyzates with Protamex® and Neutrase® | Encapsulation in water-in-oil-in-water multivesicular liposomes | Controlled release of bioactive peptides from liposomes Outstanding thermal stability of liposomes Retention of ACE inhibitory activity | [244] |
Citrus sinensis (orange) seed protein | Antioxidant hydrolyzates by Alcalase® and pepsin | Encapsulation into soybean and chitosan liposomes by film hydration | Protection, control of release and maintaining of the antioxidant activity of peptides | [245] |
Avena sativa (oat) globulin | DPP-IV inhibitory hydrolyzates by trypsin | Solid lipid (triglycerides, fatty acids, steroids, and waxes) nanoparticles | Retention of stability and bioactivity of peptides under simulated gastrointestinal conditions | [246] |
Brewers’ spent grain peptides | ACE-inhibitory peptides | Microencapsulation with locust bean gum, Pyropia columbina phycocolloids or their mixtures | Higher ACE-inhibitory activity of encapsulated peptides | [247] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. https://doi.org/10.3390/molecules25194479
Amigo L, Hernández-Ledesma B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules. 2020; 25(19):4479. https://doi.org/10.3390/molecules25194479
Chicago/Turabian StyleAmigo, Lourdes, and Blanca Hernández-Ledesma. 2020. "Current Evidence on the Bioavailability of Food Bioactive Peptides" Molecules 25, no. 19: 4479. https://doi.org/10.3390/molecules25194479
APA StyleAmigo, L., & Hernández-Ledesma, B. (2020). Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules, 25(19), 4479. https://doi.org/10.3390/molecules25194479